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Abstract

Aim: This study explored whether abnormality in the inner mitochondrial membrane

fusion protein optic atrophy 1 (Opa1) causes hepatic insulin resistance and whether

berberine (BBR) can prevent hepatic insulin resistance through the SIRT1/Opa1

pathway. Method: High-fat diet (HFD)-fed mice and db/db mice were used as animal

models to study hepatic insulin resistance in vivo. Insulin resistance, morphological

changes, and mitochondrial injury of the liver were examined to explore the effects of

BBR. SIRT1/Opa1 protein expressions were determined to confirm whether the

signalling pathway was damaged in the model animals and involved in BBR treatment.

A palmitate (PA)-induced hepatocyte insulin resistance model was established in

HepG2 cells in vitro. Opa1 silencing and SIRT1 overexpression were induced to

verify whether Opa1 abnormality causes hepatocyte insulin resistance and whether

SIRT1 could improve this dysfunction. BBR treatment and SIRT1 silencing were

employed to prove that BBR can prevent hepatic insulin resistance by activating the

SIRT1/Opa1 pathway. Results: We found that Opa1 deficiency caused imbalance in

mitochondrial fusion/fission and impaired insulin signalling in the HepG2 cells.

SIRT1 and BBR overexpression ameliorated PA-induced insulin resistance, increased

Opa1, and improved mitochondrial function. SIRT1 silencing could partly reverse the

effects of BBR in the HepG2 cells. SIRT1 and Opa1 were downregulated in the

animal models. BBR attenuated hepatic insulin resistance and enhanced SIRT1/Opa1

signalling in the the db/db mice. Conclusion: Opa1 silencing-mediated mitochondrial

fusion/fission imbalance could lead to hepatocyte insulin resistance. BBR may



improve hepatic insulin resistance by regulating the SIRT1/Opa1 pathway, and thus, it

may be used to treat type 2 diabetes.
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Introduction

Mitochondria provide ATP to the cells [1] and play a key role in cellular energy

metabolism. Mitochondrial dysfunction results in various metabolic diseases,

including insulin resistance (IR) and type 2 diabetes [2] and is characterised by

damaged substrate oxidation and impaired mitochondria accumulation, which are

related to an imbalance in mitochondrial fusion/fission [1,3]. A few proteins of the

GTPase family are involved in mammalian mitochondrial fusion/fission.

Outer mitochondrial membrane (OMM) fusion proteins include mitofusin (Mfn)

1 and 2, whereas optic atrophy 1 (Opa1) is an inner mitochondrial membrane (IMM)

fusion protein. Dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1) are

responsible for mitochondrial fission [4]. The role of Mfn1, Mfn2, and Drp1 in

hepatic IR has been investigated in studies. Sameer et al [5] reported that Mfn1

deficiency in the liver protects against diet-induced IR. David et al[6] observed that

liver-specific Mfn2 KO mice had impaired glucose tolerance, enhanced hepatic

gluconeogenesis, and impaired insulin sensitivity. Wang et al[7] observed that

liver-specific Drp1 KO mice showed decreased fat mass and resistance to high-fat diet

(HFD)-induced obesity. However, the relationship between Opal and hepatic IR as

well as the specific molecular mechanisms of signal transduction have not been fully
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elucidated.

Sirtuin 1 (silent information regulator-1, SIRT1) regulates multiple biological

processes, such as glucose–lipid metabolism and mitochondrial biogenesis[8]. SIRT1

can modulate hepatic glucose metabolism by interacting with PGC-1α and directly

increase insulin sensitivity in the liver under different pathological conditions[9]. Jung

et al reported[10] that an increase in the expression of SIRT1 could ameliorate

palmitate (PA)-induced hepatocyte IR. SIRT1 plays a key role in mitochondrial

biogenesis through PGC-1α acetylation/deacetylation[11]. Recent studies have

proposed that SIRT1 regulates the transcription of Drp1 through PGC-1α in diabetic

hearts[12]. However, the role of SIRT1 in Opa1 regulation is unknown.

Berberine (BBR) is the main active ingredient of Coptis Root that can accelerate

glucose transport, increase glycogen synthesis, regulate glucose metabolism, and

improve hepatic IR[13]. Many studies have focused on exploring whether BBR can

improve the mitochondrial function. Qin et al[14] revealed that BBR could protect

glomerular podocytes by inhibiting Drp1-mediated mitochondrial fission and

dysfunction. Qin et al[15] suggested that BBR regulates the excessive production of

mitochondrial ROS and mitochondrial dysfunction by activating PGC-1α and thus

prevents diabetic nephropathy.

Therefore, we investigated the relationship between Opa1 and hepatic IR in the

absence of Opa1 activation and examined whether SIRT1 regulates Opa1 to improve

PA-induced hepatocyte IR with SIRT1 activation and Opa1 silencing in HepG2 cells.

