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Abstract

An overwhelming number of proteomics software tools and algorithms have been published for different
steps of Data Independent Acquisition analysis of clinical samples. Nonetheless, there is still a lack of
comprehensive benchmark studies evaluating which combinations of those isolated components
perform best.

Here, we used 92 lymph nodes from distinct patients to create a unique benchmark dataset representing
real-world inter-individual heterogeneity. The publicly available dataset comprises 118 LC-MS/MS runs
with >12 million MS2 spectra and allowed us to objectively evaluate how well different combinations of
spectral libraries, DIA software, sparsity reduction, normalization and statistical tests can detect
differentially abundant proteins, while also taking sample size into account.

Evaluation of 2 million data analysis workflows showed that a gas phase fractionation refined spectral
library in combination with DIA-NN and Significance Analysis of Microarrays reliably detected
differentially abundant proteins. Furthermore, DIA-NN and Spectronaut robustly avoided the false
detection of truly absent proteins.

*KF and EB share first authorship. CK and OS share last authorship.

Introduction

Proteomics denotes the study of the entire set of proteins produced by an organism under defined
conditions. While the genome of an organism is geared towards remaining static for almost every cell, the
dynamics introduced by the proteome, including differential expression, altered activity, and
modifications of proteins, allows cells, tissues and even the whole organism to undergo dramatic
changes and to carry out a plethora of different functions. Often, the term ‘proteomics’ is specifically
used to refer to large-scale studies of the proteome employing mass spectrometry (MS) and liquid
chromatography (LC) coupled to mass spectrometry (LC-MS/MS).

Many studies, e.g. in the clinical context, focus on the detection of differentially abundant proteins;
preferably on a proteome-wide scale. To identify such proteins, modern mass spectrometry-based
proteomics techniques offer many ways to quantify and compare proteins between samples. Due to their
simplicity and cost-effectiveness, label-free approaches have been used for decades. Historically, label-
free samples were measured using data-dependent acquisition (DDA). In DDA, following a survey scan,
masses of interest are selected for further fragmentation based on their intensity. This allows for narrow
isolation windows and results in fragment spectra of low complexity. However, the fact that the masses
of interest are selected during the measurement introduces stochastic sampling effects.
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In contrast, parallel fragmentation of precursor ions implemented in data-independent acquisition (DIA)
methods is independent of ion intensity and other properties, leading to constant data acquisition
between samples. In DIA proteomics, assignment of fragment ions to a single analyte (i.e. peptide)
happens post-measurement and is strongly dependent on properties of reference spectral libraries as well
as on features of the data processing algorithms and tools. In DIA proteomics, quantification is typically
performed on the fragment level and not on the precursor level as in the case of DDA .

While this increased complexity makes the handling and analysis of DIA data more laborious, it has been
demonstrated that the quantification by DIA is more robust compared to DDA. Recently, DIA has reached

a protein coverage that is comparable to, or even exceeds, the one of DDA 23.

To objectively compare data processing and quantitation methods, the proteomics community often
employs so-called spike-in benchmark datasets, in which peptides with known properties (e.g. sequence
and concentration) are added to ‘background’ peptides with likewise known properties. To mimic the
complexity encountered in realistic settings often different organisms are added in combination to create
benchmark datasets 4. These benchmark datasets are valuable tools for controlling and optimizing
different aspects of data acquisition and analysis, including LC-MS/MS parameters, library generation,
analysis software parameters, data preprocessing and statistical analysis for detecting differentially
abundant proteins. The critical importance of data processing in DIA proteomics renders benchmarking
datasets particularly useful for this methodology.

Benchmark studies published to date have mainly focused on technical reproducibility and data
acquisition °, or on data analysis steps, such as data preprocessing in the form of data normalization or
data imputation, and statistical methods ©. Indeed, the downstream analysis of the data acquired by DIA
software suites should be carefully reflected upon, going beyond peptide-spectrum-matching (PSM) and
quantitative signal/feature integration. Furthermore, valid benchmarking datasets should represent inter-
individual heterogeneity on a scale that is comparable to present-day, cohort-wide proteome studies,
which is mostly not the case.

Hence, especially in biomarker discovery studies in which highly heterogeneous patient proteomes are
investigated, current benchmark datasets provide little help for a user who has to decide whether and how
to generate a library for DIA analysis, which tool to use for the DIA analysis itself, and, most importantly,
how this will affect data preprocessing and statistical analysis for differentially abundant proteins.

We set out to create a large benchmark dataset reflecting real inter-individual heterogeneity to investigate
the interplay between library generation, DIA software analysis, data preprocessing, and statistical
analysis. To this end, we acquired sentinel lymph nodes from multiple patients as formalin-fixed paraffin-
embedded tissue (FFPE) and used Escherichia coli (E. coli) as a spike-in peptide subpopulation of known
concentration. For the DIA measurements a previously described, well established acquisition scheme

was employed .
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Three trends can be observed in current DIA analysis strategies: a) using spectral libraries generated by
analysing pre-fractionated DDA runs, b) using spectral libraries generated by refining predicted libraries
using gas-phase-fractionation (GPF) or c) using no additional experimental data to generate spectral
libraries (e.g. using predicted libraries). All these prototypical approaches are integrated in this study.

For the main DIA analysis, we used four of the most widely applied DIA analysis software tools in the
proteomics community: DIA-NN 8, OpenSwath °, Skyline 1% and Spectronaut 7.

Combining spectral library analysis approaches with DIA data analysis software led to 17 different ‘DIA
workflows’. We used ‘standard’ parameters, opting for the recommended settings whenever possible, to
reflect a realistic average user scenario and to prevent over-optimization on one dataset. The resulting
different DIA workflow datasets were then combined with data analysis workflows combining
bootstrapping with three sparsity reduction methods, four normalization methods and five statistical test
options resulting in a total of over 2 million analyses.

