
Page 1/12

Investigating Casual Associations among Gut Microbiota, Metabolites and
Neurodegenerative Diseases: A Mendelian Randomization Study
Jin-Tai Yu 
(

jintai_yu@fudan.edu.cn
)

Huashan Hospital, Fudan University
 https://orcid.org/0000-0002-7686-0547
Jing Ning 

Huashan Hospital Fudan University
Shu-Yi Huang 

Huashan Hospital Fudan University
Shi-Dong Chen 

Huashan Hospital Fudan University
Yu-Xiang Yang 

Huashan Hospital Fudan University
Qiang Dong 

Huashan Hospital Fudan University

Research

Keywords: Gut microbiota, Metabolite, Neurodegenerative disease, Mendelian randomization analysis

Posted Date: September 16th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-885681/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

https://doi.org/10.21203/rs.3.rs-885681/v1
mailto:jintai_yu@fudan.edu.cn
https://orcid.org/0000-0002-7686-0547
https://doi.org/10.21203/rs.3.rs-885681/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/12

Abstract

Background
Recent studies had explored that the gut microbiota was associated with neurodegenerative diseases (including Alzheimer’s disease (AD), Parkinson’s disease
(PD) and amyotrophic lateral sclerosis (ALS)) through the gut-brain axis, among which metabolic pathways played an important role. However, the underlying
causality remained unclear. Our study aimed to evaluate potential causal relationships between gut microbiota, metabolites and neurodegenerative diseases
through Mendelian randomization (MR) approach.

Methods
We selected genetic variants associated with gut microbiota traits (N = 18340) and gut microbiota-derived metabolites (N = 7824) from genome-wide
association studies (GWASs). Summary statistics of neurodegenerative diseases were obtained from IGAP (AD: 17008 cases; 37154 controls), IPDGC (PD: 37
688 cases; 141779 controls) and IALSC (ALS: 20806 cases; 59804 controls) respectively.

Results
A total of 19 gut microbiota traits were found to be causally associated with risk of neurodegenerative diseases, including 1 phylum, 2 classes, 2 orders, 2
families and 12 genera. We found genetically predicted greater abundance of Ruminococcus, at genus level (OR:1.245, 95%CI:1.103,1.405; P = 0.0004) was
significantly related to higher risk of ALS. We also found suggestive association between 12 gut microbiome-dependent metabolites and neurodegenerative
diseases. For serotonin pathway, our results revealed serotonin as protective factor of PD, and kynurenine as risk factor of ALS. Besides, reduction of
glutamine was found causally associated with occurrence of AD.

Conclusions
Our study firstly applied a two-sample MR approach to detect causal relationships among gut microbiota, gut metabolites and the risk of AD, PD and ALS, and
we revealed several causal relationships. These findings may provide new targets for treatment of these neurodegenerative diseases, and may offer valuable
insights for further researches on the underlying mechanisms.

Background
Neurodegenerative diseases are characterized by progressive loss of structure or function of neurons in the central or peripheral nervous system, which
involves irreversible long-term motor or cognitive impairments[1]. The prevalence of neurodegenerative diseases including Alzheimer’s disease (AD),
Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), are rising worldwide with the increasing life expectancy. In recent years, emerging evidence
has indicated that gut microbiota derived metabolites including short-chain fatty acids(SCFAs)[2, 3] and neurotransmitters such as glutamate[4], serotonin[5,
6] and γ-aminobutyric acid (GABA)[7] may play a central role in the gut-brain axis alterations and risk of neurodegenerative diseases [8]. However, few
consistent links connecting gut microbiota and diseases or their associated metabolic pathways were found.

