1 Schirinzi, T. et al. Phenomenology and clinical course of movement disorder in GNAO1 variants: Results from an analytical review. Parkinsonism Relat Disord 61, 19-25, doi:10.1016/j.parkreldis.2018.11.019 (2019).
2 Kelly, M. et al. Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region. Epilepsia 60, 406-418, doi:10.1111/epi.14653 (2019).
3 Axeen, E. et al. Results of the First GNAO1-Related Neurodevelopmental Disorders Caregiver Survey. Pediatr Neurol 121, 28-32, doi:10.1016/j.pediatrneurol.2021.05.005 (2021).
4 Nakamura, K. et al. De Novo mutations in GNAO1, encoding a Galphao subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 93, 496-505, doi:10.1016/j.ajhg.2013.07.014 (2013).
5 Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery 16, 829-842, doi:10.1038/nrd.2017.178 (2017).
6 Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9, 60-71 (2008).
7 Ross, E. M. & Wilkie, T. M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69, 795-827 (2000).
8 Lin, C. et al. Double suppression of the Galpha protein activity by RGS proteins. Mol Cell 53, 663-671, doi:10.1016/j.molcel.2014.01.014 (2014).
9 Knight, K. M. et al. A universal allosteric mechanism for G protein activation. Mol Cell 81, 1384-1396.e1386, doi:10.1016/j.molcel.2021.02.002 (2021).
10 Benato, A. et al. Long-term effect of subthalamic and pallidal deep brain stimulation for status dystonicus in children with methylmalonic acidemia and GNAO1 mutation. J Neural Transm (Vienna) 126, 739-757, doi:10.1007/s00702-019-02010-2 (2019).
11 Solis, G. P. et al. Pediatric encephalopathy: clinical, biochemical and cellular in-sights into the role of Gln52 of GNAO1 and GNAI1 for the dom-inant disease. under review (2021).
12 Larrivee, C. L. et al. Mice with GNAO1 R209H Movement Disorder Variant Display Hyperlocomotion Alleviated by Risperidone. J Pharmacol Exp Ther 373, 24-33, doi:10.1124/jpet.119.262733 (2020).
13 Solis, G. P. et al. Golgi-Resident Galphao Promotes Protrusive Membrane Dynamics. Cell 170, 939-955, doi:10.1016/j.cell.2017.07.015 (2017).
14 Purvanov, V., Koval, A. & Katanaev, V. L. A direct and functional interaction between Go and Rab5 during G protein-coupled receptor signaling. Science signaling 3, ra65, doi:10.1126/scisignal.2000877 (2010).
15 Egger-Adam, D. & Katanaev, V. L. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 239, 168-183, doi:10.1002/dvdy.22060 (2010).
16 Kopein, D. & Katanaev, V. L. Drosophila GoLoco-protein pins is a target of Galpha(o)-mediated G protein-coupled receptor signaling. Mol Biol Cell 20, 3865-3877, doi:10.1091/mbc.E09-01-0021 (2009).
17 Seguin, L. et al. Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells. Commun Biol 4, 718, doi:10.1038/s42003-021-02258-z (2021).
18 Chinn, I. K. et al. Short stature and combined immunodeficiency associated with mutations in RGS10. Science Signaling 14, eabc1940, doi:10.1126/scisignal.abc1940 (2021).
19 Solis, G. P. & Katanaev, V. L. Gαo (GNAO1) encephalopathies: plasma membrane vs. Golgi functions. Oncotarget 9, 23846-23847, doi:10.18632/oncotarget.22067 (2018).
20 Coleman, D. E. et al. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412 (1994).
21 Iiri, T., Farfel, Z. & Bourne, H. R. Conditional activation defect of a human Gsalpha mutant. Proc Natl Acad Sci U S A 94, 5656-5661, doi:10.1073/pnas.94.11.5656 (1997).
22 Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature 372, 276-279, doi:10.1038/372276a0 (1994).
23 Kimple, A. J., Bosch, D. E., Giguere, P. M. & Siderovski, D. P. Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 63, 728-749, doi:10.1124/pr.110.003038 (2011).