Finally, we explored whether BBR can improve hepatic IR by activating the

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jung%20TW%5bAuthor%5d&cauthor=true&cauthor_uid=31246318


SIRT1/Opa1 pathway through SIRT1 silencing.

Materials and Methods

Animal Care

Three-week-old male C57BL/6J mice (HFK Bioscience, Beijing) were raised in

a standard temperature and humidity-controlled environment with a 12:12-h

light–dark cycle for a week before experiments. The mice had access to nesting

material and were provided ad libitum access to water and commercial low-fat diet

(LFD, 10% fat) or HFD, 60% fat) (Research Diets, America) for 10 weeks.

Seven-week-old male db/db mice and C57 mice were purchased from Model

Animal Research Center of Nanjing University (Nanjing, China) and adaptively

raised for a week in the same environment. These db/db mice were fed a regular diet

for 4 weeks. In the CON group, the C57 mice were given NS (10 mL/kg, b.w.). The

db/db mice were randomly divided into two groups. In the model group (db/db) and

BBR group, diabetic mice were given NS (10 ml/kg, b.w.) and BBR (160 mg/kg,

b.w.), respectively. Tests were conducted to measure the body weight, fasting blood

glucose (FBG), low-density lipoprotein cholesterol (LDL), triglycerides (TG), total

cholesterol (T-CHO), fasting blood insulin, and glucose-stimulated insulin secretion

(GSIS) of the mice. Additionally, the oral glucose tolerance test (OGTT) and insulin

tolerance test (ITT) were conducted.

Determination of OGTT, ITT, and GSIS

After allowing the C57BL/6J mice to feed on LFD and HFD for 10 weeks and the

db/db mice to feed on a regular diet for 4 weeks, the mice were starved for 12 h



before OGTT. Approximately 10 μL of blood was drawn from the mice tail tip and

OGTT was performed using test strips (Roche, America) and a glucometer. After

providing oral feeding of 40% glucose (2 g/kg, b.w., Xilong Scientific Company,

China) to the mice, their blood glucose was tested at 0 min, 30 min, 60 min, 90 min,

and 120 min. For ITT, the db/db mice were starved for 2 h and then were

administered insulin (0.5 IU/kg b.w., i.p, Novolin R, Novo Nordisk A/S, Denmark).

Blood glucose was measured at 0 min, 15 min, 30 min, 60 min, and 120 min. For the

GSIS test, blood was drawn from the iliac vein of the C57BL/6J mice at 0 min and 30

min and insulin was measured using Mouse Ultrasensitive Insulin ELISA, according

to manufacturer’s instructions (No: 80-INSMSU-E01, ALPCO, America).

HE Staining

After anaesthetising the mice with 10% chloral hydrate, the liver tissue was

immediately removed at 4℃ , washed using ice-cold PBS solution, and then fixed in

10% formaldehyde solution for a day. The tissue was dehydrated with conventional

gradient alcohol and embedded in paraffin. The sections were 5-μm thick. After

dewaxing and hydration, haematoxylin dyeing, dehydration, and neutral gum sealing,

a good field of view was selected to observe and capture photographs using an

Olympus BX53 fluorescence microscope (Tokyo, Japan).

Electron Microscopy

Liver samples obtained from the db/db mice were minced and placed in a

fixative solution comprising 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M

cacodylate buffer (pH 7.4) for 2 h at 4°C. These samples were postfixed in 1%



osmium tetraoxide buffer for 1.5 h. The tissue samples were then dehydrated using

alcohol and embedded in Epon. Sections of 80-nm thickness were prepared and

photographed using the X-650 electron microscope (Hitachi, Japan). The

mitochondria in hepatic cells were observed by Images.

Cell Culture and Transfection

HepG2 cells were cultured in DMEM (4.5 g/L glucose, gibco, America)

supplemented with 10% FBS (Clark, Australia). For immunofluorescence assays, the

HepG2 cells were fixed using 4% paraformaldehyde, and then, mitochondria were

visualised by overexpressing mitochondrially targeted Mito-DsRed protein (Addgene,

America). For the Opa1 knock-down experiment, the Opa1 siRNA sequence

(GATCATCTGCCACGGGTTGTT) was purchased from Shanghai GenePharma

(China). SIRT1 siRNA sequence (ACUUUGCUGUAACCCUGUATT) and

overexpression plasmid were also purchased from Shanghai GenePharma (China).

Detection of HepG2 Cell Viability using MTT Assay

HepG2 cells were adjusted to a density of 5 × 103 cells/mL and cultured in a

96-well microplate. After treatment with different concentrations of PA and BBR for

24 h, 20 μL of MTT solution was added to each well and the cells were incubated for

3 h. Then, 200 μL DMSO solution was added. The absorbance was measured at 562

nm by using Thermo Scientific Microplate Reader (Multiskan Spectrum).

