
An Expedient Approach Towards Statistical Analysis
of Formalin Business Policy Using Design of
Experiment in a Petrocomplex Plant in India
Anupam Mukherjee 

ARCL Organics Ltd.
Kunal Roy 

Hindcon Chemicals Ltd.
Dipak Kumar Jana  (  dipakjana@gmail.com )

Indian Institute of Engineering Science and Technology,Shibpur https://orcid.org/0000-0003-2297-
6576
Pijus Khatua 

Haldia Institute of Technology

Research Article

Keywords: Formalin, Process system engineering, Design of experiment, Response surface methodology,
Statistical optimization

Posted Date: October 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-901581/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-901581/v1
mailto:dipakjana@gmail.com
https://orcid.org/0000-0003-2297-6576
https://doi.org/10.21203/rs.3.rs-901581/v1
https://creativecommons.org/licenses/by/4.0/


1 

 

An expedient approach towards statistical analysis of formalin business 1 

policy using design of experiment in a petrocomplex plant in India 2 

Anupam Mukherjeea,#, Kunal Royb,#, Dipak Kumar Janac,*, Pijus Kanti Khatuad,* 
3 

aFormaldehyde and Liquid Resins Unit, ARCL Organics Ltd., Kolkata-700141, India 4 

bProduction & Sales Unit, Hindcon Chemicals Ltd., Vasudha- 62B, Braunfeld Row, Kolkata-5 

700027, India 6 

cSchool of Applied Sciences, Department of Mathematics, Haldia Institute of Technology, 7 

Haldia-721657, India 8 

dSchool of Applied Sciences, Department of Chemistry, Haldia Institute of Technology, 9 

Haldia-721657, India 10 

# Contributed Equally 11 

 12 

Abstract: Due to civilization, solvent-based paints are abundantly used for painting. Typical 13 

solvents include raw Methanol, Ethanol, cellosolve, Amylacetate, and Xylene. After painting, 14 

these huge raw solvents are emitted into the atmosphere, which continuously pollutes our 15 

environment. Global environment consciousness induced scientists to use aqua-based paints 16 

as it never emits harmful material in the atmosphere. Formaldehyde is one of the major 17 

components used to produce aqua-based thermosetting resin adhesives, used worldwide in the 18 

paints and panel industries. Perceiving the current state of formaldehyde production, 19 

development, applications in industrial sectors and demand in the trading industry, a new 20 

approach has been envisaged to revitalize the quality of formalin/formaldehyde in 21 

petrocomplex plants by the unique design of experiment model based on the collected data. 22 

The superiority of formalin depends on some primary constraints such as specific gravity, 23 

acid value and solid content of the product. The parameters which control the primary quality 24 

measuring constraints are methanol flow-rate, air-supply, and temperature during the reaction 25 

process. Based on these three inputs and three output parameters a statistical optimization 26 

analysis has been explored with the help of Box-Behnken design by exploring the robustness 27 
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of soft computing tool (RSM) from an industrial engineering perspective with the overall 28 

desirability of 0.744. 29 

Keywords: Formalin; Process system engineering; Design of experiment; Response surface 30 

methodology; Statistical optimization. 31 
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Nomenclature 
 

VOC Volatile organic compound 

WHO World health organization 

RSM Response surface methodology 

ANOVA Analysis of variance 

DOF Design of Experiment 

HCHO Formaldehyde 

V2O5 Vanadium pentoxide 

CH3OH Methanol 

O2 Oxygen 

CO2 Carbon dioxide 

CO Carbon mono-oxide 

C2H4O2 Methyl formate 

CCD Central composite design 

BBD Box-Behnken design 

PRESS Predicted residual error sum of square. 

LOF Lack of fit 

R2 Regression coefficient 
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1. Introduction 52 

Formaldehyde basically comes under the category of volatile organic compounds 53 

(VOCs) having high vapor pressure, low boiling point, as well ashigh reactivity which is well 54 

known in the medical sector due to its very good disinfectant and biocidic properties (Bellat, 55 

et al., 2015; Musee, et al., 2008). Many of these VOCs are classed as airborne contaminants 56 

which may cause skin irritation and cancer etc (Kim, et al., 2011; Wang, et al., 2013; Zhang, 57 

et al., 2017) and also sick building syndrome that has become a grave environmental concern 58 

nowadays(Jeffrey & Lim, 2003; Shin & Song, 2011). Formaldehyde was first discovered by a 59 

Russian chemist, Alexander Butlerov in 1859 and ultimately was identified by German 60 

chemist August Hofmann in 1869 and its manufacture was started at the beginning of the 61 

twentieth century (Fair, 1980). It is well known that VOCs are emitted not only by industries 62 

but also from materials in homes and everyday life(Na, et al., 2018). Formaldehyde is one of 63 

the most common volatile organic pollutants, emits from various building materials including 64 

furniture and household products apart from the process industries(Wang, et al., 2019). It is 65 

now admitted by all the medical authorities that the exposure of animals and humans to 66 

formaldehyde can lead to the cancer (IARC, 2006; Liu, et al., 2019; Zou, et al., 2019; Gong, 67 

et al., 2018; Salthammer, et al., 2017) and also it causes sneezing and coughing, and leads to 68 

acute poisoning, dermal allergies and allergic asthma(Shinohara, et al., 2019); therefore, the 69 