This allowed us to investigate how library generation and choice of DIA software affect data properties,
and how preprocessing and statistical analysis methods affect the identification of differentially
expressed proteins by means of objective evaluation measures based on p-values and log2 fold-changes
that resulted from each analysis workflow.

Results And Discussion

Significance of Benchmark Studies for the Field of Proteomics

Benchmark studies have become an invaluable tool to objectively assess the advantages and
disadvantages of the choices made over the course of proteomics studies, including the choice of sample
preparation, data acquisition, MS data analysis and statistical processing.

However, benchmark studies often suffer from small sample sizes and unrealistically low background

variance %1213,

Biomarker discovery studies often include hundreds of patients with heterogeneous proteomes and can
contain high within- and between-person variance. In this setting, data characteristics and the resulting
performance of data analysis workflows cannot be estimated using standard benchmark datasets.

Here, we set out to empirically investigate the performance of complete multi-step data analysis
workflows for DIA-type proteomics, composed of library generation methods, DIA analysis software
suites, data preprocessing, and statistical analyses.

Overview of LC-MS/MS Measurements and Initial Results

Page 5/27


https://paperpile.com/c/MXySxa/UWKa
https://paperpile.com/c/MXySxa/cdg7
https://paperpile.com/c/MXySxa/njFU
https://paperpile.com/c/MXySxa/wZfp
https://paperpile.com/c/MXySxa/wXrv+ixDN+Mia0

We obtained 92 FFPE-embedded tumor free lymph node tissue specimens derived from patients with
primary acinary prostate cancer. Following protein digestion and sample clean-up, we split the samples
into four groups and added E. coli peptides in human : E. coli peptide ratios of 6:1, 12:1, and 25:1, or did
not add E. coli peptides at all. Those four groups are referred to as ‘spike-in conditions’ and have a size of
n=23 each (Figure 1). The resulting set of DIA LC-MS/MS measurements (92 LC-MS/MS files) consists of
12.4 million MS2 spectra.

To generate experiment-specific spectral libraries, we performed GPF on a mastermix, which represents
an average spike-in concentration of human to E. coli peptides of 15:1. Using DIA-NN to refine a
combined human and E. coli in silico predicted DIA-NN spectral library, we generated a spectral library
containing 84016 precursor entries mapping to 10459 proteins. Using an in silico predicted PROSIT
spectral library refined by EncyclopeDIA, we generated a spectral library containing 45445 precursors

mapping to 8472 proteins 4.

We also pre-fractionationated a mastermix to obtain samples for in-depth DDA library generation *°.
Using Fragpipe to generate a spectral library from these DDA files, we generated a spectral library
containing 81409 precursors mapping to 7781 proteins. We also used MaxQuant to build a DDA-based
spectral library containing 51260 precursors mapping to 7382 proteins.

Using DIA-NN in combination with the in silico predicted DIA-NN GPF-refined spectral library, on average
48,698 precursors were identified per measurement with an average chromatographic peak width of 8
seconds (full width at half height). No batch effects originating from sample preparation or order of
measurement were apparent in this analysis (Supplementary Figure S1).

Assessment of data analysis workflows for DIA-type proteomics

We chose four commonly used DIA software analysis suites: DIA-NN, Skyline, OpenSwath, and
Spectronaut. Whenever possible, we combined all generated libraries with all DIA analysis software
solutions (especially the predicted spectral libraries pose a challenge to some software suites in
combination with the high number of samples). We also included ‘DirectDIA), a feature of Spectronaut,
which does not require any additional experimental evidence for library generation. This resulted in a total
of 17 different DIA analysis workflows. For all subsequent analysis steps, protein-level output from the
DIA analysis workflows was used. For the sake of simplicity we focused our statistical analyses on the
comparison between the two lowest E. coli spike-in conditions (Figure 1). This also represents the
greatest challenge to any DIA analysis software as quantitations are usually less precise for lowly

abundant proteins 1617,

In this study, we used bootstrapping (see below) to investigate the effect of sample size, normalization,
sparsity reduction and choice of a statistical test on the overall ability of the data analysis workflow to
detect differentially abundant proteins.
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In brief, we randomly drew samples from each of the two lowest E. coli spike-in conditions with group
sizes of three to 23 samples. On each bootstrap dataset we applied different data analysis workflows
composed of multiple options for the preprocessing steps in the form of sparsity reduction and
normalization, followed by one of five statistical tests to identify differentially abundant proteins.

Taking into account the aforementioned 17 different types of LC-MS/MS data processing, we acquired
prediction performance information for 1020 different analysis workflows, each of which was applied to
2100 bootstrap datasets resulting in over 2 million analyses.

This staggering number beautifully illustrates the amount of possible combinations of library generation
methods, DIA software suites, and downstream data preprocessing and statistical analysis methods
proteomics scientists are confronted with. As every study is different and there are no truly universally
applicable methods available in proteomics, the level of experience and choices of the proteomics data
analyst determine the reliability and reproducibility of a proteomics study, which was impressively
demonstrated by Choi et al 3.

Analyses of the LC-MS/MS Data

We first assessed the number of identified and quantified proteins with a 1 % protein FDR cutoff being
applied to all workflows (Figure 2 left panel). As the number of identified proteins depends on the number
of proteins, which are physically present in a sample, the samples are grouped by spike-in condition. The
DDA spectral libraries consistently led to smaller numbers of identified proteins. As the tissue used in this
study was formalin-fixed, chemical modifications can reduce the number of identified peptides and
proteins during spectral library generation. In our experience, GPF refined spectral libraries often lead to
higher identification rates in DIA-type proteomics data of FFPE tissue. The total number of identifiable
proteins increases with increasing amounts of spiked-in E. coli proteins. Using a GPF-refined in silico
predicted PROSIT spectral library in combination with Skyline yielded the highest number of quantified
proteins, ranging from a mean value of 7388 proteins for samples without spike-in to a median of 7480
proteins for the samples with a human: E. coli spike-in of 6:1 (w/w).