Glucose Consumption

Cell suspensions of the HepG2 cells in the logarithmic growth phase were

prepared. A density of 105 cells/mL was adjusted, and 500 μL of the suspension was



seeded in each well of a 24-well plate. When IR was induced in the HepG2 cells by

exposure to 0.3 mM PA for 24 h, the cells were transfected with SIRT1

overexpression plasmid (oe-SIRT1), Opa1 siRNA(si-Opa1), or SIRT1

siRNA(si-SIRT1) for 24 h. The cells were divided into the following groups: normal

(CON), model (PA), PA + oe-SIRT1 or PA + BBR, and PA + oe-SIRT1 + si-Opa1 or

PA + BBR + si-SIRT1. According to the manufacturer’s instructions, the glucose

content of the supernatant in triplicate wells was measured using a glucose assay kit

(glucose oxidase method, Shanghai Robio, China). Glucose consumption (mmol/L)

was calculated as the difference in glucose concentration between the blank and test

groups (glucose consumption = glucose concentration of blank wells − glucose

concentration of wells with cells)[16].

Western Blot Analysis

Equal amounts of proteins were separated on SDS-PAGE under reducing

conditions and then transferred to PVDF membranes (Merck Millipore). After

blocking with 5% skimmed milk in TBS supplemented with 0.1% Tween-20, the

PVDF membranes were incubated with the following antibodies: mouse anti-SIRT1

(1:1000, Abcam), mouse anti-Drp1 (1:1000, Abcam), mouse anti-Opa1 (1:1000,

Proteintech), rabbit anti-Mfn1 (1:1000, Abcam), rabbit anti-Mfn2 (1:1000, Abcam),

mouse anti-NDUFA9 (1:1000, Proteintech), mouse anti-ATP5A1 (1:1000,

Proteintech), rabbit anti-AKT (1:500, Santa), rabbit anti-pAKT (1:500, Santa), and

rabbit anti-GAPDH (1;2000, Proteintech). The signal was visualised using the

corresponding horseradish peroxidase-conjugated secondary antibodies (1:5000,



Proteintech) and enhanced chemiluminescence-western blotting detection reagent

(Bioscience Biotech, Beijing). Bands were quantified through densitometry by using

Quantity One software.

Real-time Quantitative PCR

Total RNA of liver tissues and that of HepG2 cells was extracted using Trizol

reagent (Invitrogen, Shanghai, China), and the isolated RNA samples were subjected

to reverse transcription by using superscript® III first-strand synthesis system

(Invitrogen, Shanghai, China). Real-time PCR was performed using the MX 3000P

Real-Time PCR instrument with SYBR Green Mix and the following primer

sequences. Data were normalised relative to those for GAPDH or β-actin expression

by using the 2−ΔΔCtmethod.

mouse β-actin forward GCTGAGAGGGAAATCGTGCGT

mouse β-actin reverse ACCGCTCGTTGCCAATAGTGA

mouse PEPCK forward AAAGCAAGACAGTCATCATCACCCA

mouse PEPCK reverse TCTCAAAGTCCTCTTCCGACATCC

mouse G6pase forward TTGCCAGGAAGAGAAAGAAGGAT

mouse G6pase reverse AACACAGACACAACTGAAGCCG

homo GAPDH forward CCATGGAGAAGGCTGGG

homo GAPDH reverse CAAAGTTGTCATGGATGACC

homo PEPCK forward AGCCTCGACAGCCTGCCCACGG

homo PEPCK reverse CCAGTTGACCAAAGGCTTTT

homo G6pase forward ACATCCGGGGCATCTACAATG



homo G6pase reverse AAAGAGATGCAGGCCCAA

Determination of the Cellular ATP Level

The ATP level was measured using a firefly luciferase-based ATP assay kit

(Beyotime, China), according to the manufacturer’s instructions. The HepG2 cells

were cultured and prepared, as described in the section ʻglucose consumptionʼ. The

cells were rinsed using PBS solution, collected using ATP lysing agent, and then

centrifuged for 5 min at 12,000 g at 4°C. The supernatant was collected. In a 1.5-mL

tube, 100 μL of the supernatant was mixed with 100 μL of the ATP detection solution.

Luminance (RLU) was immediately measured using an H1 synergy microplate reader.

Standard curves for the quantification were also generated using the ATP standard,

and the protein concentration of each treatment group was determined using the BCA

protein assay kit (Thermo Scientific, USA). Total ATP levels were expressed as

NRLU (nmol/mg protein).

Assessment of Mitochondrial Membrane Potential

Mitochondrial membrane potential assay kit (JC-1) was used to measure the

mitochondrial membrane potential (MMP) of the HepG2 cells, according to the

manufacturer’s instructions (C2006, Beyotime Biotechnology, China). The cells were

washed twice with PBS solution and then incubated with JC-1 at 37℃ for 30 min.

After incubation, the cells were washed again. OLYMPUS IX71

fluorescence microscope was used to observe the difference between green and red

file:///C:/Users/Administrator.HT-201704051015/AppData/Local/youdao/dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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fluorescence. Red and green fluorescence represented high and low MMP,

respectively.