Increasing number of cross-sectional studies have implicated the association between gut microbiota and neurodegenerative diseases, including AD, PD, ALS
[9]; however, such associations differed across studies. For example, an observational study(n = 25) found a significantly decreased abundance of
Ruminococcaceae, and Actinobacteria and significant increase in abundance of Bacteroidetes in patients with Alzheimer's disease compared with control
individuals[10]; while another cross-sectional study(n = 43) showed an opposite outcome of those microbiota[11]. Similarly, the association between gut
microbiota and PD [12, 13] or ALS [14, 15] also differed in different studies. The results of those small observational studies should be considered with caution
due to participant selection bias, confounding bias and reverse causation. However, it is crucial to identify whether those relationships were robust causal
associations or spurious correlations.

Mendelian randomization (MR) approach, which uses genetic variants as instrumental variables(IVs), has been widely accepted to determine the causal effect
of exposures on diseases[16]. Due to the random allocation of single nucleotide polymorphisms (SNPs) which is independent of confounders, MR is similar to
randomized controlled trial and circumvent the limitations of previous observational studies.

Therefore, our study firstly applied a two-sample MR approach to detect causal relationships among gut microbiota, metabolites, and neurodegenerative
disorders including AD, PD and ALS, using summary statistics from the largest genome-wide association studies (GWASs) so far.

Methods
Data sources and instruments

 Summary statistics applied for investigating traits had the largest sample sizes, similar populations and with least sample overlap. Details of the contributing
GWAS consortiums were listed in Additional File 1: Table S1.

Gut microbiota
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We leveraged summary statistics from most comprehensive exploration of genetic influences on human gut microbiota so far. The MiBioGen consortium
recruited 18,340 participants of multiple ancestries (including European, American Hispanic/Latin, East Asian and etc.) from 24 cohorts [17]. After extracting
DNA from fecal samples, 16S rRNA gene sequencing was utilized to characterize the gut microbiome using SILVA[18] as a reference database, with truncation
of the taxonomic resolution to genus level.

Gut metabolites

Considering the important roles of gut metabolites in microbiota-host crosstalk, we also leveraged summary-level data from a GWAS of the human
metabolome conducted among European-descent subjects (TwinsUK and KORA, n=7824). The GWAS tested all 486 metabolite concentrations present in both
datasets at each SNP. Then we applied HMDB[19] to obtain a list of 81 gut microbiota derived metabolite traits from all the quantified metabolites in the
GWAS. 

Neurodegenerative Diseases

We utilized the GWAS summary statistics from the largest and most recent datasets for AD, PD and ALS so far. We obtained the corresponding genetic
variants from the International Genomics of Alzheimer’s Project (IGAP) including 17,008 cases and 37,154 controls[20], the International Parkinson’s Disease
Genomics Consortium (IPDGC) including 37 688 cases and 141779 million controls[21], and the International Amyotrophic Lateral Sclerosis Genomics
Consortium including 20,806 cases with ALS and 59,804 controls[22]. Cases of those neurodegenerative diseases were all clinically confirmed using published
criteria. 

Ethical approval for each study had been obtained in all original articles[17, 20-23], and no ethical approval for the current analyses was needed as they were
based on publicly available summary statistics.

Selection of instrumental variables

To ensure the validity of the instrumental variables included for MR analyses, our study selected SNPs at thresholds for suggestive genome-wide significance
(P < 1 × 10−5) as independent instruments for exposure (gut microbiota and metabolite traits). We manually checked all the identified SNPs by PhenoScanner
GWAS database (http://www.phenoscanner.medschl.cam.ac.uk/) and excluded variants for the linkage disequilibrium (LDlink: https://ldlink.nci.nih.gov/, LD,
R2 < 0.001), and all GWAS were assumed to be coded on the forward strand. We also computed the F-statistic of each exposure, and SNPs that had F-
statistics less than 10 were excluded to avoid week instrument bias [38]. Finally, for gut microbiota instruments, a total of 8269 host SNPs were identified,
which were associated with 200 gut microbiota traits (9phyla + 16 classes + 20 orders + 36 families + 119 genera), and for gut metabolite instruments, 3134
SNPs associated with 81 traits were included in our study. Summary statistics of these significant SNPs were assessed through Additional File 1: Table S2-S3.