However, in quantitative proteomics, protein identifications only serve a useful purpose if they are
accompanied with robust and reliable quantitation. When summarizing the protein abundances as
calculated by the different DIA analysis workflows both the shape of the distribution of log-transformed
protein abundances (Figure 2 center panel) as well as the correlation of log-transformed intensities
between DIA analysis workflows mostly depend on the choice of DIA analysis software, and to a lesser
extent on the spectral library (Supplementary Figure S2).

Further, we determined the variance of individual E. coli protein intensities per spike-in ratio. Since one
single batch of E. coliwas used for all spike-ins (thus reducing inter-sample variability between E. coli
proteins), a minimal variance indicates a reproducible quantitation algorithm. While the absolute variance
of protein intensities is similar across all DIA analysis workflows, the DIA workflows differ in how much
this variance varies across each spike-in condition: for DIA-NN and Spectronaut DIA workflows, the
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variability of variances decreases with higher E. coli spike-in concentrations (except for DIA-NN in
combination with the refined PROSIT spectral library), while the opposite behaviour can be observed for
OpenSwath and Skyline (with the exception of human to E. coli spike-in condition 6:1 (Figure 2 right
panel). Therefore, we specifically investigated the reported quantitations for E. coli proteins
(Supplementary Figure S3). While the number of identified and quantified E. coli proteins decrease in
lower spike-in conditions, it remains constant for some DIA analysis software suites. This led us to more
closely investigate how different DIA analysis suites report missing proteins.

Missing Values and False-Positive Quantitation

DIA-type proteomics promises to reduce missingness in multi-sample proteomic experiments . In the
present dataset, 25% of all samples are human-only and void of E. coli proteins. This experimental setting
not only supports the illustration of missingness, but also the illustration of false-positive quantitation of
proteins (here: E. coli proteins).

As can be appreciated from Figure 3A, the means of the human and E. coli protein intensities correlate
negatively with the percentage of missing values per protein for all DIA software suites except for Skyline.
This negative correlation has also been reported previously in a clinical proteomics study employing a
tripleTOF instrument using OpenSwath for data analysis 8. Furthermore, DIA-NN and Spectronaut
correctly yield a level of 25 % missingness for most E. coli proteins, while Skyline and OpenSwath do not
clearly reach this distinction. The nature of the spectral library only had a negligible impact in this regard
in most cases. However, for DIA-NN the number of reported E. coli proteins for samples, which only
contained human lymph node proteins increased when using the EncyclopeDIA-refined in silico predicted
PROSIT spectral library.

Our observation suggests that OpenSwath and Skyline tend to report background ‘nois€’ instead of
missing values when no proteins can be confidently identified and quantified. In contrast, DIA-NN and
Spectronaut tend in our analyses to report missing values when the proteins are physically absent in a
sample.

Furthermore, we assessed how the missingness within each sample correlates with the sample mean of
protein intensities. While for DIA-NN and Spectronaut this correlation is positive showing a separation of
the spike-in conditions by sample mean of protein intensities, it is negative for Skyline and OpenSwath
without showing such a separation (Figure 3B).

We hypothesize that the counter-intuitive positive correlation between protein intensity and missingness,
as in the case of DIA-NN and Spectronaut, may be due to sample-dependent detection thresholds '°. In
other words, if the intensity of a protein lies below such a threshold, it is not included into the calculation
of the sample mean of the protein intensities, thus, increasing the weight of proteins with higher
intensities. This in turn increases the sample mean of protein intensities.
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The implications of these findings are far-reaching and should be taken into consideration when planning
studies, as in practically all proteomics experiments missing proteins are an issue that needs to be
addressed, and in some studies such as knockout experiments or clinical biomarker discovery studies
missing values are even of special interest. To our knowledge, detection of true missingness and false-
positive quantitation is rarely investigated in benchmarking studies. Our dataset offers a well-suited
platform to investigate (and possibly optimize) these aspects for future toolsets.

Post-Processing and Measures of Performance Used in this Study

Although complex in its own realm, protein and peptide identification and quantitation from LC-MS/MS
data are only the beginning of the complete analysis of a multi-sample, quantitative proteomics
experiment. Subsequent steps typically include sparsity reduction, normalization and, ultimately,
statistical assessment of differential protein abundance. For each of the aforementioned steps different
algorithms exist, yielding a variety of possible combinations.

To investigate the performance of the analysis methods in different possible combinations, we jointly
assessed commonly used approaches for sparsity reduction, normalization, and different statistical tests.
For sparsity reduction we applied: a) no sparsity reduction (NoSR), b) requiring > 66% values per protein
(SR66), and c) requiring > 90% values per protein (SR90). Four different methods were then applied to
investigate the effect of normalization: a) unnormalized, b) quantile normalization (QN), c¢) tail-robust
quantile normalization (TRQN), and d) median normalization. We then subjected each possible
combination to five statistical tests to probe for differentially abundant proteins.

To systematically evaluate the performance of each of the above mentioned parameters, we focused on
a sub-dataset, representing the two lowest E. coli spike-in conditions. We used bootstrapping to quantify
the uncertainty of the observed assessment score and to investigate the effect of sample size on the
overall ability of the data analysis workflow to detect differentially abundant proteins. To this end, we
randomly drew (with replacement) from the set of samples of the two lowest E. coli spike-in conditions to
receive group sizes of three to 23 samples. On each bootstrap dataset we applied all combinations of the
aforementioned sparsity reductions, normalizations, and statistical testing options to determine
differentially abundant proteins.

