[1] M. Ghannoum and G.A. O’Toole. Microbial Biofilms, Washington, DC: ASM Press (2004).
[2] P.S. Stewart and M.J. Franklin. Physiological Heterogeneity in Biofilms. Nat. Rev. Microbiol. 6 (2008) 199-210.
[3] D. López, R. Kolter. Functional microdomains in bacterial membranes. Genes Dev 24 (2010) 1893–1902.
[4] S.S. Branda, Vik Å, L. Friedman and R. Kolter. Biofilms: the matrix revisited. Trends Microbiol 13(1) (2005) 0-26.
[5] H-C. Flemming, J. Wingender. The biofilm matrix. Nat. Rev. Microbiol. 8 (2010) 623–633.
[6] C.B. Whitchurch, T. Tolker-Nielsen, P.C. Ragas, J.S. Mattick. Extracellular DNA required for bacterial biofilm formation. Science 295 (2002) 1487.
[7] D.M. Dominiak, J.L. Nielsen, and P.H. Nielsen. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ. Microbiol. 13 (2011) 710–721.
[8] Finkel, S.E., and Kolter, R. DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183 (2001) 6288–6293.
[9] S. Molin, T. Tolker-Nielsen. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Curr. Opin. Biotechnol. 14 (2003) 255–261.
[10] Z. Qin, Y. Ou, L. Yang, Y. Zhu, T. Tolker-Nielsen, S. Molin, D. Qu. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153 (2007) 2083–2092.
[11] L. Hall-stoodley, L. Nistico, K. Sambanthamoorthy, B. Dice, D. Nguyen, J.W. Mershon, C. Johnson, F.Z. Hu, P. Stoodley, G.D. Ehrlich and J.C. Post. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 8 (2008) 173.
[12] A. Seper, V.H.I. Fengler, S. Roier, H. Wolinski, S.D. Kohlwein, A.L. Bishop, A. Camilli, J. Reidl and S. Schild. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 82 (2011) 1015–1037.
[13] L. Ma, M. Conover, H. Lu, M.R. Parsek, K. Bayles and D.J. Wozniak. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5 (2009) e1000354.
[14] Sutherland, I. W. in Comprehensive Glycoscience Vol. 2 (ed. Kamerling, J. P.) 521–558 (Elsevier, Doordrecht, 2007).
[15] J. Xiao, M.I. Klein, M.L. Falsetta, B. Lu, C.M. Delahunty, J.R. Yates, A. Heydorn, H. Koo. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 8 (2012) e1002623.
[16] S. Liao, M.I. Klein, K.P. Heim, Y. Fan, J.P. Bitoun, S.J. Ahn, R.A. Burne, H. Koo, L.J. Brady, Z. Wen. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 196 (2014) 2355-2366.
[17] S. Wang, X. Liu, L. Zhang, Y. Guo, S. Yu, D.J. Wozniak, L.Z. Ma. The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ. Microbiol. Rep. 7(2) (2015) 330-340.
[18] H.P. Bais, R. Fall, J.M. Vivanco. Biocontrol of Bacillus subtilis against infection of Arabidopsis Roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physio 134(1) (2004) 307-319.
[19] T. Stein, S. Dusterhus, A. Stroh, K.D. Entian. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo‐alb cluster. Appl Environ Microbiol 70 (2004) 2349–2353.
[20] R.A. Butcher, F.C. Schroeder, M.A. Fischbach, P.D. Straightt, R. Kolter, C.T. Walsh, J. Clardy. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 1506–1509.
[21] K. Nagorska, M. Bikowski, M. Obuchowskji. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54 (2007) 495–508.
[22] M. Ongena, E. Jourdan, A. Adam, M. Paquot, A. Brans, B. Joris, J.L. Arpigny, P. Thonart. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9 (2007) 1084–1090.
[23] M. Ongena, P. Jacques. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16 (2008) 115–125.
[24] Y. Chen, S. Cao, Y. Chai, J. Clardy, R. Kolter, J.H. Guo, R. Losick. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85 (2012) 418–430.
[25] Y. Chen, F. Yan, Y. Chai, H. Liu, R. Kolter, R. Losick, J.H. Guo. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15 (2013) 848–864.
[26] P.B. Beauregard, Y. Chai, H. Vlamakis, R. Losick, R. Kolter. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110 (2013) E1621–1630.
[27] S.S. Branda, F. Chu, D.B. Kearns, R. Losick, R. Kolter. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59 (2006) 1229–1238.
[28] R.P. Sinha, V.N. Iyer. Competence for genetic transformation and the release of DNA from Bacillus subtilis[J]. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis 232(1) (1971) 61-71.
[29] D. López, H. Vlamakis, R. Losick, and R. Kolter. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74 (2009) 609–618.
[30] W.D. Crabb, U.N. Streips, and R.J. Doyle. Selective enrichment for genetic markers in DNA released by competent cultures of Bacillus subtilis. Mol. Gen. Genet. 155 (1977) 179–183.
[31] A.L. Ibáñez de Aldecoa, O. Zafra, & J.E. González-Pastor. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 8 (2017) 1390.