Statistical analyses 

We applied two sample MR as our main statistical methods to estimate causal associations between each instrument-exposure (gut microbiota and
metabolite) and instrument-outcome (AD, PD and ALS).  The MR approach was based on 3 key assumptions: (1) the genetic variant must be truly associated
with the exposure; (2) the genetic variant should not be associated with confounders of the exposure-outcome relationship; (3) the genetic variant should only
be related to the outcome of interest through the exposure under study[24].

Primary analyses were performed using Inverse-variance weighted (IVW) method, which essentially assumed the intercept was zero, and our results were
corrected for multiple hypothesis testing using the Benjamini and Hochberg false discovery rate (FDR), as significance threshold was set at FDR-corrected p-
values <0.05[25], while associations with P < 0.05, but not reaching the FDR-controlled threshold were reported as suggestive of association. Power
calculations were conducted based on the website http://cnsgenomics.com/shiny/mRnd/[26] (see Additional File 1: Table S6). 

To validate assumption 3 and improve the robustness of the findings, we also undertook a series of sensitivity analyses including MR-Egger regression,
weighted mode, weighted median, simple median methods and robust adjusted profile score (MR.RAPS) method, which provided different assumptions about
horizontal pleiotropy [27, 28]. However, MR-Egger method had the lowest power among the 6 methods, and was based on the instrument strength independent
of the direct effects (INSIDE) assumption, with no measurement error in the SNP exposure effects (NOME) assumption[29]. Therefore, MR Egger was
performed when I2GX was >0.9[30]. 

Cochran Q statistic and leave-one-out sensitivity analysis were also adopted to the SNPs that may influence the outcome through an unaccounted causal
pathway, and Steiger analysis was performed to explore direction of causal effects[31]. Furthermore, MR-Egger intercept and Mendelian Randomization
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test were used to detect the presence of pleiotropy[32]. 

At last, we conducted multivariable MR (MVMR) analyses[33] using IVW method to estimate the direct and indirect effect of each exposure on an outcome, as
we found a high degree of IV overlap across gut microbiota (Lentisphaerae at phylum level, Lentisphaeria at class level and Victivallales at order level) in
univariable MR analyses on PD. Furthermore, we also conducted multivariable MR-Egger analyses to evaluate the horizontal pleiotropy for direct and indirect
effects. The IVs used for MVMR analysis were listed in Additional File 1: Table S8.

The MR analyses were performed in the R version 4.0.2 computing environment using the latest TwoSampleMR
(https://github.com/MRCIEU/TwoSampleMR), MVMR (https://github.com/WSpiller/MVMR), and MRPRESSO (https://github.com/rondolab/MR-PRESSO)
packages. 

Results

https://ldlink.nci.nih.gov/
http://cnsgenomics.com/shiny/mRnd/
https://github.com/WSpiller/MVMR
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Associations between gut microbiota and neurodegenerative diseases
By the means of IVW method, results reaching a threshold of P < 0.05 are presented in Fig. 2. Causal effects were estimated by odds ratio (OR), which
represented increase risk of binary outcomes (AD, PD, ALS) per SD increase in abundance of gut microbiota feature. By the means of IVW method, we found
suggestive associations of host-genetic-driven increases in Actinobacteria at class level (OR, 1.027; 95%CI, 1.006–1.048; P = 0.013) ; Lactobacillaceae at
family level (OR, 1.027; 95%CI, 1.006–1.048; P = 0.014); Lachnoclostridium at genus level (OR, 1.03; 95%CI, 1.005–1.056; P = 0.019) and higher risks of AD,
while genetically increased in Faecalibacterium at genus level (OR, 0.975; 95%CI, 0.954–0.997; P = 0.028) were associated with protective effects on the risk of
AD. We also found suggestive causal effect of Ruminiclostridium6 at genus level (OR, 1.025; 95%CI, 1.006–1.045; P = 0.009) on higher risk of AD, while
Ruminiclostridium9 (OR, 0.969; 95%CI, 0.943–0.996; P = 0.009) on lower risk of AD. However, after calculating False Discovery Rate (FDR), we found that all q-
values were over 0.05, suggesting no significant associations. What’s more, associations between the gut microbiota traits and risk of AD were consistent in
sensitivity analyses (see Table 1). MR- Egger intercept (we calculated I2GX, which were all over 0.9) and mendelian randomization pleiotropy residual sum and
outlier (MR-PRESSO) were applied to test the directional pleiotropy, and all P values were over 0.05, suggesting no significant pleiotropy, while Cochran Q
statistic of both the IVW test and the MR-Egger regression was used to test the heterogeneity, and no notable heterogeneity across instrument SNP effects was
indicated (see Additional File 1: Table S7). However, we had limited power (less than 80%) to test causal effects of those gut microbiota features on AD.