Statistical Analyses

Statistical analyses were performed using the GraphPad Prism5 software.

Differences between the two groups were analysed using the Student t-test

(two-tailed, P < 0.05 was considered significant). Differences between multiple

groups were analysed using the one-way analysis of variance followed by Dunnett’s

post hoc test (P < 0.05 was considered significant). The data are expressed as means ±

SEM.

Results

Downregulation of SIRT1 and Opa1 was related to the imbalance of

mitochondrial dynamics and hepatic IR

HFD-induced obese mice were used to examine the relationship between

SIRT1/Opa1 signalling and hepatic IR. A significant increase was observed in the

weight and FBG of the HFD-fed mice 10 weeks after their feeding on LFD and HFD

(Fig. 1A and 1B). Moreover, the HFD-fed mice exhibited impaired glucose tolerance

and hyperinsulinemia (Fig. 1C and 1D). Increased expressions of gluconeogenic

enzymes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase

(G6pase)] were observed (Fig. 1E). The results of HE staining of the liver revealed

that the cells in the HFD-fed mice were highly swollen, cellular matrix was highly

porous and showed vacuole-like changes, hepatocytes had fatty vacuoles of various



sizes and clear boundaries, and hepatocyte cords were disorderly arranged, which

mainly manifested as cell oedema and hepatic steatosis (Fig. 1F). These results

suggested that the mice had developed hepatic IR 10 weeks after feeding on HFD.

We observed that in the HFD-fed mice, the expression of the mitochondrial

fusion proteins Opa1 and Mfn1 decreased, whereas that of the fission protein Drp1

increased (Fig. 2C, 2D and 2E), suggesting an imbalance of mitochondrial dynamics.

The expression of SIRT1 decreased in the HFD-fed mice (Fig. 2B). Thus, we

speculated that the downregulation of SIRT1 and Opa1 is related to the imbalance of

mitochondrial dynamics and hepatic IR.

Opa1 deficiency changed mitochondrial fusion/fission and impaired insulin

signalling in the HepG2 cells

To investigate the role of Opal in hepatic IR, we transfected HepG2 cells with

Opa1-siRNA, and the transfection efficiency was approximately 55% (Fig. 3A). First,

we analysed whether Opal deficiency caused mitochondrial dysfunction. The

expression level of OMM fusion proteins, Mfn1 and 2, remained unchanged, whereas

that of fission protein, Drp1, increased (Fig. 3A). The expression level of NDUFA9

(mitochondrial complex I) decreased, whereas that of ATP5A (mitochondrial complex

V) remained unchanged (Fig. 3A). The ATP concentration and MMP declined (Fig.

3B and 3C) upon Opal depletion.

After transfecting with Opa1-siRNA for 48 h, two groups of cells were incubated

with or without insulin (100 nM) for 10 min. IRS-2/PI3K/AKT is an important insulin

signal pathway in the liver[17], whereas AKT phosphorylation is a marker for insulin



sensitivity. Control cells displayed a marked increase in AKT phosphorylation in

response to insulin, and this effect was found to be reduced in the Opa1-deficient cells

(Fig. 3E). Moreover, the expression of PEPCK and G6pase in the Opa1-silenced

HepG2 cells increased (Fig. 3D).

These results suggested that Opa1 deficiency increases mitochondrial fission,

decreases mitochondrial ATP concentrations and membrane potential, and impairs

insulin signalling and gluconeogenesis in HepG2 cells.

SIRT1 reversed hepatocyte IR and improved mitochondrial function in the

HepG2 cells through Opa1-mediated mitochondrial fusion

SIRT1 has been reported to play a key role in IR and mitochondrial biosynthesis.

Based on this information, we analysed the relationship between SIRT1 and

Opa1. First, we screened the concentration of PA and established 0.3 mM as the dose

for the IR model (Fig. 4A and 4B). Based on the IR model, we transfected the SIRT1

overexpression plasmid and Opa1-siRNA and observed that SIRT1 activated Opa1 in

the IR model (Fig. 4C and 4D). SIRT1 activated the pAKT/AKT expression, and this

activation state could be reversed after transfection with Opa1-siRNA (Fig. 4E).

SIRT1 overexpression also increased glucose consumption in the IR model, and the

state was also reversed after transfection with Opa1-siRNA. These results suggested

that SIRT1 improves insulin signalling, hepatic glucose uptake, and gluconeogenesis

in PA-induced IR, and this effect is achieved at least in part by Opa1 activation.

We investigated whether SIRT1 is linked to mitochondrial function during IR.

