1. Li S, Mason CE. The Pivotal Regulatory Landscape of RNA Modifications. Annu Rev Genomics Hum Genet. 2014;15: 127–150. doi:10.1146/annurev-genom-090413-025405
2. Cheng JX, Chen L, Li Y, Cloe A, Yue M, Wei J, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun. Springer US; 2018;9: 1–16. doi:10.1038/s41467-018-03513-4
3. Klose RJ, Bird AP. Genomic DNA methylation: The mark and its mediators. Trends Biochem Sci. 2006;31: 89–97. doi:10.1016/j.tibs.2005.12.008
4. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Nature Publishing Group; 2016;18: 31–42. doi:10.1038/nrm.2016.132
5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16: 6–21. doi:10.1101/gad.947102
6. Lee T -f., Zhai J, Meyers BC. Conservation and divergence in eukaryotic DNA methylation. Proc Natl Acad Sci. 2010;107: 9027–9028. doi:10.1073/pnas.1005440107
7. Jin B, Li Y, Robertson KD. DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes and Cancer. 2011;2: 607–617. doi:10.1177/1947601910393957
8. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74: 481–514. doi:10.1146/annurev.biochem.74.010904.153721
9. Schaefer M, Lyko F. DNA methylation with a sting: An active DNA methylation system in the honeybee. BioEssays. 2007;29: 208–211. doi:10.1002/bies.20548
10. Elango N, Hunt BG, Goodisman MAD, Yi S V. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. PNAS. 2009;106: 11206–11211.
11. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, et al. Functional CpG methylation system in a social insect. Science. American Association for the Advancement of Science; 2006;314: 645–7. doi:10.1126/science.1135213
12. Lyko F. DNA methylation learns to fly. Trends Genet. 2001;17: 169–172. doi:10.1016/S0168-9525(01)02234-X
13. Kunert N, Marhold J, Stanke J, Stach D, Lyko F. A Dnmt2-like protein mediates DNA methylation in Drosophila. Development. 2003;130: 5083–5090. doi:10.1242/dev.00716
14. Lyko F, Whittaker AJ, Orr-Weaver TL, Jaenisch R. The putative Drosophila methyltransferase gene dDnmt2 is contained in a transposon-like element and is expressed specifically in ovaries. Mech Dev. 2000;95: 215–217. doi:10.1016/S0925-4773(00)00325-7
15. Garcia RN, D’Ávila MF, Robe LJ, Loreto ELDS, Panzera Y, De Heredia FO, et al. First evidence of methylation in the genome of Drosophila willistoni. Genetica. 2007;131: 91–105. doi:10.1007/s10709-006-9116-3
16. Panikar CS, Rajpathak SN, Abhyankar V, Deshmukh S, Deobagkar DD. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol Biol Rep. Springer Netherlands; 2015;42: 1615–1621. doi:10.1007/s11033-015-3931-5
17. Gupta T, Morgan HR, Andrews JC, Brewer ER, Certel SJ. Methyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila. Sci Rep. Springer US; 2017;7: 1–12. doi:10.1038/s41598-017-05844-6
18. Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics and Chromatin. BioMed Central; 2015;8: 1–9. doi:10.1186/s13072-015-0016-6
19. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6: a019133. doi:10.1101/cshperspect.a019133
20. Gowher H, Leismann O, Jeltsch A. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 2000;19: 6918–6923. doi:10.1093/emboj/19.24.6918
21. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. Nature Publishing Group; 2008;9: 465–476. doi:10.1038/nrg2341
22. Mund C, Musch T, Strödicke M, Assmann B, Li E, Lyko F. Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem J. 2004;378: 763–8. doi:10.1042/BJ20031567
23. Phalke S, Nickel O, Walluscheck D, Hortig F, Onorati MC, Reuter G. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat Genet. 2009;41: 696–702. doi:10.1038/ng.360
24. Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24: 821–830. doi:10.1101/gr.162412.113
25. D’Ávila MF, Garcia RN, Panzera Y, Valente VLS. Sex-specific methylation in Drosophila: An investigation of the Sophophora subgenus. Genetica. 2010;138: 907–913. doi:10.1007/s10709-010-9473-9
26. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007;450: 203–218. doi:10.1038/nature06341
27. Schaefer M, Steringer JP, Lyko F. The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis. PLoS One. 2008;3. doi:10.1371/journal.pone.0001414
28. Vicario S, Moriyama EN, Powell JR. Codon usage in twelve species of Drosophila. BMC Evol Biol. 2007;7: 1–17. doi:10.1186/1471-2148-7-226
29. da Cuhna B, Dobzhansky T. A Further Study Of Chromosomal Polymorphism In Drosophila willistoni In Its Relation To The Environment. Evolution (N Y). 1954;8: 119–134.
30. da Cunha AB, Dobzhansky T. Adaptive Chromosomal Polymorphism In Drosophila willistoni. 1950; 212–235.