To objectively compare the performance of the different data analysis workflows, we introduced a
unifying measure of performance for detecting differentially abundant proteins. The experimental design
with the known E. coli spike-in conditions provides us with ground truth information based on which we
can assess true positives (E. coli proteins, which are determined to be significantly differentially abundant
between the two spike-in conditions), false positives (human proteins determined to be significantly
differentially abundant between the two spike-in conditions), false negatives (E. coli proteins determined
to be non-significantly differentially abundant between the two spike-in levels), and true negatives
(human proteins determined to be non-significantly differentially abundant between the two spike-in
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conditions). For each protein, we can then plot the true positive rate against the false positive rate to
obtain a receiver operating characteristic (ROC) curve. To measure the ability of each workflow to detect
differentially abundant proteins, the area under the ROC curve is then determined. We use the partial area
under the curve (pAUC) for all analyses, as the pAUC reflects the performance in the relevant range of
false positives (Figure 4A) (Walter 2005). While the AUC can be interpreted as the average sensitivity over
the whole range of specificities, pAUCs correspond to the average sensitivity over a relevant (mostly high)
specificity range only. In the literature, calculations of pAUCs for different specificities have been

used %20 Here, we focus on specificities larger than 80% (i.e. false positive rate (FPR) < 20%) for the pAUC
calculations.

Although the fold-changes of the spiked-in E. coli proteins are known through our study design, it is
unknown which human and E. coli proteins were actually present in the biological sample in the first
place. Since the calculations of sensitivities and specificities strongly depend on the definition of the set
of proteins present, we calculated them based on three different protein lists. This allows us to evaluate
the robustness of the outcomes, while ensuring that no software or library is favoured.

The proteins, which are present in the DIA analysis workflow, i.e. the bootstrap dataset under
investigation, are collectively referred to as ‘DIA workflow’ proteins (Supplementary Figure 4 & 5). The list
of proteins, which were identified in at least one of the DIA analysis workflows is referred to as ‘Combined’
(11,516 Human proteins, 2,127 E. coli proteins). The list of proteins, which were identified in more than
80% (at least 14 out of 17) of the DIA analysis workflows is referred to as ‘Intersection’ (4,499 Human
proteins, 745 E. coli proteins), and represents a core protein set.

Evaluation of Post-Processing Approaches and Statistics of Differential Abundance

The highest pAUC values are achieved when no sparsity reduction is performed, while more strict criteria
for missing values lead to a decrease in pAUC (Figure 4B). However, depending on the measure of
performance being used, different aspects of an analysis workflow are rewarded or punished,
representing an underlying challenge in benchmark studies. In our study, the reference protein list based
on which the ROC is generated represents an additional that impacts the outcome of our comparisons.

The pAUC values shown in Figure 4B have all been generated using the ‘DIA workflow’ protein list. When
we removed protein entries based on sparsity reduction in the ‘DIA workflow’, the pAUC values decreased.
While the removal of proteins via sparsity reduction can lead to a situation in which the maximum
sensitivity cannot be reached, the same can happen if the reference protein list, based on which
sensitivity and specificity are calculated, is larger than the list of proteins, for which statistical results are
available. This indicates that the choice of an appropriate reference protein list is crucial.

Furthermore, we observed a steep initial increase in the ROC curve for SR90, after which a plateau is
reached. Differences in the pAUC are then solely based on the height of this plateau, which itself depends
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on the number of quantified E. coliproteins in a given dataset. This steepness decreases from SR90 over
SR66 to NoSR (data not shown).

If testing for differential abundance of a protein returned a missing value, the p-value for this comparison
was set to one. As human proteins are overrepresented in our benchmark dataset, this might lead to a
bias when performing sparsity reduction, limiting inter-comparability of sparsity reduction levels.

We next investigated the relative performance of each DIA analysis workflow separated by reference
protein list (Figure 4C). Note the tri-model distribution of pAUC, which is particularly prominent for DIA-NN
and Spectronaut, and can be explained by the three included sparsity reduction options. The performance
of some DIA data analysis workflows differs drastically between the reference protein lists.

“Within workflow” performance

Using the ‘DIA workflow’ protein lists to measure the prediction performance of differentially abundant
proteins, we find that Spectronaut’s ‘DirectDIA’ performs best. DIA-NN, Skyline and Spectronaut all
perform well using the more classical DDA spectral libraries generated by MaxQuant and MSFragger.
Combining OpenSwath with the MSFragger-based spectral library leads to a better prediction
performance than combining it with the MaxQuant spectral library. Overall, the GPF-refined libraries show
an inferior performance, except for the refined DIA-NN spectral library in combination with OpenSwath.

“Overall sensitivity” performance of each workflow compared to all other workflows

When using the Combined reference protein list, the GPF-refined libraries, but not the in silico predicted
DIA-NN unrefined library, perform well for DIA-NN and OpenSwath workflows. These libraries do not,
however, perform as well for Spectronaut. Skyline clearly performs better with the refined PROSIT spectral
library as compared to the refined DIA-NN spectral library for this specific reference protein list. Also, the
DDA-based spectral libraries perform worse than in the case of the DIA workflow protein list.