[32] O. Zafra, María Lamprecht-Grandío, C. González de Figueras, & J. E. González-Pastor. Extracellular DNA release by undomesticated Bacillus subtilis is regulated by early competence. PLOS ONE, 7 (2012).
[33] W. Ma, D. Peng, S.L. Walker, B. Cao, C.H. Gao, & Q. Huang, C. Peng. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. npj Biofilms and Microbiomes, 3 (2017) 4.
[34] D. Dubnau. Genetic exchange and homologous recombination[M] Bacillus subtilis and other gram-positive bacteria. American Society of Microbiology (1993) 555-584.
[35] Cue D, Lam H, Dillingham R L, et al. Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph[J]. Appl. Environ. Microbiol. 63(1997) 1406-1420.
[36] Wecke T, Bauer T, Harth H, et al. The rhamnolipid stress response of Bacillus subtilis[J]. FEMS microbiology letters 323(2011) 113-123.
[37] Brimacombe, C.A., Stevens, A., Jun, D., Mercer, R., Lang, A.S. and Beatty, J.T. Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA). Mol Microbiol 87 (2013) 802-817.
[38] B.M. Coffey, & G.G. Anderson. Biofilm formation in the 96-well microtiter plate. In Pseudomonas Methods and Protocols (pp. 631-641). Humana Press, New York, NY (2014).
[39] E.S. Gloag, L. Turnbull, A. Huang, P. Vallotton, H. Wang, L.M. Nolan & L.G. Monahan. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences 110(28) (2013) 11541-11546.
[40] M. Okshevsky, & R.L. Meyer. Evaluation of fluorescent stains for visualizing extracellular DNA in biofilms. J Microbiol Meth 105 (2014) 102-104.
[41] G.H. Yu, Z. Tang, Y.C. Xu, & Q.R. Shen. Multiple fluorescence labeling and two dimensional FTIR–13C NMR heterospectral correlation spectroscopy to characterize extracellular polymeric substances in biofilms produced during composting. Environmental Science & Technology, 45 (2011) 9224-9231.
[42] J. Xiao, H. Koo. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms[J]. J. Appl. Microbiol. 108 (2010) 2103-2113.
[43] W.S. Rasband. ImageJ. US National Institutes of Health, Bethesda, MD, U.S.A (1997–2006).
[44] B. Ni, Z. Huang, Z. Fan, C.Y. Jiang, and S.J. Liu. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90 (2013) 813–823.
[45] L. Tang, A. Schramm, T.R. Neu, N.P. Revsbech, R.L. Meyer. Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiol Ecol 86 (2013) 394–403.
[46] S. Vilain, J.M. Pretorius, J. Theron, V.S. Brözel. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75 (2009) 2861–8.
[47] M. Lappann, H. Claus, T. van Alen, M. Harmsen, J. Elias, S. Molin, U. Vogel. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol. Microbiol. 75 (2010) 1355–1371.
[48] L. Hobley, C. Harkins, C.E. Macphee, N.R. Stanleywall. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39 (2015) 649-69.
[49] M. Harmsen, M. Lappann, S. Knøchel, S. Molin. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76 (2010) 2271–2279.
[50] E. Manders, J. Stap, G. Brakenhoff, R. van Driel & J. Aten. Dynamics of three-dimensional replication patterns during the Sphase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 103 (1992) 857–862.
[51] S. Bolte, & F.P. Cordelieres. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 (2006) 213-232.
[52] S.S. Branda, J.E. González-Pastor, S. Ben-Yehuda, R. Losick, R. Kolter. Fruiting body formation in Bacillus subtilis. Proc Natl Acad Sci U S A 98 (2001) 11621-11626.
[53] D.B. Kearns, F. Chu, S.S. Branda, R. Kolter, R. Losick. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55 (2005) 739–749.
[54] J. Gerwig, T.B. Kiley, K. Gunka, N. Stanley-Wall, J. Stulke. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subti- lis. Microbiology 160 (2014): 682–691.
[55] S.B. Guttenplan, K.M. Blair, D.B. Kearns. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation[J]. PLoS Genet 6 (2010) e1001243.
[56] R. Terra, N.R. Stanley-Wall, G. Cao, B.A. Lazazzera. Identification of Bacillus subtilis sipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J. Bacteriol. 194 (2012) 2781–2790.
[57] L. Yang, Y. Hu, Y. Liu, J. Zhang, J. Ulstrup, S. Molin. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13 (2011) 1705-1717.
[58] M.C. Castillo Pedraza, T.F. Novais, R.C. Faustoferri, R.G. Quivey, A. Terekhov, B.R. Hamaker, & M.I. Klein. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms. Biofouling 33 (2017) 722–740.
[59] A. Gries, R. Prassl, S. Fukuoka, M. Rossle, Y. Kaconis, L. Heinbockel, T. Gutsmann, K. Brandenburg. Biophysical analysis of the interaction of the serum protein human beta2GPI with bacterial lipopolysaccharide. FEBS Open Bio 4 (2014) 432–440.
[60] D.S Tawfik. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr. Opin. Chem. Biol. 21 (2014), 73−80