1.
Kahvejian A, Quackenbush J, Thompson JF: What would you do if you could sequence everything? Nat Biotechnol 2008, 26(10):1125-1133.
2.
Mardis ER: DNA sequencing technologies: 2006–2016. Nature protocols 2017, 12(2):213.
3.
Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha
S, Robinson GE: Big data: astronomical or genomical? PLoS biology 2015, 13(7):e1002195.
4.
Topol EJ: High-performance medicine: the convergence of human and artificial intelligence. Nature medicine 2019, 25(1):44.
5.
Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, Hanel D, Gardner
M, Gupta A, Hotchkiss R: Deep neural network improves fracture detection by clinicians. Proceedings of the National Academy of Sciences 2018, 115(45):11591-11596.
6.
Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van
Der Laak JA, Hermsen M, Manson QF, Balkenhol M: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases
in women with breast cancer. JAMA oncology 2017, 318(22):2199-2210.
7.
Ting DS, Liu Y, Burlina P, Xu X, Bressler NM, Wong TY: AI for medical imaging goes deep. Nature medicine 2018, 24(5):539.
8.
Madani A, Arnaout R, Mofrad M, Arnaout R: Fast and accurate view classification of echocardiograms using deep learning. NPJ digital medicine 2018, 1(1):6.
9.
Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, Pandolfi PP, Mak T, Satija
R, Shalek AKJC: Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 2015, 163(6):1400-1412.
10.
Ding J, Condon A, Shah SPJNc: Interpretable dimensionality reduction of single cell transcriptome data with deep
generative models. Nature communications 2018, 9(1):2002.
11.
Tan J, Ung M, Cheng C, Greene CS: Unsupervised feature construction and knowledge extraction from genome-wide assays
of breast cancer with denoising autoencoders. In: Pacific Symposium on Biocomputing Co-Chairs: 2014. World Scientific: 132-143.
12.
Liang M, Li Z, Chen T, Zeng JJIAtocb, bioinformatics: Integrative data analysis of multi-platform cancer data with a multimodal deep learning
approach. IEEE/ACM transactions on computational biology and bioinformatics 2015, 12(4):928-937.
13.
Chen Y, Li Y, Narayan R, Subramanian A, Xie X: Gene expression inference with deep learning. Bioinformatics 2016, 32(12):1832-1839.
14.
Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, Sander C, Cherniack AD,
Mina M, Ciriello G: Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas. Cell reports 2018, 23(1):172-180. e173.
15.
Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia
A, Tress ML: Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding
genes. Human molecular genetics 2014, 23(22):5866-5878.
16.
Ma J, Yu MK, Fong S, Ono K, Sage E, Demchak B, Sharan R, Ideker T: Using deep learning to model the hierarchical structure and function of a cell. Nature methods 2018, 15(4):290.
17.
Carvunis A-R, Ideker T: Siri of the cell: what biology could learn from the iPhone. Cell 2014, 157(3):534-538.
18.
Yu MK, Kramer M, Dutkowski J, Srivas R, Licon K, Kreisberg JF, Ng CT, Krogan N, Sharan
R, Ideker T: Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell systems 2016, 2(2):77-88.
19.
Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J: Using activation status of signaling pathways as mechanism-based biomarkers to predict
drug sensitivity. Scientific reports 2015, 5:18494.
20.
Çubuk C, Hidalgo MR, Amadoz A, Rian K, Salavert F, Pujana MA, Mateo F, Herranz C,
Carbonell-Caballero J, Dopazo J et al: Differential metabolic activity and discovery of therapeutic targets using summarized
metabolic pathway models. NPJ Systems Biology 2019, 5(1):7.
21.
Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J: High throughput estimation of functional cell activities reveals disease mechanisms
and predicts relevant clinical outcomes. Oncotarget 2017, 8(3):5160-5178.
22.
Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, Carbonell-Caballero
J, Dopazo J: Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer research 2018, 78(21):6059-6072.
23.
Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, Munoz AG, Pilkington
R, Fischer M, Westermann F et al: Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity
predict the survival of neuroblastoma patients. Sci Signal 2015, 8(408):ra130.
24.
Hidalgo MR, Amadoz A, Cubuk C, Carbonell-Caballero J, Dopazo J: Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and
predict disease outcome Biology direct 2018, 13(1):16.
25.
Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, Cero C, Bolan PJ, Dopazo
J, Vidal-Puig A: Stress-induced activation of brown adipose tissue prevents obesity in conditions of
low adaptive thermogenesis. Molecular metabolism 2016, 5(1):19-33.
26.
Ferreira PG, Muñoz-Aguirre M, Reverter F, Godinho CPS, Sousa A, Amadoz A, Sodaei R,
Hidalgo MR, Pervouchine D, Carbonell-Caballero J: The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nature communications 2018, 9(1):490.
27.
Taniguchi T, D'Andrea AD: Molecular pathogenesis of Fanconi anemia: recent progress. Blood 2006, 107(11):4223-4233.
28.
Nakanishi K, Yang Y-G, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang Z-Q, Jasin
M: Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proceedings of the National Academy of Sciences 2005, 102(4):1110-1115.
29.
Walden H, Deans AJ: The Fanconi anemia DNA repair pathway: structural and functional insights into a complex
disorder. Annual review of biophysics 2014, 43:257-278.
30.
Vanderwerf SM, Svahn J, Olson S, Rathbun RK, Harrington C, Yates J, Keeble W, Anderson
DC, Anur P, Pereira NF et al: TLR8-dependent TNF-(alpha) overexpression in Fanconi anemia group C cells. Blood 2009, 114(26):5290-5298.
31.
Minguillón J, Surrallés J: Therapeutic research in the crystal chromosome disease Fanconi anemia. Mutation Research 2018, 836:104-108.
32.
Simoens S, Cassiman D, Dooms M, Picavet E: Orphan Drugs for Rare Diseases. Drugs 2012, 72(11):1437-1443.
33.
Ashburn TT, Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 2004, 3(8):673.
34.
Delavan B, Roberts R, Huang R, Bao W, Tong W, Liu Z: Computational drug repositioning for rare diseases in the era of precision medicine. Drug discovery today 2017.
35.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C,
Sayeeda Z: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 2017, 46(D1):D1074-D1082.
36.
Rani J, Shah AR, Ramachandran S: pubmed. mineR: An R package with text-mining algorithms to analyse PubMed abstracts. Journal of biosciences 2015, 40(4):671-682.
37.
Tomida J, Takata K-i, Lange SS, Schibler AC, Yousefzadeh MJ, Bhetawal S, Dent SY,
Wood RD: REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian
DNA polymerase ζ. Nucleic acids research 2015, 43(2):1000-1011.
38.
Elia AE, Wang DC, Willis NA, Boardman AP, Hajdu I, Adeyemi RO, Lowry E, Gygi SP, Scully
R, Elledge SJ: RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Molecular cell 2015, 60(2):280-293.
39.
Tambini CE, Spink KG, Ross CJ, Hill MA, Thacker J: The importance of XRCC2 in RAD51-related DNA damage repair. DNA repair 2010, 9(5):517-525.
40.
Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ: The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA
repair. Molecular cell 2004, 15(4):607-620.
41.
Tonzi P, Yin Y, Lee CWT, Rothenberg E, Huang TT: Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. eLife 2018, 7:e41426.
42.
Niu X, Chen W, Bi T, Lu M, Qin Z, Xiao W: Rev1 plays central roles in mammalian DNA‐damage tolerance in response to UV irradiation. The FEBS journal 2019.
43.
Daino K, Imaoka T, Morioka T, Tani S, Iizuka D, Nishimura M, Shimada Y: Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis. PloS one 2013, 8(9):e74013.
44.