Performance against “core protein dataset”

When using the ‘Intersection’ reference protein list, on average, DIA-NN performs slightly better compared
to the other software solutions. The refined DIA-NN library (also in combination with OpenSwath, but not
with Skyline and Spectronaut) leads to a good prediction performance against the protein core dataset.
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The performance of each DIA analysis software suite strongly depends on the spectral library with which
it is combined, and on the protein list against which it was benchmarked. For instance, while the relative
performance against the DIA workflow protein list was below average for the combination of refined DIA-
NN spectral library and DIA-NN analysis, the performance against the Combined protein list and against
the Intersection protein list was among the best. In contrast, Skyline in combination with the refined
PROSIT spectral library does not perform well when measured against the respective protein list, but
performs well when measured against the Combined protein list.

These data highlight the strengths, but also the limitations of any spectral library-DIA software
combination. While some combinations lead to a high number of reported proteins, others will give more
accurate results. This can also be observed when comparing the detected log2 fold-changes of E. coli
proteins with the actual fold-changes of the spiked-in E. colilysates (Supplementary Figure S6).

Normalization

We found that virtually all DIA software-spectral library combinations do not benefit from normalization
and perform best with non-normalized data (Supplementary Figure S7). All normalization methods
included in this study normalize by distribution and, thus, act under the assumption of a symmetric
differential expression, i.e. that the number of up- and down-regulated proteins is equal 2'. In this
benchmark dataset, however, the differentially expressed proteins solely change in one direction. Thus,
we hypothesize that the observed decline of performance when normalization is performed could, at least
partly, be an artifact of the study design.

Furthermore, due to the higher number of human than E. coli proteins in the samples, the impact of
human proteins on the normalised outcome is higher. As a result, the distribution of the human proteins is
comparable across the normalised samples, while this is not the case for the E. coli proteins. This might
lead to a bias in the identification of differentially abundant E. coli proteins.

Additionally, all employed normalization steps assume that the relative abundance of proteins within one
sample can be used to normalize all proteins. This, however, cannot be assumed for this dataset as E.
coliand human proteins were pipetted separately, which leads to changes in the protein abundance ranks
between samples (which are assumed to be stable by the normalization methods). This highlights the
need to employ special strategies to evaluate normalization strategies in future benchmark studies. A
dilution series of the same samples being measured with different injection amounts may be more
suitable to investigate normalization methods.

Statistical tests
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Finally, we evaluated the prediction performance of statistical tests for two-group comparisons, which
have previously been used in proteomics data analysis (Figure 4D), again for all three reference protein
lists. In general, the non-parametric tests ROTS and SAM consistently perform best for all DIA analysis
workflows. Interestingly, SAM performed better than ROTS with the exception of data analysed by Skyline,
where ROTS consistently performed best (Supplementary Figure S8). However, the superiority of SAM
over ROTS may also be due to the set hyperparameters, as the SAM statistic can be derived from the
more general ROTS statistic. The good performance of non-parametric methods has been described
previously 2022 _|nterestingly, SAM did not perform well in the study of Pursiheimo et al, who caution

when using SAM but highlight the good performance of ROTS 23.

Connection between data characteristics and statistical prediction performance

We investigated the connection between data properties of the bootstrap datasets and statistical
prediction performance. As we identified DIA-NN in combination with the in silico predicted GPF-refined
spectral library as an overall well performing DIA analysis workflow, we further investigated, which data
properties (Supplementary Figure S9) correlate with benchmarking performance measures
(Supplementary Figure S10).

In general, sample variance, kurtosis, skewness and the ratio of variances between two spike-in
conditions only show little influence on the performance of statistical tests to detect differentially
abundant proteins. The correlation behavior of the remaining data characteristics differ between the DIA
analysis workflows (not shown).

As we included different sample sizes during bootstrapping to mimic limited replicate availability, we
were also able to investigate the performance of the different DIA analysis workflow for different sample
sizes (Supplementary Figure S11). We observed a moderate positive correlation between pAUC values
and sample size for all DIA analysis workflows (exemplarily shown in Supplementary Figure S12 for DIA-
NN in combination with the in silico predicted GPF-refined spectral library).

Influence of sample size on statistical testing and performance

Overall, SAM performed best for all sample sizes over all workflows, except for Skyline, which showed the
best performance in combination with ROTS. However, irrespective of the software suite, for small
sample sizes (n < 5) limma achieved a similar performance to SAM and ROTS. Van Ooijen et al., who

compared different statistical tools to detect differentially abundant proteome features, also found limma

to perform well for small sample sizes 24.
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Conclusions

With this comprehensive benchmark study in which we assessed multiple processing options
simultaneously, we strive to support the proteomics community by providing novel insights into the
interplay between spectral libraries, DIA software suites, data preprocessing, and statistical testing for
differentially abundant proteins.

We found that the most extensive proteome coverage was achieved using Skyline in combination with an
in silico predicted PROSIT spectral library, which was refined using EncyclopeDIA. DIA-NN and
Spectronaut robustly avoided the false detection of E. coli proteins, which are truly absent in human-only
samples. This is highly relevant for studies inferring biological relevance from missing values, especially
in a clinical context.

Naturally, the amount of missing values also influences the effect of sparsity reduction. This effect is
smaller for OpenSwath and Skyline as compared to DIA-NN and Spectronaut, potentially due to the
differing nature of missing values.

In our study we found a very limited effect of data normalization on the prediction performance of
differentially abundant proteins. This highlights the quality of internal protein inference and
summarization algorithms for all tools, especially for DIA-NN and Spectronaut.