24 Slep, K. C. et al. Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation. Proc Natl Acad Sci U S A 105, 6243-6248 (2008).
25 Barnett, B. L., Kretschmar, H. C. & Hartman, F. A. Structural characterization of bis(N-oxopyridine-2-thionato)zinc(II). Inorganic Chemistry 16, 1834-1838, doi:10.1021/ic50174a002 (1977).
26 Faergemann, J. Management of seborrheic dermatitis and pityriasis versicolor. Am J Clin Dermatol 1, 75-80, doi:10.2165/00128071-200001020-00001 (2000).
27 Zhao, C. et al. Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget 8 (2017).
28 Park, M., Cho, Y.-J., Lee, Y. W. & Jung, W. H. Understanding the Mechanism of Action of the Anti-Dandruff Agent Zinc Pyrithione against Malassezia restricta. Scientific reports 8, 12086-12086, doi:10.1038/s41598-018-30588-2 (2018).
29 Qiu, M. et al. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation. Antiviral Res 100, 44-53, doi:10.1016/j.antiviral.2013.07.001 (2013).
30 Sekler, I., Sensi, S. L., Hershfinkel, M. & Silverman, W. F. Mechanism and Regulation of Cellular Zinc Transport. Molecular Medicine 13, 337-343, doi:10.2119/2007-00037.Sekler (2007).
31 Ding, W.-Q. & Lind, S. E. Metal ionophores – An emerging class of anticancer drugs. IUBMB Life 61, 1013-1018, doi:https://doi.org/10.1002/iub.253 (2009).
32 Dudev, T. & Lim, C. Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Chemical Reviews 103, 773-788, doi:10.1021/cr020467n (2003).
33 Chen, M. et al. Anti-tumour activity of zinc ionophore pyrithione in human ovarian cancer cells through inhibition of proliferation and migration and promotion of lysosome-mitochondrial apoptosis. Artificial Cells, Nanomedicine, and Biotechnology 48, 824-833, doi:10.1080/21691401.2020.1770266 (2020).
34 Carraway, R. E. & Dobner, P. R. Zinc pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823, 544-557, doi:https://doi.org/10.1016/j.bbamcr.2011.09.013 (2012).
35 Koh, J. Y. & Choi, D. W. Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-d-aspartate receptors. Neuroscience 60, 1049-1057, doi:https://doi.org/10.1016/0306-4522(94)90282-8 (1994).
36 Mohr, S. E. First in fly : Drosophila research and biological discovery. (Harvard University Press, 2018).
37 Savitsky, M., Solis, G. P., Kryuchkov, M. & Katanaev, V. L. Humanization of Drosophila Gαo to Model GNAO1 Paediatric Encephalopathies. Biomedicines 8, 395, doi:10.3390/biomedicines8100395 (2020).
38 Bateman, J. R., Lee, A. M. & Wu, C.-t. Site-Specific Transformation of Drosophila via ϕC31 Integrase-Mediated Cassette Exchange. Genetics 173, 769-777, doi:10.1534/genetics.106.056945 (2006).
39 da Silva, L. E. M. et al. Zinc supplementation combined with antidepressant drugs for treatment of patients with depression: a systematic review and meta-analysis. Nutr Rev 79, 1-12, doi:10.1093/nutrit/nuaa039 (2021).
40 Doboszewska, U. et al. Zinc signaling and epilepsy. Pharmacology & therapeutics 193, 156-177, doi:https://doi.org/10.1016/j.pharmthera.2018.08.013 (2019).
41 Grabrucker, A. M., Rowan, M. & Garner, C. C. Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. Drug Deliv Lett 1, 13-23, doi:10.2174/2210303111101010013 (2011).
42 Cherasse, Y. & Urade, Y. Dietary Zinc Acts as a Sleep Modulator. International Journal of Molecular Sciences 18, 2334 (2017).
43 Brion, L. P., Heyne, R. & Lair, C. S. Role of zinc in neonatal growth and brain growth: review and scoping review. Pediatric Research 89, 1627-1640, doi:10.1038/s41390-020-01181-z (2021).