Nepomuceno T, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro A, Carvalho
M: The role of PALB2 in the DNA damage response and cancer predisposition. International journal of molecular sciences 2017, 18(9):1886.
45.
Foo TK, Tischkowitz M, Simhadri S, Boshari T, Zayed N, Burke KA, Berman SH, Blecua
P, Riaz N, Huo Y: Compromised BRCA1–PALB2 interaction is associated with breast cancer risk. Oncogene 2017, 36(29):4161.
46.
Folias A, Matkovic M, Bruun D, Reid S, Hejna J, Grompe M, D'andrea A, Moses R: BRCA1 interacts directly with the Fanconi anemia protein FANCA. Human molecular genetics 2002, 11(21):2591-2597.
47.
Raghunandan M, Chaudhury I, Kelich SL, Hanenberg H, Sobeck A: FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently
of the Fanconi Anemia core complex. Cell cycle 2015, 14(3):342-353.
49.
Chacón‐Solano E, León C, Díaz F, García‐García F, García M, Escámez M, Guerrero‐Aspizua
S, Conti C, Mencía Á, Martínez‐Santamaría L: Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks
in three cancer‐prone genodermatoses. J British Journal of Dermatology 2019, In press.
50.
Amadoz A, Hidalgo MR, Çubuk C, Carbonell-Caballero J, Dopazo J: A comparison of mechanistic signaling pathway activity analysis methods. Briefings in bioinformatics 2018, Advanced publication.
51.
Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA: The role of DNA repair in brain related disease pathology. DNA repair 2013, 12(8):578-587.
52.
Sebastian-Leon P, Vidal E, Minguez P, Conesa A, Tarazona S, Amadoz A, Armero C, Salavert
F, Vidal-Puig A, Montaner D et al: Understanding disease mechanisms with models of signaling pathway activities. BMC Syst Biol 2014, 8(1):121.
53.
Breiman L: Random Forests. Machine Learning 2001, 45:5-32.
54.
Boulesteix AL, Janitza S, Kruppa J, König IR, Discovery K: Overview of random forest methodology and practical guidance with emphasis on computational
biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining 2012, 2(6):493-507.
55.
Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP, intelligence m: A comparison of decision tree ensemble creation techniques. IEEE transactions on pattern analysis 2007, 29(1):173-180.
56.
Qi Y: Random forest for bioinformatics. In: Ensemble machine learning. Springer; 2012: 307-323.
57.
Díaz-Uriarte R, De Andres SA: Gene selection and classification of microarray data using random forest. BMC bioinformatics 2006, 7(1):3.
58.
Wang Y, Goh W, Wong L, Montana G: Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging
phenotypes. BMC bioinformatics 2013, 14(16):S6.
59.
Bergstra JS, Bardenet R, Bengio Y, Kégl B: Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems: 2011. 2546-2554.
60.
Segal MR: Tree-structured methods for longitudinal data. Journal of the American Statistical Association 1992, 87(418):407-418.
61.
Strobl C, Boulesteix A-L, Zeileis A, Hothorn T: Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics 2007, 8(1):25.
62.
Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim S-T, Lane WS,
Kastan MB, D'Andrea AD: Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways. Cell 2002, 109(4):459-472.
63.
Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A,
D’Andrea AD: Fanconi anemia pathway–deficient tumor cells are hypersensitive to inhibition of ataxia
telangiectasia mutated. The Journal of Clinical Investigation 2007, 117(5):1440-1449.
64.
Balta G, Patiroglu T, Gumruk F: Fanconi Anemia and Ataxia Telangiectasia in Siblings who Inherited Unique Combinations
of Novel FANCA and ATM Null Mutations. J Pediatr Hematol Oncol 2019, 41(3):243-246.
65.
Moniz L, Dutt P, Haider N, Stambolic V: Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Division 2011, 6(1):18.
66.
Fletcher L, Cerniglia GJ, Nigg EA, Yen TJ, Muschel RJ: Inhibition of Centrosome Separation after DNA Damage: A Role for Nek2. Radiat Res 2004, 162(2):128-135.