Table 1
Sensitivity analyses of MR analyses of neurodegenerative diseases on gut metabolite features by MR Egger, simple mode, weighted me

Outcome Exposure Weighted mode Weighted median   Simple mode MR Egger

Level Microbiota OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI

AD Class Actinobacteria 1.048(1.009,1.088) 0.03 1.039(1.011,1.068) 0.01 1.022(0.979,1.067) 0.33 1.08(1.023

AD Family Lactobacillaceae 1.015(0.981,1.051) 0.41 1.022(0.996,1.049) 0.10 1.01(0.978,1.043) 0.56 0.986(0.93

AD Genus Faecalibacterium 0.98(0.946,1.015) 0.29 0.977(0.949,1.007) 0.13 0.979(0.942,1.018) 0.31 0.979(0.93

AD Genus Ruminiclostridium6 1.01(0.974,1.048) 0.59 1.019(0.992,1.048) 0.17 1.015(0.97,1.062) 0.53 1.005(0.95

AD Genus Ruminiclostridium9 0.984(0.926,1.045) 0.61 0.984(0.947,1.022) 0.40 0.983(0.921,1.05) 0.63 0.96(0.852

AD Genus Lachnoclostridium 1.004(0.939,1.074) 0.91 1.023(0.99,1.058) 0.17 1.006(0.944,1.073) 0.85 1.031(0.93

PD Phylum Lentisphaerae 0.745(0.555,0.999) 0.08 0.762(0.629,0.921) 0.01 0.743(0.538,1.026) 0.11 0.715(0.43

PD Class Lentisphaeria 0.751(0.559,1.009) 0.10 0.783(0.641,0.957) 0.02 0.747(0.539,1.037) 0.13 0.743(0.45

PD Family Oxalobacteraceae 1.202(0.934,1.547) 0.18 1.177(1.007,1.376) 0.04 1.194(0.901,1.583) 0.24 1.422(0.85

PD Order Victivallales 0.751(0.555,1.015) 0.11 0.783(0.64,0.959) 0.02 0.747(0.536,1.042) 0.13 0.743(0.45

PD Order Bacillales 1.221(0.931,1.601) 0.19 1.179(0.996,1.397) 0.06 1.215(0.934,1.581) 0.18 1.133(0.61

PD Genus Eubacteriumhalliigroup 1.462(0.97,2.202) 0.09 1.361(1.075,1.723) 0.01 1.526(0.967,2.407) 0.09 1.329(0.91

PD Genus Anaerostipes 0.588(0.336,1.029) 0.09 0.747(0.54,1.034) 0.08 0.6(0.342,1.052) 0.10 0.579(0.26

PD Genus Clostridiumsensustricto1 1.416(0.942,2.128) 0.15 1.413(1.043,1.915) 0.03 1.404(0.915,2.154) 0.17 1.728(1.00

ALS Genus RuminococcaceaeUCG004 1.259(0.92,1.723) 0.18 1.251(1.06,1.476) 0.05 1.263(0.934,1.707) 0.17 0.76(0.398

ALS Genus Lachnospira 1.15(0.745,1.776) 0.56 1.298(0.987,1.708) 0.01 1.431(0.933,2.196) 0.16 2.518(0.70