31. Valente VLS, Araújo AM. Chromosomal polymorphism, climatic factors, and variation in population size of Drosophila willistoni in southern brazil. Heredity (Edinb). 1986;57: 149–159. doi:10.1038/hdy.1986.105
32. Rohde C, Valente VLS. Three decades of studies on chromosomal polymorphism of Drosophila willistoni and description of fifty different rearrangements. Genet Mol Biol. 2012;35: 966–979. doi:10.1590/S1415-47572012000600012
33. Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O’Grady PM, et al. Polytene chromosomal maps of 11 Drosophila species: The order of genomic scaffolds inferred from genetic and physical maps. Genetics. 2008;179: 1601–1655. doi:10.1534/genetics.107.086074
34. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. Academic Press; 2001;25: 402–408. doi:10.1006/METH.2001.1262
35. Deprá M, Valente VLS, Margis R, Loreto ELS. The hobo transposon and hobo-related elements are expressed as developmental genes in Drosophila. Gene. Elsevier; 2009;448: 57–63. doi:10.1016/J.GENE.2009.08.012
36. Campos-Ortega JA, Hartenstein V. The Embryonic Development of Drosophila melanogaster [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1985. doi:10.1007/978-3-662-02454-6
37. Garcia CF, Delprat A, Ruiz A, Valente VLS. Reassignment of Drosophila willistoni genome scaffolds to chromosome II arms. G3 Gene Genomes Genet. 2015;5: 2559–2566. doi:10.1534/g3.115.021311
38. Wilson RJ, Goodman JI, Strelets VB. FlyBase: Integration and improvements to query tools. Nucleic Acids Res. 2008;36: 588–593. doi:10.1093/nar/gkm930
39. Adams RLP, McKay EL, Craig LM, Burdon RH. Methylation of mosquito DNA. Biochim Biophys Acta - Nucleic Acids Protein Synth. Elsevier; 1979;563: 72–81. doi:10.1016/0005-2787(79)90008-X
40. Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci. 2006;31: 306–308. doi:10.1016/j.tibs.2006.04.005
41. Krauss V, Reuter G. DNA Methylation in drosophila-a critical evaluation. Prog Mol Biol Transl Sci. 1st ed. Elsevier Inc.; 2011;101: 177–191. doi:10.1016/B978-0-12-387685-0.00003-2
42. Lin M-JJ, Tang L-YY, Reddy MN, Shen C-KKJJ. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem. 2005;280: 861–864. doi:10.1074/jbc.C400477200
43. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh C-LL, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science (80- ). American Association for the Advancement of Science; 2006;311: 395–398. doi:10.1126/science.1120976
44. Kuhlmann M, Borisova BE, Kaller M, Larsson P, Stach D, Na J, et al. Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi. Nucleic Acids Res. 2005;33: 6405–6417. doi:10.1093/nar/gki952
45. Dev RR, Ganji R, Singh SP, Mahalingam S, Banerjee S, Khosla S. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem J. 2017;474: 2009–2026. doi:10.1042/BCJ20170258
46. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi. Science (80- ). 2002;297: 1833–1837. doi:10.1038/098448b0
47. Durdevic Z, Mobin MB, Hanna K, Lyko F, Schaefer M. The RNA methyltransferase dnmt2 is required for efficient dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep. The Authors; 2013;4: 931–937. doi:10.1016/j.celrep.2013.07.046
48. Durdevic Z, Schaefer M. TRNA modifications: Necessary for correct tRNA-derived fragments during the recovery from stress? BioEssays. 2013;35: 323–327. doi:10.1002/bies.201200158
49. Fisher O, Siman-Tov R, Ankri S. Pleiotropic phenotype in Entamoeba histolytica overexpressing DNA methyltransferase (Ehmeth). Mol Biochem Parasitol. 2006;147: 48–54. doi:10.1016/j.molbiopara.2006.01.007
50. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24: 1590–1595. doi:10.1101/gad.586710
51. Thiagarajan D, Dev RR, Khosla S. The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics. 2011;6: 103–113. doi:10.4161/epi.6.1.13418
52. Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. Nature Publishing Group; 2012;19: 900–905. doi:10.1038/nsmb.2357
53. Trask BJ, Friedman C, Martin-Gallardo A, Rowen L, Akinbami C, Blankenship J, et al. Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet. 1998;7: 13–26. Available: http://www.ncbi.nlm.nih.gov/pubmed/9384599
54. Rubin GM. Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1978;42 Pt 2: 1041–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/98261
55. Young BS, Pession A, Traverse KL, French C, Pardue ML. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell. 1983;34: 85–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/6411353
56. Renkawitz-Pohl R, Bialojan S. A DNA sequence of Drosophila melanogaster with a differential telomeric distribution. Chromosoma. 1984;89: 206–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/6425021
57. Traverse KL, Pardue ML. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc Natl Acad Sci U S A. 1988;85: 8116–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/3141921
58. Anderson JA, Gilliland WD, Langley CH. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics. 2009;181: 177–185. doi:10.1534/genetics.108.093807
59. Roberts PA. Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: Migration of polytene-non-polytene transition zone? Genetics. 1979;92.
60. Lindsley DL, Sandler L, Counce SJ, Chandley AC, Lewis KR. The Genetic Analysis of Meiosis in Female Drosophila melanogaster [Internet]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society; 1977. pp. 295–312. doi:10.2307/2417716
61. Vieira GC, D’Ávila MF, Zanini R, Deprá M, Valente VLS. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol. 2018;41. doi:10.1590/1678-4685-gmb-2017-0056
62. Vieira GC, Sinigaglia M, Vieira GF, Valente VLS. Linking epigenetic function to electrostatics: The DNMT2 structural model example. Dimitri P, editor. PLoS One. 2017;12: 1–19. doi:10.1371/journal.pone.0178643