67.
Mi J, Guo C, Brautigan DL, Larner JM: Protein Phosphatase-1α Regulates Centrosome Splitting through Nek2. Cancer Res 2007, 67(3):1082-1089.
68.
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V: Update of the human and mouse Fanconi anemia genes. Human Genomics 2015, 9(1):32.
69.
Leo AD, Desmedt C, Bartlett JMS, Piette F, Ejlertsen B, Pritchard KI, Larsimont D,
Poole C, Isola J, Earl H et al: HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens
as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. The lancet oncology 2011, 12(12):1134-1142.
70.
Mjelle R, Hegre SA, Aas PA, Slupphaug G, Drabløs F, Sætrom P, Krokan HE: Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA repair 2015, 30:53-67.
71.
Sønderstrup IMH, Nygård SB, Poulsen TS, Linnemann D, Stenvang J, Nielsen HJ, Bartek
J, Brünner N, Nørgaard P, Riis L: Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient
colorectal cancers. Molecular Oncology 2015, 9(6):1207-1217.
72.
Troiano G, Guida A, Aquino G, Botti G, Losito NS, Papagerakis S, Pedicillo MC, Ionna
F, Longo F, Cantile M et al: Integrative Histologic and Bioinformatics Analysis of BIRC5/Survivin Expression in
Oral Squamous Cell Carcinoma. Int J Mol Sci 2018, 19(9):2664.
73.
Conde M, Michen S, Wiedemuth R, Klink B, Schröck E, Schackert G, Temme A: Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity
of glioma cells. BMC Cancer 2017, 17(1):889.
74.
Gorska-Ponikowska M, Perricone U, Kuban-Jankowska A, Lo Bosco G, Barone G: 2-methoxyestradiol impacts on amino acids-mediated metabolic reprogramming in osteosarcoma
cells by its interaction with NMDA receptor. J Cell Physiol 2017, 232(11):3030-3049.
75.
Kotoula V, Krikelis D, Karavasilis V, Koletsa T, Eleftheraki AG, Televantou D, Christodoulou
C, Dimoudis S, Korantzis I, Pectasides D et al: Expression of DNA repair and replication genes in non-small cell lung cancer (NSCLC):
a role for thymidylate synthetase (TYMS). BMC Cancer 2012, 12(1):342.
76.
Burdelski C, Strauss C, Tsourlakis MC, Kluth M, Hube-Magg C, Melling N, Lebok P, Minner
S, Koop C, Graefen M et al: Overexpression of thymidylate synthase (TYMS) is associated with aggressive tumor
features and early PSA recurrence in prostate cancer. Oncotarget 2015, 6(10):8377-8387.
77.
Weekes CD, Nallapareddy S, Rudek MA, Norris-Kirby A, Laheru D, Jimeno A, Donehower
RC, Murphy KM, Hidalgo M, Baker SD et al: Thymidylate synthase (TYMS) enhancer region genotype-directed phase II trial of oral
capecitabine for 2nd line treatment of advanced pancreatic cancer. Investigational New Drugs 2011, 29(5):1057-1065.
78.
Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, Carroll WL: Epigenetic reprogramming reverses the relapse-specific gene expression signature and
restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012, 119(22):5201.
79.
Zhang T, Du W, Wilson AF, Namekawa SH, Andreassen PR, Meetei AR, Pang Q: Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Scientific reports 2017, 7:45626.
80.
Burdon C, Mann C, Cindrova-Davies T, Ferguson-Smith AC, Burton GJ: Oxidative Stress and the Induction of Cyclooxygenase Enzymes and Apoptosis in the
Murine Placenta. Placenta 2007, 28(7):724-733.
81.
Benítez-Rangel E, García L, Namorado MC, Reyes JL, Guerrero-Hernández A: Ion channel inhibitors block caspase activation by mechanisms other than restoring
intracellular potassium concentration. Cell Death &Amp; Disease 2011, 2:e113.