SIRT1 overexpression increased ATP concentration and MMP (Fig. 4G and Fig. 5B),



whereas Opa1 deletion partly blocked these effects. We investigated whether SIRT1

overexpression inhibits PA-induced mitochondrial fragmentation in the HepG2 cells

by visualising mitochondrial morphology with Mito-DsRed protein. As shown in

Fig. 5A, mitochondria of the control cells mainly appeared as elongated tubules, with

highly interconnecting networks. After stimulation with PA for 24 h, the volume of

mitochondria decreased and the number of mitochondria increased, indicating

mitochondrial fragmentation. SIRT1 overexpression treatment attenuated PA-induced

mitochondrial fragmentation. After si-Opa1 transfection, mitochondrial fragmentation

increased (Fig. 5A).

BBR improved hepatic IR through the SIRT1/Opa1 pathway

To explore whether BBR can improve hepatic IR by regulating the SIRT1/Opa1

pathway, BBR treatment (10 μM) was given for 24 h (Fig. 6A) based on the PAmodel,

followed by SIRT1 silencing intervention. The results revealed that when BBR

treatment was given based on PA stimulation, SIRT1 and Opa1 protein expression

(Fig. 6B and 6C), ATP content (Fig. 6F), and MMP (Fig. 6G) were all increased, and

pAKT sensitivity to insulin (Fig. 6D) and glucose consumption (Fig. 6E) were

increased significantly. However, all these effects were reduced after SIRT1 silencing.

These results suggested that BBR improves hepatic IR by regulating the SIRT1/Opa1

pathway.

BBR improved hepatic IR and increased SIRT1 and Opa1 expression in the liver

of the db/db mice



Our data revealed that the body weight, FBG, LDL, T-CHO, and TG in the db/db

mice were significantly increased compared with those in the control group (Fig.

7A-E). Moreover, the db/db mice exhibited impaired glucose and insulin tolerance

(Fig. 7F and 7G). An increased expression of PEPCK and G6pase was also observed

(Fig. 7H and Fig. 7I). However, compared with the db/db group, 4-week-old

BBR-treated db/db mice exhibited significant hypoglycaemic and lipid-lowering

effects and an improvement in results of OGTT and ITT.

The results of HE staining of the liver revealed that the cells in the db/db mice

liver were highly swollen and the cellular matrix was highly porous and showed

vacuole-like changes. Hepatocytes had fatty vacuoles of various sizes and clear

boundaries and the hepatocyte cords were disorderly arranged, which mainly

manifested as cell oedema and hepatic steatosis. After treatment with BBR, the liver

cells appeared neatly arranged and uniformly sized, the fatification significantly

improved, and the degree of liver tissue damage was greatly improved (Fig. 8A).

Liver cell electron microscopy showed that the mitochondrial ridges in the control

mice liver cells were dense and varied in size. The volume of mitochondria in the

db/db group became significantly smaller and the ridges became sparse. Some

mitochondria were broken and fused, and the condition of sparse mitochondrial

cristae was significantly improved after BBR treatment (Fig. 8B).

The expression of Opa1 was decreased, whereas that of Drp1 was increased in

the db/db mice, suggesting a disordered mitochondrial dynamics. The expression of

SIRT1 decreased in the db/db mice. After treatment with BBR, the expression of



SIRT1/Opa1 increased, whereas that of Drp1 decreased (Fig. 8C). These results

suggested that the SIRT1/Opa1 pathway is related to hepatic IR.

Discussion

Excess serum free fatty acids (FFA) play a key role in obesity and type 2

diabetes [18]. An excess of FFAs in blood causes increased accumulation of lipid

metabolites in the liver and skeletal muscles and can further worsen IR, which is the

core defect in type 2 diabetes mellitus. Palmitate (PAs), a representative of saturated

fatty acids, is used for diabetic state simulation [19]. HepG2 cells are human-derived

hepatic embryonic tumour cells with a phenotype similar to that of hepatocytes. In

addition, the HepG2 cells are not interfered by other factors such as ageing and are

used for the study of hepatic IR. In this study, we demonstrated that the protein

expression of SIRT1/Opa1 decreases in the liver of HFD-fed mice, db/db mice, and

PA-induced HepG2 cells. Opa1 deficiency in HepG2 cells induces hepatocyte IR and

mitochondrial dysfunction. SIRT1 overexpression and BBR treatment can activate

Opa1 and improve hepatocyte IR and mitochondrial functions. Opa1 and SIRT1

silencing could partly reverse these effects of SIRT1 and BBR, respectively. Overall,

BBR improves hepatic IR through the SIRT1/Opa1 pathway in hepatic

insulin-resistant mice and PA-induced HepG2 cells. Based on these data, we propose

that Opa1 is a potential target in diabetes drug development.

IR is a condition in which the sensitivity of peripheral tissues (liver, muscle, and

adipose tissues) to insulin decreases[20]. Given the key role of the liver in glucose



production and lipid metabolism, hepatic IR is considered as the factor involved in the

development of IR and diabetes[21]. Therefore, a better understanding of the

mechanism of hepatic IR may help in elucidating a new therapeutic target for the

treatment and prevention of diabetes. Insulin binds to the insulin receptor and

promotes the autophosphorylation of IR tyrosine residues in the hepatocytes[22,23].