ALS Genus Fusicatenibacter 0.882(0.635,1.225) 0.46 0.838(0.703,0.999) 0.06 0.873(0.617,1.234) 0.16 0.702(0.42

ALS Genus Catenibacterium 0.924(0.757,1.128) 0.48 0.884(0.756,1.034) 0.05 0.927(0.731,1.176) 0.45 0.617(0.15

ALS Genus Ruminococcusgnavusgroup 0.811(0.628,1.047) 0.14 0.887(0.775,1.014) 0.12 0.776(0.599,1.004) 0.57 0.921(0.54

Abbreviations: OR = Odds ratios for associations of genetically predicted gut microbiota traits with neurodegenerative diseases; CI = confidence interval; MR =
disease; PD = Parkinson’s disease; ALS = Amyotrophic Lateral Sclerosis.

Causal relationship between gut microbiota and other neurodegenerative diseases were also analysized by the same process. Our study revealed that
genetically increased abundance of Lentisphaerae at phylum level (OR, 0.836; 95%CI, 0.724,0.965; P = 0.015); Lentisphaeria at class level (OR, 0.847; 95%CI,
0.728–0.986; P = 0.032) and Victivallales at order level (OR, 0.847 ;95%CI, 0.728–0.986; P = 0.032) were potentially associated with a protective effect of PD. In
contrast, no notable effects of the three gut microbiota features on the risk of PD could be observed after mutual adjustment using multivariable MR method
(see Additional File 1: Table S7). In addition, genetically increased abundance of Oxalobacteraceae at family level (OR,1.13; 95%CI,1.003–1.273; P = 0.044);
Bacillales at order level (OR, 1.144; 95%CI, 1.013–1.292; P = 0.03); Eubacteriumhalliigroup (OR, 1.253; 95%CI, 1.055,1.487; P = 0.01)) and
Clostridiumsensustricto1 (OR, 1.354; 95%CI, 1.068–1.716; P = 0.012)) were related to higher risk of AD; while Anaerostipes (OR, 0.744;95%CI, 0.587–0.944; P = 
0.015) was related to protective effect of PD (Fig. 2).

Besides, genetically increased Lachnospira (OR, 1.315; 95%CI, 1.063–1.628; P = 0.012); decreased Fusicatenibacter (OR, 0.855; 95%CI, 0.752,0.972; P = 0.016)
and Catenibacterium (OR, 0.848;95%CI, 0.74–0.97; P = 0.017) were potentially related to a higher risk of ALS. Our study also revealed that increased
RuminococcaceaeUCG004 (OR, 1.245(1.103–1.405); 95%CI, 1.103–1.405; P = 0.0004) and decreased Ruminococcusgnavusgroup (OR, 0.884; 95%CI,
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0.792,0.986; P = 0.027) were related to a higher risk of ALS. Among all those results, we found a significant causal effect of increased
RuminococcaceaeUCG004 on risk of ALS (FDR-corrected P-value < 0.05) (Fig. 2).

Those estimate effects mentioned above were considered robust (Table 1) with no directional pleiotropy or heterogeneity was significant (see Additional File 1:
Table S7), and MR power calculation results were showed in Additional File 1: Table S6.

Associations Between Gut Metabolites And Neurodegenerative Diseases
Among 81 gut microbiota-derived metabolites incorporated in our MR analyses, we found 11 suggestive estimate effects of gut metabolite on
neurodegenerative diseases. Those metabolites were classified into 2 types: host-derived or dietary molecules[34].

With regard to host metabolites transformation, our study suggested that increased abundance of taurodeoxycholate, which was a product of primary bile
acids (OR, 1.16 for risk ratio of ALS per SD unit of taurodeoxycholate; 95%CI, 1-1.345; P = 0.050) was associated with higher risk of ALS. However, no Steroid
hormone was proved relevance to neurodegenerative diseases.