82.
Ding L, Gu H, Lan Z, Lei Q, Wang W, Ruan J, Yu M, Lin J, Cui Q: Downregulation of cyclooxygenase‑1 stimulates mitochondrial apoptosis through the NF‑κB signaling pathway in colorectal cancer cells. Oncology Reports 2019, 41(1):559-569.
83.
Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani
C, Cappelli E, Casciari C et al: Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance
and DNA repair. The Journal of Clinical Investigation 2003, 112(11):1751-1761.
84.
Stanage TH, Page AN, Cox MM: DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nucleic Acids Research 2017, 45(5):2724-2735.
85.
Parmar K, D’Andrea A, Niedernhofer LJJ: Mouse models of Fanconi anemia. Mutation Research 2009, 668(1-2):133-140.
86.
Liu G-H, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang
W et al: Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived
iPSCs. Nature Communications 2014, 5:4330.
87.
Rio P, Baños R, Lombardo A, Quintana‐Bustamante O, Alvarez L, Garate Z, Genovese P,
Almarza E, Valeri A, Díez B et al: Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Molecular Medicine 2014, 6(6):835-848.
88.
Ryall KA, Tan AC: Systems biology approaches for advancing the discovery of effective drug combinations. Journal of cheminformatics 2015, 7(1):7.
89.
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z: A survey of current trends in computational drug repositioning. Briefings in bioinformatics 2015, 17(1):2-12.
90.
Hurle M, Yang L, Xie Q, Rajpal D, Sanseau P, Agarwal P, Therapeutics: Computational drug repositioning: from data to therapeutics. Clinical Pharmacology 2013, 93(4):335-341.
91.
Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF,
Tubelli AA, Asiedu JK et al: A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171(6):1437-1452.e1417.
92.
Regan-Fendt KE, Xu J, DiVincenzo M, Duggan MC, Shakya R, Na R, Carson WE, Payne PRO,
Li F: Synergy from gene expression and network mining (SynGeNet) method predicts synergistic
drug combinations for diverse melanoma genomic subtypes. npj Systems Biology and Applications 2019, 5(1):6.
93.
Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X: Deep learning in bioinformatics: introduction, application, and perspective in big
data era. arXiv 2019:1603.04467.
94.
Min S, Lee B, Yoon S: Deep learning in bioinformatics. Briefings in bioinformatics 2017, 18(5):851-869.
95.
Eraslan G, Avsec Ž, Gagneur J, Theis FJ: Deep learning: new computational modelling techniques for genomics. Nature Reviews Genetics 2019:1.
96.
Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A: A primer on deep learning in genomics. Nature genetics 2018:1.
97.
Pavan S, Rommel K, Marquina MEM, Höhn S, Lanneau V, Rath A: Clinical practice guidelines for rare diseases: the orphanet database. PloS one 2017, 12(1):e0170365.
98.
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia
F, Young N: The genotype-tissue expression (GTEx) project. Nature genetics 2013, 45(6):580.
99.
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 2010, 26(1):139-140.
100.
Bolstad BM, Irizarry RA, Åstrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics 2003, 19(2):185-193.
101.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer
P, Weiss R, Dubourg V: Scikit-learn: Machine learning in Python. Journal of machine learning research 2011, 12(Oct):2825-2830.
102.
Bergstra J, Yamins D, Cox DD: Hyperopt: A python library for optimizing the hyperparameters of machine learning
algorithms. In: Proceedings of the 12th Python in science conference: 2013. Citeseer: 13-20.
103.
Wolpert DH, Macready WG: No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1997, 1(1):67-82.
104.
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan AJBB: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. 2013, 14(1):128.
105.
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins
SL, Jagodnik KM, Lachmann A et al: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 2016, 44(W1):W90-W97.
106.
Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma’ayan
A: Massive mining of publicly available RNA-seq data from human and mouse. Nature Communications 2018, 9(1):1366.