Then, tyrosine kinase phosphorylates insulin receptor substrate 2 (IRS-2), which can

further activate phosphatidylinositol 3-kinase (PI3K) and AKT/protein kinase B and

increase glucose transporter 2 (GLUT2) membrane transport. The insulin signalling

pathway promotes blood glucose entry into the hepatocytes and regulates the normal

metabolism of lipid and glucose[24,25]. Excess lipid accumulation in the liver may

impair the hepatic insulin signal pathway and cause hepatic IR [26]. In our study, the

HFD-fed mice and db/db mice exhibited increased FBG, impaired glucose tolerance,

hyperinsulinemia, and high gluconeogenic enzyme expression (PEPCK and G6pase).

Additionally, PA-treated HepG2 cells demonstrated AKT insensitivity in response to

insulin and decreased glucose consumption, indicating that the IR cell model can be

successfully constructed using HepG2 cells. Mitochondrial dynamics imbalance is an

important initiating cause of peripheral IR and type 2 diabetes [27-29]. Our results

also validate the abnormality of mitochondrial fusion and fission during hepatic IR.

BBR and SIRT1 play an important role in the preservation of mitochondrial dynamics

and improvement of hepatic IR.

Opa1 is a GTPase anchored to the IMM, which has long and short isoforms. In

addition to being responsible for the IMM fusion, Opa1 is involved in maintaining the



crista structure and protecting cells from apoptosis [30,31]. Opa1 deficiency is

closely related to the occurrence and development of diabetes. Zhang et al[32]

reported that the loss of Opa1 in pancreatic β cells impairs glucose-stimulated ATP

production and insulin secretion, which then develop into hyperglycaemia. Ding et

al[33] reported that the Opa1 expression was reduced in the heart of diabetic rats, and

after treatment with mitochondrial fusion activator M1, the Opa1 expression was

increased and the mitochondrial function and diabetic cardiomyopathy were improved;

however, all these effects were weakened after Opa1 silencing. In our study, the

downregulation of Opa1 was observed in the HFD-fed mice and db/db mice.

Furthermore, we observed an increased expression of gluconeogenic genes, such as

PEPCK and G6pase, in Opa1-silenced HepG2 cells. The sensitivity of AKT to insulin

also reduced in the Opa1-silenced HepG2 cells. Therefore, we propose that Opa1

deficiency is associated with a pattern of hepatic IR in animal and cell models. Under

these conditions, we also observed that Opa1 deficiency changes mitochondrial fusion

and fission. Further studies are required to explore whether Opa1 deficiency reduces

insulin signalling in liver tissues and induces susceptibility to IR in Opa1 liver-KO

mice.

The human sirtuin isoform SIRT1-7 has been related to type 2 diabetes[34].

SIRT2 is mainly distributed in the cytoplasm; SIRT1, SIRT6, and SIRT7 are mainly

located in the nucleus; and SIRT3–5 are located in the mitochondria. Previous studies

have shown that SIRT3 regulates mitochondrial dynamics by deacetylating and

activating Opa1 during stress[35], whereas SIRT4 regulates mitochondrial quality



control and mitophagy by interacting with Opa1 [36]. SIRT5 overexpression prevents

mitochondrial fragmentation and protects against mitophagy by increasing Mfn2 and

Opa1, whereas these effects were reversed after SIRT5 silencing [37]. However,

evidence to confirm that SIRT1 regulates Opa1 is lacking. Another major finding of

our study is that SIRT1 activates Opa1, improves hepatic IR, inhibits PA-induced

mitochondrial fragmentation, and alleviates mitochondrial dysfunction in PA-induced

HepG2 cells. These effects were partly reversed when Opa1 was silenced. Thus, the

activation of Opa1 by SIRT1 plays a key role in alleviating hepatocyte IR.

Berberine (BBR) has received increasing attention for its potential to treat liver

steatosis, dyslipidaemia, and diabetes. BBR and its derivatives have been shown to

reduce hepatic steatosis in HepG2 cells[38], HFD-fed rats[39-41], and patients with

nonalcoholic fatty liver[42], and SIRT1 is the key regulator in liver lipid

metabolism[43]. Therefore, to investigate whether BBR can reduce blood glucose and

improve hepatic IR through SIRT1 and whether SIRT1 is related to mitochondrial

dynamics-related proteins, we used the SIRT1 silencing technology to observe the

relationship of SIRT1 with Opa1 in PA-induced HepG2 cells. The results revealed that

BBR increased the SIRT1 and Opa1 protein expression, ATP content, and MMP. The

sensitivity of pAKT to insulin and glucose consumption significantly increased.

However, these effects were reversed after SIRT1 silencing, suggesting that BBR

improves hepatic IR by upregulating the SIRT1/Opa1 pathway.