For the dietary molecules, amino acids, complex plant polysaccharides and polyphenols were considered to exert impact on brain function. In tryptophan
metabolism, our study revealed that serotonin (OR, 0.535; 95%CI, 0.292–0.979; P = 0.043) was a protection factor of PD, while kynurenine (OR, 1.756; 95%CI,
1.113–2.769; P = 0.015) was a risk factor of ALS. In arginine metabolism, dimethylarginine (OR, 1.826; 95%CI, 1.003–3.321; P = 0.049) was suggested to be
related to higher risk of ALS. Phenylacetate, a modulator of central adrenergic functions (OR, 1.064; 95%CI, 1.008–1.124; P = 0.024). Other ammino acids such
as glutamine (OR, 0.803; 95%CI, 0.667–0.968; P = 0.022) and isoleucine (OR,0.791; 95%CI, 0.678–0.923; P = 0.003) were revealed as protective factors of AD
and PD respectively. Besides, phenylalanine (PAA), one of phenylalanine derivatives (OR, 1.064; 95%CI, 1.008–1.124; P = 0.024) was indicated to increase the
risk of AD. What’s more, we also found that hippurate, a product of polyphenols (OR, 1.531; 95%CI, 1.142–2.051; P = 0.004) was associated with high risk of
ALS. Gut microbiota also generated a protective factor of AD, mannitol (OR, 0.993; 95%CI, 0.988–0.998; P = 0.009), and a risk factor of PD (OR, 2.143;
95%CI,1.026–4.476; P = 0.043).

What’s more, those results were judged to be reliable without pleiotropy through sensitivity analyses (Table 2, Additional File 1: Table S7). However, no
significant association was revealed (FDR-corrected P-values > 0.05), and MR power calculation results were showed in Additional File 1: Table S6.

Table 2
Sensitivity analyses of MR analyses of neurodegenerative diseases on gut metabolite features by MR Egger, simple mode, weighted median and

Outcome Exposure MR Egger Simple mode Weighted median Weighted mode

OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P

AD Mannitol 0.962(0.911,1.016) 0.19 1(0.946,1.058) 0.99 0.976(0.944,1.009) 0.15 0.981(0.935,1.029) 0.45

AD Glutamine 0.617(0.441,0.864) 0.03 0.972(0.654,1.445) 0.89 0.727(0.573,0.923) 0.01 0.714(0.547,0.932) 0.04

AD Phenylacetate 1.046(0.965,1.134) 0.31 1.058(0.946,1.184) 0.36 1.063(0.99,1.14) 0.09 1.063(0.989,1.142) 0.14

PD Isoleucine 0.847(0.677,1.06) 0.19 0.758(0.517,1.11) 0.19 0.818(0.667,1.004) 0.06 0.819(0.679,0.987) 0.07

PD Hydrocinnamate 2.296(0.914,5.772) 0.10 1.942(0.75,5.029) 0.19 2.026(1.092,3.761) 0.03 1.942(0.937,4.024) 0.10

PD Serotonin 0.672(0.178,2.545) 0.57 0.418(0.11,1.595) 0.22 0.498(0.218,1.14) 0.10 0.459(0.15,1.404) 0.19

PD Arabinose 1.939(0.379,9.935) 0.51 2.345(0.752,7.319) 0.24 2.156(0.862,5.39) 0.10 2.184(0.836,5.708) 0.21

ALS Hippurate 1.2(0.611,2.357) 0.61 1.909(0.992,3.673) 0.07 1.405(0.963,2.051) 0.08 1.277(0.784,2.079) 0.34

ALS Kynurenine 1.956(0.772,4.956) 0.17 1.791(0.567,5.654) 0.33 1.682(0.885,3.197) 0.11 1.791(0.859,3.733) 0.13

ALS Dimethylarginine 1.525(0.262,8.872) 0.64 3.646(0.655,20.297) 0.15 2.202(0.913,5.315) 0.08 3.073(0.831,11.369) 0.10

ALS Taurodeoxycholate 1.132(0.683,1.876) 0.64 1.125(0.783,1.616) 0.54 1.138(0.922,1.404) 0.23 1.158(0.833,1.608) 0.40

Abbreviations: OR = Odds ratios for associations of genetically predicted gut microbiota-derived metabolite traits with neurodegenerative diseases; CI = confid
Mendelian randomization; AD = Alzheimer’s disease; PD = Parkinson’s disease; ALS = Amyotrophic Lateral Sclerosis.