As for statistical testing, the non-parametric statistical tests SAM and ROTS consistently performed well,
with SAM outperforming ROTS when DIA-NN, OpenSwath, or Spectronaut were used, while ROTS
performed best in case of Skyline. Limma performed well compared to other parametric statistical tests
for very low sample sizes. The performance to detect differentially abundant proteins changed for the
spectral library - DIA analysis software combinations depending on the employed performance measure.
When the number of identified proteins was considered irrespective of the DIA software-library
combination they were derived from, OpenSwath in combination with the in silico predicted DIA-NN
spectral library (GPF-refined by DIA-NN) performed best. When considering the core protein dataset
(identified in 80 % of all DIA analysis workflows), DIA-NN in combination with the in silico predicted DIA-
NN spectral library (GPF-refined by DIA-NN) performed best. When only the proteins are taken into
account, which were found in the respective DIA software-library combination, Spectronaut’s “DirectDIA”
excelled.

This highlights the importance of spectral library generation and the quality of the resulting spectral
libraries. In silico prediction of spectral libraries (and their refinement on LC-MS/MS measurements) is
gaining momentum. In this setting, the choice of library prediction algorithm, possible LC-MS/MS
refinement, and the actual DIA-analysis software lead to even more complex combinatorial workflows.

In summary, we found that the reliability and reproducibility of proteomics data analyses heavily depend
on properly choosing and combining the options provided for each proteomics workflow step, as
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downstream analyses may rely on certain assumptions about data characteristics, which are themselves
heavily influenced by the choice of DIA software and spectral libraries.

We invite others to test their approaches on our dataset as it provides a unique opportunity to test DIA
analysis workflows as well as data analysis workflows in a heterogeneous background setting. We
furthermore recommend that workflows used in clinical settings should be tested against our dataset to
control their performance and expected data structure.

Materials And Methods

Sample Preparation

The study has been approved by the Ethics Board of the University Medical Center Freiburg (approval
280/18). Histologically non-infiltrated lymph nodes from patients with acinary prostate cancer were
collected as sentinel samples and preserved as FFPE tissue. Consecutive slices of 10 um thickness were
deparaffinized, stained, and macrodissected to acquire 0.5 - T mm? of lymph node tissue per patient.
Subsequently, antigen retrieval was performed in 4% (v/v) SDS, 100 mM HEPES pH 8.0, with samples
being sonicated using a Bioruptor device for 10 cycles (40 sec / 20 sec, high intensity), heated to 95°C
for one hour, and sonicated again.

E. coli K12 bacteria were provided by Christoph Schell (University Medical Center, Freiburg) as cell pellets.
E. colisamples were lysed in 4 % SDS in 100 mM HEPES pH 8 and heated to 95 °C for 10 min and
subsequently sonicated using a Bioruptor for 15 cycles (40 sec / 20 sec, high intensity).

All samples were centrifuged at 15000 rcf for 10 min at room temperature. Only the supernatant was
used for MS sample preparation.

FFPE tissue samples and E. coli samples were reduced at 95°C for 10 min using 5 mM TCEP. Samples
were alkylated for 20 min at room temperature in the dark using 10 mM iodoacetamide. Samples were
prepared for MS analysis using micro S-TRAP columns (PROTIFY) according to manufacturer's
instructions. For digestion, a mix of trypsin and Lys-C (1:20 w/w to sample protein amount) was used.
Following purification, peptide content was measured using BCA assay (Thermo) and aliquots containing
5 ug peptide per sample were dried and frozen at -80°C until measurement.

For DDA library generation, a mastermix of 10 different lymph node peptide preparations and E.
coli peptides with a human / E. coliratio of 15:1 was used. The sample was pre-fractionated using offline

high-pH prefractionation as described previously resulting in 10 fractions 2°.

LC-MS/MS Measurements

All LC-MS/MS runs were acquired using an Orbitrap Eclipse Mass Spectrometer (Thermo) coupled to an
Easy nLC 1200 (Thermo). Precolumns with 100 pm ID were self-packed with 3 um C18 AQ (Dr. Maisch)
beads to a length of 2 cm. A 75 pm Picofrit column (New Objective) was self-packed with 1.9 um C18 AQ
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(Dr. Maisch) beads to a length of 20 cm as previously described 2°. For every injection, 500 ng of peptides
were used. iRT peptides (Biognosys) were added to a final quantity of 50 fmol / injection. Buffer A
consisted of 0.1% formic acid, buffer B consisted of 80 % acetonitrile in 0.1 % formic acid. All samples
were separated using a 70 min linear gradient from 5 % to 31 % B followed by a 5 min linear gradient
from 31 % to 44 % buffer B. For the data acquisition of the dilution series the mass spectrometer was
operated in DIA mode and the standard parameters from the staggered DIA method editor node were
used. Briefly, a survey scan (60k resolution) from 390 to 1010 m/z was followed by MS2 scans (15k
resolution) with 8 m/z isolation width covering 400 m/z to 1000 m/z. A second survey scan was followed
by MS2 scans with an offset of 4 m/z as compared to the first cycle. For MS2 scans, peptides were
fragmented using HCD and stepped collision energy 30 (5%), and maximum injection time was set to 22
ms. The data were recorded in centroid mode.

For spectral library generation, a masterpool sample with a lymph node to E. coli peptide ratio of 15:1

was generated by combining peptides from 12 randomly chosen samples (3 from each spike-in
condition).

For GPF measurements, the masterpool sample was repeatedly measured. A tSIM scan with an isolation
width of 110 m/z was followed by MS2 scans with 4 m/z isolation width over 100 m/z. A second tSIM
scan with 110 m/z was followed by MS2 scans with an offset of 2 m/z as compared to the first cycle. A
total of 6 measurements were performed to cover a scan range from 400 to 1000 m/z.

For data dependent acquisition measurements, the masterpool sample was pre-fractionated offline prior

to LC-MS/MS measurement as described previously 2°. A survey scan of 120k ranging from 390 m/z to
1010 m/z was recorded. Following the survey scan, a Top 15 method was employed. MS2 scans were
recorded at 15k resolution with the isolation window set to 1.6 m/z and maximum injection time set to 60
ms. DDA data integrity was validated using PTXQC ?”.

