1 Hassler, M., Shaltiel, I. A. & Haering, C. H. Towards a Unified Model of SMC Complex Function. Curr Biol 28, R1266-R1281, doi:10.1016/j.cub.2018.08.034 (2018).
2 Hirano, T. SMC protein complexes and higher-order chromosome dynamics. Curr Opin Cell Biol 10, 317-322, doi:10.1016/s0955-0674(98)80006-9 (1998).
3 Dowen, J. M. & Young, R. A. SMC complexes link gene expression and genome architecture. Curr Opin Genet Dev 25, 131-137, doi:10.1016/j.gde.2013.11.009 (2014).
4 Wu, N. & Yu, H. The Smc complexes in DNA damage response. Cell Biosci 2, 5, doi:10.1186/2045-3701-2-5 (2012).
5 Aragon, L. The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance Relative. Annu Rev Genet 52, 89-107, doi:10.1146/annurev-genet-120417-031353 (2018).
6 van Ruiten, M. S. & Rowland, B. D. SMC Complexes: Universal DNA Looping Machines with Distinct Regulators. Trends Genet 34, 477-487, doi:10.1016/j.tig.2018.03.003 (2018).
7 Freeman, L., Aragon-Alcaide, L. & Strunnikov, A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149, 811-824, doi:10.1083/jcb.149.4.811 (2000).
8 Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109-121, doi:10.1016/s0092-8674(03)00724-4 (2003).
9 Hirano, T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26, 1659-1678, doi:10.1101/gad.194746.112 (2012).
10 Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, doi:10.1126/science.aao6135 (2018).
11 Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600-3618, doi:10.15252/embj.201798083 (2017).
12 Rao, S. S. P. et al. Cohesin Loss Eliminates All Loop Domains. Cell 171, 305-320 e324, doi:10.1016/j.cell.2017.09.026 (2017).
13 Dekker, J. & Mirny, L. The 3D Genome as Moderator of Chromosomal Communication. Cell 164, 1110-1121, doi:10.1016/j.cell.2016.02.007 (2016).
14 Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102-105, doi:10.1126/science.aar7831 (2018).
15 Kong, M. et al. Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA. Mol Cell 79, 99-114 e119, doi:10.1016/j.molcel.2020.04.026 (2020).
16 Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345-1349, doi:10.1126/science.aaz4475 (2019).
17 Eeftens, J. M. et al. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. EMBO J 36, 3448-3457, doi:10.15252/embj.201797596 (2017).
18 Lee, B. G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nat Struct Mol Biol 27, 743-751, doi:10.1038/s41594-020-0457-x (2020).
19 Stigler, J., Camdere, G. O., Koshland, D. E. & Greene, E. C. Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin. Cell Rep 15, 988-998, doi:10.1016/j.celrep.2016.04.003 (2016).
20 Garcia-Luis, J. et al. FACT mediates cohesin function on chromatin. Nat Struct Mol Biol 26, 970-979, doi:10.1038/s41594-019-0307-x (2019).
21 Shintomi, K., Takahashi, T. S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol 17, 1014-1023, doi:10.1038/ncb3187 (2015).
22 Gutierrez-Escribano, P. et al. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci Adv 5, eaay6804, doi:10.1126/sciadv.aay6804 (2019).
23 Sonn-Segev, A. et al. Quantifying the heterogeneity of macromolecular machines by mass photometry. Nat Commun 11, 1772, doi:10.1038/s41467-020-15642-w (2020).
24 Strick, T. R., Kawaguchi, T. & Hirano, T. Real-time detection of single-molecule DNA compaction by condensin I. Curr Biol 14, 874-880, doi:10.1016/j.cub.2004.04.038 (2004).
25 Zhao, R. & Rueda, D. RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49, 112-117, doi:10.1016/j.ymeth.2009.04.017 (2009).
26 Mora, M., Stannard, A. & Garcia-Manyes, S. The nanomechanics of individual proteins. Chem Soc Rev 49, 6816-6832, doi:10.1039/d0cs00426j (2020).
27 Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672-676, doi:10.1126/science.aan6516 (2017).
28 Kschonsak, M. et al. Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes. Cell 171, 588-600 e524, doi:10.1016/j.cell.2017.09.008 (2017).
29 Hassler, M. et al. Structural Basis of an Asymmetric Condensin ATPase Cycle. Mol Cell 74, 1175-1188 e1179, doi:10.1016/j.molcel.2019.03.037 (2019).
30 Spakman, D., King, G. A., Peterman, E. J. G. & Wuite, G. J. L. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Sci Rep 10, 9903, doi:10.1038/s41598-020-66259-4 (2020).
31 Leonard, J. et al. Condensin Relocalization from Centromeres to Chromosome Arms Promotes Top2 Recruitment during Anaphase. Cell Rep 13, 2336-2344, doi:10.1016/j.celrep.2015.11.041 (2015).
32 Ryu, J. K. et al. The condensin holocomplex cycles dynamically between open and collapsed states. Nat Struct Mol Biol 27, 1134-1141, doi:10.1038/s41594-020-0508-3 (2020).
33 Burmann, F. et al. A folded conformation of MukBEF and cohesin. Nat Struct Mol Biol 26, 227-236, doi:10.1038/s41594-019-0196-z (2019).
34 Newton, M. D., Fairbanks, S. D., Thomas, J. A. & Rueda, D. S. A Minimal Load-and-Lock Ru(II) Luminescent DNA Probe. Angew Chem Int Ed Engl 60, 20952-20959, doi:10.1002/anie.202108077 (2021).
35 Chen, P. et al. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level. Mol Cell 71, 284-293 e284, doi:10.1016/j.molcel.2018.06.020 (2018).
36 Formosa, T. & Winston, F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 48, 11929-11941, doi:10.1093/nar/gkaa912 (2020).
37 Liu, Y. et al. FACT caught in the act of manipulating the nucleosome. Nature 577, 426-431, doi:10.1038/s41586-019-1820-0 (2020).
38 Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat Struct Mol Biol 18, 894-901, doi:10.1038/nsmb.2087 (2011).
39 Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C. & Nasmyth, K. Sister DNA Entrapment between Juxtaposed Smc Heads and Kleisin of the Cohesin Complex. Mol Cell 75, 224-237 e225, doi:10.1016/j.molcel.2019.05.023 (2019).