To validate the effect in vivo, we treated the db/db mice with BBR. The results

revealed that BBR treatment significantly improves the blood glucose and liver IR of



mice. The expression of Opa1 and SIRT1 was upregulated after BBR treatment,

whereas the expression of Drp1 was downregulated. The mitochondrial fragmentation

was significantly improved after BBR treatment. BBR improves the development of

hepatic IR, which may be related to the balance of mitochondrial dynamics and

upregulation of the SIRT1/Opa1 signalling pathway. Overall, these results suggest that

BBR can improve hepatic IR by regulating the SIRT1/Opa1 pathway in db/db mice

and PA-induced HepG2 cells.

Conclusion

In summary, our results showed that Opa1 silencing-mediated mitochondrial

fusion/fission imbalance could lead to hepatocyte IR, whereas SIRT1 improves

hepatocyte IR by activating Opa1. As an effective hypoglycaemic drug, BBR may

improve hepatic IR by regulating the SIRT1/Opa1 pathway and thus can be used to

treat type 2 diabetes.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the

corresponding author on reasonable request.

Acknowledgments

The authors thank Prof. Li Chen for providing laboratory equipment and technical

assistance.



Funding

This work was supported by the Science and technology development projects of

Jilin Province (20200201483JC, 20200404097YY, 20200201456JC, 2019SCZT042).

Author information

Affiliations

Department of Pharmacology, School of Basic Medical Sciences, Jilin University,

Changchun, China

Jia Xu, Zhiyi Yu, Yueqi Guan, Yuqian Lv, Meishuang Zhang, Ming Zhang, Li Chen,

Fengying Guan

Department of Clinical Laboratory, the Second Clinical Hospital Affiliated to Jilin

University, Changchun, China

Xiaoyan lv

Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin

University, Changchun, China

Yining Zhang

Contributions

Xiaoyan Lv, Yining Zhang and Fengying Guan designed the experimens; Ming Zhang

and Li Chen cotributed this article as expert consultation. Jia Xu, Yining Zhang, Zhiyi

Yu, Yueqi Guan, Yuqian Lv and Meishuang Zhang contributed to the data collection;

Jia Xu and Xiaoyan lv performed the data analysis and interpreted the results; Jia Xu

and Fengying Guan wrote the manuscript. All authors read and approved the final



manuscript.

Corresponding author

Correspondence to Fengying Guan or Xiaoyan lv.

Ethics declarations

Ethics approval and consent to participate

All animal studies were conducted following the Guide for the Care and Use of

Laboratory Animals and were approved by the Institutional Animal Care and Use

Committee of Jilin University (permit number, SYSK 2013-0005).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Figure legends

Figure 1. A HFD-induced hepatic insulin resistance mice model was established

(A) Starting from week 5, the weight of the HFD-fed mice increased significantly.

Data are expressed as means ± SEM (n = 10); compared with the LFD group, **P <

0.01,***P < 0.001. (B) For HFD-obese mice, a significant increase in fasting blood

glucose was observed at week 10. Data are expressed as means ± SEM (n = 6);

compared with the LFD group, **P < 0.01. (C, D) HFD-fed mice showed impaired

glucose tolerance and hyperinsulinemia. Data are expressed as means ± SEM (n = 6);



compared with the LFD 0 min group, *P < 0.05; compared with the LFD 30 min

group, #P < 0.05. (E) qPCR was utilised showing a sharp increase in PEPCK and

G6pase in HFD-fed mice. Data are expressed as means ± SEM (n = 6). Compared

with the LFD group, *P < 0.05, ***P < 0.001. (F) HE staining results of LFD- and

HFD-fed mice (200×).

Figure 2. Downregulation of SIRT1 and Opa1 was related to the imbalance of

mitochondrial dynamics and hepatic insulin resistance

(A) WB grayscale picture of SIRT1, Opa1, Mfn1, and Drp1. (B, C, D) The

expression of SIRT1, Opa1, and Mfn1 in HFD-fed mice decreased. Data are

expressed as means ± SEM (n = 3); compared with the LFD group, *P < 0.05, **P <

0.01. (E) The expression of Drp1 in HFD-fed mice increased. Data are expressed as

means ± SEM (n = 3); compared with the LFD group, *P < 0.05.



Figure 3. Opa1 deficiency changed mitochondrial fusion/fission and impaired

insulin signalling in the HepG2 cells

(A) Cells were transfected with Opa1-siRNA for 48 h, and the transfection efficiency

was approximately 55%. The protein expression of NDUFA9 decreased and that of

Drp1 increased in the si-Opa1 group. (B,C) ATP content and mitochondrial

membrane potential (200×) decreased in the si-Opa1 group. (D) An increase in the

mRNA expression of PEPCK and G6pase was observed in the si-Opa1 group. (E) A

marked reduction in phosphorylation of AKT in response to insulin was observed in

the si-Opa1 group. Data are expressed as mean ± SD of 3 independent experiments

with 3 determinations for each experiment; compared with the si-Opa1 group, *P <

0.05, **P < 0.01,***P < 0.001.