Peptide-Spectrum Matching (PSM) and Signal Quantitation
for LC-MS/MS data

Spectral Library Generation

For all spectral libraries, a reviewed human and E. coli K12 FASTA (one entry per gene) were downloaded
from Uniprot on Nov 22nd 2020 28. The GPF-refined PROSIT 2° spectral library was generated as
described previously '%. In brief, EncyclopeDIA 7 (0.9.5) was used to generate PROSIT input csv files.
PROSIT (2019 iRT prediction model) was used to predict spectra and retention times, which were
reimported into EncyclopeDIA. Destaggered GPF mzml files were then used to generate a GPF-refined
library, which was exported in tabular format.

The GPF-refined DIA-NN spectral library was predicted and refined using DIA-NN. In brief, DIA-NN was
provided with a combined FASTA protein database (human + E. col) as input and neural networks were
used to generate spectra and retention times for the appropriate mass range of 390 m/z to 1010 m/z.
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The GPF mzml files were then used to generate a GPF refined library, which was exported in tabular
format. For the DIA-NN in silico predicted library, the refinement step was skipped and the unrefined in
silico predicted library was directly used for DIA analysis.

The MaxQuant DDA library was generated using MaxQuant (1.6.14.0) searching the DDA files resulting
from prefractionation directly as raw files. The MaxQuant output was imported into Spectronaut,
converted to library format and exported in tabular format.

The MSFragger DDA library was generated using MSFragger (3.2) in the Fragpipe GUI (14.0) in
conjunction with SpectraST, following conversion of DDA raw files to mzXML format. MSFragger output
was converted to tabular format using DIA-NN.

Raw files were destaggered and converted to mzml or mzxml format using MSConvert in conjunction
with ProteoWizard (3.0.20315) 3 or demultiplexed and converted to htrms format using Spectronaut
(14.0).

DIA Data Analysis

DIA-NN (1.7.12) was used with recommended settings. Mass ranges were set appropriately for the search
space and RT profiling was activated. For the in silico predicted library search, the reduced memory
option was additionally activated. Protein FDR was set to 1.0 %. All DIA-NN computations were performed
on an Intel(R) Xeon(R) Gold 6246 CPU.

Skyline 37 (64 Bit) (20.2.0.343) analyses were performed as described in the Skyline tutorials ‘Analysis of
DIA/SWATH data’ and ‘Advanced Peak Picking Models'. In brief, the ‘Import Peptide Search’ daemon was
used to import spectral libraries and implement the iRT retention time predictor 32. Mass accuracy was
set to 10 ppm. A mProphet model was trained not including MS1 information and results were filtered
based on the g-value given by the mProphet model (1 % peptide FDR).

The OpenSwathWorkflow (2.6) was used in Galaxy with the default settings except for minor
adjustments °. Briefly, the mass accuracy on MS1 and MS2 level were set to 10 ppm. For iRT peptide
extraction, 20 ppm was used, and a minimum of seven iRT peptides was requested. Target-decoy scoring
was performed using PyProphet (2.1.4.2) in Galaxy with the 'XGBoost' classifier for semi-supervised
learning including MS1 as well as MS2 information 33. Identification results were filtered based on a
peptide and protein FDR of 1% using PyProphet.

Spectronaut’s (14.0) ‘import’ function was used for converting tabular libraries into Spectronaut format.
Before import, the retention times of the PROSIT-EncyclopeDIA and the DIA-NN libraries were converted to
minutes and a linear model was used to convert retention times to iRT values.

All raw data, libraries, analysis log files, and analysis output files are available at the European Genome-
phenome Archive (https://ega-archive.org EGAS00001005589).

Data Post-Processing and Visualization of DIA Analysis Software Output
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Prior to performing data analysis on the protein intensity datasets derived from the 17 DIA workflow
analyses, data were transformed to a common format, in which all proteins were annotated with their
respective UniProtkKB/Swiss-Prot entry names. For some DIA analysis workflows, multiple protein
identifiers were composed of multiple protein names. Proteins were excluded if they were labelled both as
a human and as derived from E. coli. Proteins without reported quantitations were removed. For further
analysis and visualization, the resulting protein intensities were log2-transformed.

Bootstrapping

To evaluate statistical tools to identify differentially abundant proteins in omics data, the two lowest
human : E. coli spike-in ratios 25:1 and 12:1 were used (Figure 1). Bootstrap datasets were generated by
randomly drawing (with replacement) a defined number of samples from each of the two spike-in
conditions. We varied the group sizes for each spike-in condition from three to 23 samples and generated
100 bootstrap datasets for each of those group sizes, resulting in 2100 bootstrap datasets in total. To
each of those bootstrap datasets all data analysis workflows consisting of different combinations of
sparsity reduction, normalization, and statistical testing options were applied.

Sparsity Reduction and Normalization

We included the following three sparsity reduction options: including all protein entries (NoSR), or only
those protein entries present in at least 66 % (SR66), or 90 % (SR90) of all samples, respectively. We
included the following four normalization options: no normalization (unnormalized), tail-robust quantile

normalization (TRQN) '°, quantile normalization (QN) 3#3° and median normalization (median).

Statistical Testing for Differentially Abundant Proteins

The following five statistical tests were included in our analyses: Student's t-test (with equal variances),
linear models for microarray data (limma) 26, generalized linear model (GLM), significance analysis of
microarrays (SAM) (250 permutations used to estimate false discovery rates) 3/, and reproducibility-
optimized test statistic (ROTS) 383% (with 100 bootstrap and permutation resamplings and the largest top
list size considered being 500).