Discussion
In the present MR study, we found significant association of increased abundance of genera RuminococcaceaeUCG004 and higher risk of ALS. Besides, we
found suggestive evidence of causal associations of Actinobacteria, Lactobacillaceae, Faecalibacterium, and Ruminiclostridium, Lachnoclostridium with AD,
of Lentisphaerae, Lentisphaeria, Oxalobacteraceae, Victivallales, Bacillales, Eubacteriumhalliigroup, Anaerostipes, and Clostridiumsensustricto1 with PD, and
of Lachnospira, Fusicatenibacter, Catenibacterium, and Ruminococcusgnavusgroup with ALS. What’s more, metabolites including amino acids, bile acids,
amino acids, polyphenols produced by gut microbiota were also potentially related to the risks of neurodegenerative disorders, indicating their important roles
in gut microbiota–brain axis.

A previous MR study have suggested that increase in Blautia and elevated γ-aminobutyric acid (GABA) were related to lower risk of AD[35]. However, our study
failed to repeat these findings, nor Blautia or GABA including putrescine, glutamate, arginine or ornithin which produces GABA were found related to risk of AD,
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which is potentially due to lack of significance of results and scale of GWAS. Another MR study proved no causal association of trimethylamine N-oxide
(TMAO) or its precursor with AD[36], which was consistent with our results. What’s more, our finding of Actinobacteria at family level as a risk factor of AD was
opposite to previous studies [10], while the findings of relationships between Lactobacillaceae, Faecalibacterium with AD[11] were in accordance with the
result of previous cross-sectional studies. Interestingly, genera Ruminiclostridium6 and Ruminiclostridium9 represent different effects on risk of AD in our
analysis results, which remind us that inconsistencies in results of previous clinical studies were potentially due to insufficiently digging deeper into
classification of genera level of gut microbiota. Besides, our study suggested that phenylacetate, which was a potential tracer of glibal metabolism was
related to increased risk of AD[37]. In addition, mannitol, a microbial metabolite was found as protective factor of AD, which may provide new ideas for
disease interventions.

What’s more, our study revealed suggestive causal effect of increased abundance of phylum Lentisphaerae, class Lentisphaeria, order Victivallales on
protective effects of PD, however, no direct effect revealed after multivariable MR analysis, while no relevant result was reported in previous studies either,
therefore, such results should be treated with caution. Other associations of Family Oxalobacteraceae, Order Bacillales, Eubacteriumhalliigroup, Anaerostipes
and Clostridiumsensustrictol with risk of PD were in accordance with the result of previous cross-sectional studies[12, 13, 38]. In a previous clinical study,
which compared the fecal microbiota of 25 ALS patients with 32 controls, significant higher abundance of uncultured Ruminococcaceae at genus level was
observed in ALS patients[14]. However, our study found significant association between RuminococcaceaeUCG004 and higher risk of ALS, and suggestive
association between Ruminococcusgnavusgroup and lower risk of ALS. Inconsistent results between these studies may likely be attributed to small study
sample sizes of previous observational studies, sample heterogeneity, and different sequencing technologies. Therefore, a standardized classification system
for gut microbiota at genus level or even more specific level is crucial to direct mechanism researches and provide more accurate clinical guidance.