44 Qin, Q., Wang, X. & Zhou, B. Functional studies of Drosophilazinc transporters reveal the mechanism for dietary zinc absorption and regulation. BMC Biology 11, 101, doi:10.1186/1741-7007-11-101 (2013).
45 Fliss, H. Zinc Ionophores as Anti-Stress Agent. International Patent WO 02/080943 (2002).
46 Muntean, B. S. et al. Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep 34, 108718, doi:10.1016/j.celrep.2021.108718 (2021).
47 Nowak, G., Siwek, M., Dudek, D., Zieba, A. & Pilc, A. Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55, 1143-1147 (2003).
48 Salari, S., Khomand, P., Arasteh, M., Yousefzamani, B. & Hassanzadeh, K. Zinc sulphate: A reasonable choice for depression management in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial. Pharmacological Reports 67, 606-609, doi:10.1016/j.pharep.2015.01.002 (2015).
49 Gibson, R. S., King, J. C. & Lowe, N. A Review of Dietary Zinc Recommendations. Food Nutr Bull 37, 443-460, doi:10.1177/0379572116652252 (2016).
50 Duan, M. et al. Zinc nutrition and dietary zinc supplements. Crit Rev Food Sci Nutr, 1-16, doi:10.1080/10408398.2021.1963664 (2021).
51 Frederickson, C. J., Koh, J. Y. & Bush, A. I. The neurobiology of zinc in health and disease. Nat Rev Neurosci 6, 449-462, doi:10.1038/nrn1671 (2005).
52 Udechukwu, M. C., Collins, S. A. & Udenigwe, C. C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & function 7, 4137-4144, doi:10.1039/c6fo00706f (2016).
53 Lye, J. C. et al. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster. J Exp Biol 215, 3254-3265, doi:10.1242/jeb.069260 (2012).
54 Kable, M. E. et al. The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon. PLoS One 15, e0239681, doi:10.1371/journal.pone.0239681 (2020).
55 McAllister, B. B., Bihelek, N., Mychasiuk, R. & Dyck, R. H. Brain-derived Neurotrophic Factor and TrkB Levels in Mice that Lack Vesicular Zinc: Effects of Age and Sex. Neuroscience 425, 90-100, doi:10.1016/j.neuroscience.2019.11.009 (2020).
56 Thackray, S. E., McAllister, B. B. & Dyck, R. H. Behavioral characterization of female zinc transporter 3 (ZnT3) knockout mice. Behav Brain Res 321, 36-49, doi:10.1016/j.bbr.2016.12.028 (2017).
57 Pound, L. D. et al. The physiological effects of deleting the mouse SLC30A8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 7, e40972, doi:10.1371/journal.pone.0040972 (2012).
58 Abdelnour, S. A. et al. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles. Animals (Basel) 11, doi:10.3390/ani11071916 (2021).
59 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-w303, doi:10.1093/nar/gky427 (2018).
60 Handing, K. B. et al. Characterizing metal-binding sites in proteins with X-ray crystallography. Nat Protoc 13, 1062-1090, doi:10.1038/nprot.2018.018 (2018).
61 Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25, doi:https://doi.org/10.1016/j.softx.2015.06.001 (2015).
62 Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. 3-27 (Springer International Publishing).
63 Solis, G. P. et al. Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo. bioRxiv, 2020.2008.2025.266692, doi:10.1101/2020.08.25.266692 (2021).
64 Katoh, Y., Nozaki, S., Hartanto, D., Miyano, R. & Nakayama, K. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. Journal of cell science 128, 2351-2362, doi:10.1242/jcs.168740 (2015).
65 Gratz, S. J. et al. Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in <em>Drosophila</em>. Genetics 196, 961-971, doi:10.1534/genetics.113.160713 (2014).
66 Gloor, G. B. et al. Type I repressors of P element mobility. Genetics 135, 81-95 (1993).
67 Linford, N. J., Bilgir, C., Ro, J. & Pletcher, S. D. Measurement of lifespan in Drosophila melanogaster. J Vis Exp, doi:10.3791/50068 (2013).