In total, we acquired performance information for 17 DIA analysis workflows x 2100 bootstrap datasets x
3 sparsity reduction options x 4 normalization options x 5 statistical test options = 2'142°'000 cases. For
each of those cases we received for each protein of a bootstrap dataset a p-value as a result of a
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statistical test and the estimated log2-fold change (log2FC) between the two different human to E. coli
spike-in ratios 12:1 and 25:1.

Measure of Performance

To evaluate which analysis performed best in predicting the differentially abundant proteins, we used the
partial area under the curve (pAUC), specifically the area under the receiver operating characteristic (ROC)
curve. If statistical tests returned a missing value for a given protein the p-value of this protein was set to
1 in the respective analysis. We also calculated the sensitivity at a significance level of 0.05.

To quantify precision, we calculated the root-mean-square error (RMSE) based on the estimated log2FC
and the true log2FC, which is 0 for human proteins and 1.11 for E. coli proteins.

We calculated the evaluation measures for three reference protein lists in parallel: the ‘core/‘intersect’
protein set with proteins appearing in more than 80% (at least 14 of 17) DIA analysis workflow datasets,
the ‘combined’ protein set with proteins appearing in at least one DIA analysis workflow dataset, and the
‘DIAWorkflow’ protein set, which is specific for each DIA analysis workflow.

The R code used for the statistical analyses is available at github.com/kreutz-lab/dia-benchmarking.
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Figure 1

Benchmarking Workflow A data-independent acquisition (DIA) benchmark dataset was created by adding
E. coli peptides in known ratios to peptide preparations of lymph nodes of 92 individuals. We analyzed
the raw data with different spectral libraries and DIA software suites. From samples to which E. coli
peptides were added in the two E. coli : human peptide ratios 25:1 and 12:1, bootstrap datasets with
group sizes of 3 to 23 were generated. For each of those 21 different group sizes, 100 bootstrap datasets
were generated. On each bootstrap dataset different data analysis workflows, composed of different

sparsity reductions, normalization options, and different statistical testing methods for differentially
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abundant proteins, were applied. The results were returned in a table containing p-values and log2-fold
changes (log2FCs). As the ground truth about the changed proteins (E. coli) is known, the prediction
performance of each workflow can be assessed. This can be done based on the p-values from the
statistical tests by calculating the receiver operating characteristic (ROC) curve, based on which the area
under curve (AUC) is calculated. To quantify the accuracy of quantification the root-mean-square error
(RMSE) is calculated based on the detected log2FC.
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Choice of Spectral Library and DIA Analysis Software Influences Number of Identified Proteins. Left:
Number of all identified and quantified proteins (human and E. coli) in all 92 samples. Center: Log2
intensity distributions of proteins. Right: Log2 variance of E. coli proteins. Log2 Variance values smaller
than -12 were excluded from this plot. Color-coded by spike-in condition
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Missing Value Characteristics. a) Missingness of proteins is reported differently and mainly varies with
the employed DIA software. Means of Log?2 intensities of identified human (blue) and E. coli (red)
proteins plotted against the percentage of missing values in the respective protein. E. coli proteins are not
physically present in 25% of samples (indicated by the red arrow). b) The correlation between the
missingness within samples and the sample means of the protein intensities varies with the employed
DIA software. Sample means of protein intensities are plotted against the percentage of missing values

in the respective sample.

a b T— > b n
I I rl—rl_q' |k
p— 1
0.15 |\
0ITm /N /1\
Vs % @ { l | > J\
© S 0.10 4 L
1st 2 8 ' e <
LL_1 L1 = 2 S
L1y 2d 3 gy 8 3
: 3 P
. -
Bootstrapping 100x iz / 1
Human . E. coli P Value False Positive Rate
c Reference Protein List
Software Library DIA Workflow Combined Intersection
x
GPF (DIA-NN) e
MaxQuant
DIA-NN MSFragger
Predicted
GPF (PROSIT)
GPF (DIA-NN)
OpenSwath MaxQuant
MSFragger
GPF (DIA-NN)
MaxQuant
Skyline
MSFragger
GPF (PROSIT)
GPF (DIA-NN)
MaxQuant
Spectronaut MSFragger
.DirectDIA"
GPF (PROSIT)
0.00
d
P,
t-Test iy i
GLM Gamma ,;i; T
foi L]
Statistical Eirees Sl
Test S
__.(_.3(_-;'..'._..;
ROTS —
L
SAM ———
s
000 005 010 0.15 0.00 0025 0.05 0.025 000 005 010 015 02
pAUC 0.8

Page 26/27



Figure 4

Statistical Analysis of Benchmark Dataset a) Workflow schematic: For the generation of bootstrap
datasets random samples were drawn with replacement from samples of the spike-in conditions 25:1
and 12:1 mimicking two groups containing differentially abundant proteins, here represented by all E. coli
proteins. The p-values acquired after data preprocessing and statistical analysis were used to build
receiver operating characteristic (ROC) curves. The partial area under the curve (pAUC) for specificities
larger than 0.8 was used as a measure of prediction performance. b) pAUC distribution for the different
sparsity reduction options (as measured against ‘DIA workflow’ protein list) c) pAUC for the different DIA
analysis workflows as measured against the three different reference protein lists d) pAUC distributions
for the statistical tests. ‘DIA workflow’ describes the performance against the proteins present in the given
DIA workflow only, ‘Combined’ describes the performance against proteins identified at least by one of all
DIA analysis workflows. ‘Intersection’ describes the performance against proteins which were found in
more than 80% (in at least 14 of 17) of the DIA analysis workflows. For each reference protein list the
respective median of pAUC performance is indicated by a red line, and the best performing option with a
Cross.
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