Tryptophan is broken down by the microbiota into indole derivatives and also tryptamine and kynurenine metabolites, and those metabolites were considered
important in gut-brain axis[39, 40]. Previous studies have revealed that glutamate signals are destroyed by serotonergic overdrive, and serotonergic
dysfunction is associated with the development of motor and non-motor symptoms and complications in Parkinson's disease[41]. What’s more, kynurenine
Pathway (KP) of tryptophan degradation is involved with several neuropathological features present in ALS including neuroinflammation, excitotoxicity,
oxidative stress, immune system activation and dysregulation of energy metabolism[42], previous clinical studies have revealed that serum kynurenine in
control were lower than that in ALS[43]. Our study proved that serotonin was protective factor of PD, while kynurenine was risk factor of ALS, and those
molecules may become potential biomarkers to assess the progression of relative diseases. In addition, other amino acid such as glutamine and isoleucine
were found causally associated with lower risk of AD and PD. Actually, up to 50% of all α-amino groups of glutamate and glutamine are derived from leucine.
Leucine is a regulator of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which is critical on protein synthesis and degradation, autophagy
as well as maintenance of glutamate homeostasis, and may have effects on the neuronal solute transport and the excitatory neurotransmitter function[44].
Moreover, in the glutamate-glutamine cycle, synaptically-released glutamate is rapidly transported into astrocytes, and glutamine is then released by
astrocytes through SN-type glutamine transporters into the extracellular fluid. Aβ has been shown to reduce the surface expression of GLT-1and to impair
astrocyte glutamate uptake[45, 46]. A recent study demonstrated that altered astrocyte glutamine synthesis directly impaired neuronal GABA synthesis in brain
slices of the 5xFAD mouse model of AD[47], and our results provided clinical evidence to confirm that reduction of glutamine in peripheral blood was causally
associated with occurrence of AD.

Bacterial metabolites produced from polyphenol precursors were also found at levels sufficient to exert biological effects enter circulation[48]. In vitro cultures
have shown that polyphenol metabolites such as ferulic acid are able to exert protective effects on neuronal cultures and neurodegenerative models, mostly
through a decrease in inflammatory responses[49, 50], however, in vivo evidence remains lacking. Our study suggested hippurate, belongs to the group of
uremic toxins as a risk factor of ALS, which may indicate potential treatment of disease. Since those neurodegenerative diseases develop through a long
prodromal phase, it is plausible that our findings may inform early interventions by targeting the microbiota via gut microbiota transplantation, psychobiotics,
or antibiotics in the future.

Among the strengths of the study are the most comprehensive MR study on association of gut microbiota and metabolite traits with neurodegenerative
diseases, and the largest sample size so far. However, our study still suffers from several limitations. Firstly, most of the results did not survive a strict FDR
correction. However, MR was a hypothesis-driven approach, and it could be used to detect some causal relationships regardless of FDR adjusting when some
biological evidence exists. Secondly, 16S rRNA gene sequencing describes gut microbiota from genus to phylum level only, and metagenomic and multiomic
approaches may offer opportunities to target gut microbiota compositon at a more specific level, avoiding bias if species of more specific level associated
with neurodegenerative diseases. Finally, gut microbiota is affected by several environmental factors including diet and lifestyle, whereas those confounders
which were not available in present studies were hardly to be excluded.

Conclusions
In summary, gut microbiota plays a crucial role in normal development and maintenance of brain function. Our study first applied a MR study to reveal causal
relationships between some specific gut microbiota, metabolites and risks of AD, PD or ALS. However, extensive additional works are still required to
characterize the effects of the microbiota-gut-brain axis on neurodegenerative diseases, and to find potential treatments by altering gut microbiota
compositions.
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Figure 1

Flowchart of current study. AD: Alzheimer’s disease; PD, Parkinson’s disease; ALS, Amyotrophic lateral sclerosis.
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Figure 2

Associations of genetically predicted gut microbiota with risk of neurodegenerative diseases using IVW method. OR, odds ratio; CI, confidence interval; FDR:
False discovery rate.

Figure 3

Associations of genetically predicted gut microbiota-dependent metabolites with risk of neurodegenerative diseases using IVW method. OR, odds ratio; CI,
confidence interval; FDR: False discovery rate.
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