Figure 4. Overexpression of SIRT1 activated Opa1 and ameliorated PA-induced

insulin resistance in the HepG2 cells

(A) The influence of PA-induced hepatic insulin resistance was assessed using the

MTT assay. Data are expressed as mean ± SD of 3 independent experiments with 6

determinations for each experiment; compared with the control group, *P < 0.05,

***P < 0.001. (B) After treatment of HepG2 cells with 0.3 mM PA, a markedly

reduced phosphorylation of AKT in response to insulin appeared, which indicated that

the IR model was established. Data are expressed as mean ± SD of 3 independent

experiments with 3 determinations for each experiment; compared with the control

group, *P < 0.05. (C, D) The protein was extracted from cells and SIRT1 and Opa1

were measured and analysed using western blot. Data are expressed as mean ± SD of

3 independent experiments with 3 determinations for each experiment; compared with

the control group, *P < 0.05, **P < 0.01; compared with the PA group, # P < 0.05, ###P

< 0.001. (E) Results of phosphorylation of AKT in response to insulin in each group.



Data are expressed as mean ± SD of 3 independent experiments with 3 determinations

for each experiment. (F) The glucose consumption results in each group. Data are

expressed as mean ± SD of 3 independent experiments with 4 determinations for each

experiment; compared with the control group, ***P < 0.001; compared with the PA

group, ###P < 0.001; compared with the PA + oe-SIRT1 group, ＆＆＆P < 0.001. (G) ATP

content in each group. Data are expressed as mean ± SD of 3 independent

experiments with 3 determinations for each experiment; compared with the control

group, ***P < 0.001; compared with the PA group, ###P < 0.001; compared with the

PA + oe-SIRT1 group, ＆＆＆P < 0.001.

Figure 5. Overexpression of SIRT1 improved PA-induced mitochondrial

morphology and mitochondrial membrane potential in the HepG2 cells

(A) Mitochondrial morphology in each group, transfected with mitochondrially

targeted Mito-DsRed fluorescent protein (bar = 10 μm). (B) Mitochondrial membrane



potential detected by JC-1 in each group (200×).

Figure 6. BBR improved hepatic insulin resistance through the SIRT1/Opa1

pathway

(A) The influence of BBR on HepG2 cells was assessed using the MTT assay. Data

are expressed as mean ± SD of 3 independent experiments with 6 determinations for

each experiment; compared with the control group, *P < 0.05. (B,C) The protein was

extracted from the cells, and SIRT1 and Opa1 were measured and analysed using

western blot. Data are expressed as mean ± SD of 3 independent experiments with 3

determinations for each experiment; compared with the control group, **P < 0.01;

compared with the PA group, ##P < 0.01, ###P < 0.001; compared with the PA + BBR

group, ＆＆P < 0.01, ＆＆＆P < 0.001. (D) Results of AKT phosphorylation in response to

insulin in each group. Data are expressed as mean ± SD of 3 independent experiments

with 3 determinations for each experiment. (E) The glucose consumption results in



each group. Data are expressed as mean ± SD of 3 independent experiments with 4

determinations for each experiment; compared with the control group, ***P < 0.001;

compared with the PA group, ###P < 0.001; compared with the PA + BBR group, ＆＆＆P

< 0.001. (F) ATP content in each group. Data are expressed as mean ± SD of 3

independent experiments with 3 determinations for each experiment; compared with

the control group, ***P < 0.001; compared with the PA group, ###P < 0.001; compared

with the PA + BBR group, ＆ ＆ ＆P < 0.001. (G) Mitochondrial membrane potential

detected by JC-1 in each group (200×).

Figure 7. Berberine improved hepatic insulin resistance in the db/db diabetic

mice

(A) Body weight was tested for 4 weeks. (B–E) FBG, LDL, T-CHO, and TG were

observed at the end of week 12. (F, G) Plasma glucose concentrations in different

phases were measured in the oral glucose tolerance test (OGTT) and insulin tolerance

test (ITT) at week 12. (H, I) qPCR was utilised showing the mRNA expression of



PEPCK and G6pase. Data are expressed as means ± SEM (n = 6); compared with the

CON group, *P < 0.05, **P < 0.01, ***P < 0.001; compared with the db/db group, #P

< 0.05, ##P < 0.01.

Figure 8. Downregulation of SIRT1 and Opa1 in the db/db mice

(A) HE staining of the mice (200×). (B) Injury of mitochondria is shown in electron

microscopic images and marked with arrows. (C) The expression of SIRT1, Opa1,

and Drp1 in the liver of the mice. Data are expressed as means ± SEM (n = 3);

compared with the CON group, *P < 0.05, **P < 0.01; compared with the db/db

group, #P < 0.05.
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