WHO (World Health Organization) has recommended a short-term guideline of 0.1 mg/m3 70 

for a 30 min exposure to prevent sensory irritation in the general population (WHO, 2010; Li, 71 

et al., 2016).This chemical is also used in many other industrial applications. For example, 72 

formaldehyde is a common precursor for the synthesis of various resins(Liu, et al., 2018; 73 

Girods, et al., 2008; Marsal, et al., 2017; Lee, 2012) used in the textile industry, the 74 

automobile sector and more extensively the wood industry for the manufacture of wood-75 

composites as plywood or chipboard (Bellat, et al., 2015; Jeong, et al., 2019). 76 
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Application of formaldehyde is based on its quality, which is tuned by its properties, 77 

like specific gravity, solid content, and acid value. To find out the quality of formalin (37% 78 

formaldehyde+water)(Cheung & Lam, 2017) by tuning the quality parameters of 79 

formaldehyde, a statistical analysis has been approached to design the parameters using 80 

response surface model.The quality of the formalin solution depends on the materials and 81 

applied conditions used to synthesize it that is considered to be the input variables and the 82 

characteristics of the final product that are considered to be the output variables. The classical 83 

method of optimization shows an inability to understand complex interactions between the 84 

variables and the response (Hamsaveni, et al., 2001; Soo, et al., 2004). Response surface 85 

methodology is one of the most predominantly used statistical tools touted for the 86 

optimization of several unpredictable influential interaction parameters simultaneously at a 87 

time (Ahmad, et al., 2019; Mirzaei, et al., 2018; Vebber, et al., 2019; Mohammadi, et al., 88 

2019; Jaafari &Yaghmaeian, 2019). The main objective of using this particular analytical 89 

methodology is to optimize the system response based on the parameters influencing the 90 

process/system (Kim, et al., 2019; Montgomery, 1997; Myers & Montgomery, 2002; 91 

Abdulgader, et al., 2019; Gong, et al., 2019). The major advantages of this methodology are: 92 

(i) Experimental period minimization instead of a full experimental design at equivalent 93 

level(Samarbaf, et al., 2019); (ii) It allows the interaction effects of a factor atvariouslevels; 94 

(iii) It facilitates to acquire the surface outline that provides a good prediction for envisioning 95 

the interaction (Cochran & Cox, 1992; Jana, et al., 2018). The Design-Expert software 96 

package was used to develop the experimental plan for RSM. This software is also used to 97 

analyzethe data collected by performing an analysis of variance (ANOVA). During the 98 

simulation, if the model looks well fitted, then the three-dimensional surface and contour 99 

regions can be plotted for the interpretation of interaction effects while a good model must be 100 

significant and simultaneously the lack-of-fit must be insignificant(Jana, et al., 2018).  101 
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Producing a qualified product with nominal hazardousness and higher safety is always 102 

the pursuit of any chemical process industry by maintaining the quality measuring parameters 103 

of the product. Hence, obtaining finer product economization by providing proper parameter 104 

tuning is imperative and precious during the processing and designing of the plant (Jia, 2016). 105 

In current periods of research, traditional methodologies using deterministic or stochastic 106 

techniques(Mukherjee, et al., 2019; Roy, et al., 2019) have been extensively involved to 107 

recognize the finest/optimum outcomes from the developed model in several industrial 108 

processes (Enriquez, et al., 2011).But during the interpretation of interaction effects between 109 

independent and dependent variables, the relations do not follow explicit formulae in the 110 

practical field in most of the cases (Zhu, et al., 2015). Therefore, univariate investigations are 111 

frequently introduced for the establishment of each parameter’s influence on process 112 

outcomes. The present study deals with the response surface methodology to utilize it in the 113 

evaluation of interaction effects of independent parameters on response parameters by 114 

combining experimental design with statistical analysis qualitatively (Khuri & 115 

Mukhopadhyay, 2010). 116 

The primary aim of this analysis is to conduct a comprehensive quality study that 117 

would lead ultimately to optimum design, in a chemical engineering point of view, of a plant 118 

producing formalin with a specified capacity. This research will take into consideration 119 

features including the entire process flow of plant set up with basic manufacturing steps, 120 

reaction processes and safety precautions due to its high hazardous nature. The main product, 121 

formaldehyde (HCHO) is basically an organic compound in the category of aldehydes at its 122 

simplest form that can act as a baseline for the synthesis of various polymeric resins like 123 

urea-formaldehyde, melamine-formaldehyde, phenol-formaldehyde resins, etc. But the most 124 

extensively produced grade is formalin solution i.e. 37 wt. % of formaldehyde in water. 125 

Following aspects are taken as the main objectives of the study: 126 
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 A new model for formalin production policy in industrial scale has been developed 127 

for the first time using Box-Behnken design. 128 

 Effective parameters controlling/tuning the formalin quality have been recognized. 129 

 Conformational analysis of the quality determining parameters has been employed 130 

using response surface model. 131 

 132 

2. Plant set up and production in brief 133 

The total annual capacity of manufactured formaldehyde in 1998 was approximately 11 134 

billion pounds which were expanded globally in an exponential way reaching a world’s 135 

production of approx. 32 million metric tons by 2012. Compare to the other industrial graded 136 

manufactured materials, formaldehyde is relatively low cost, and high purity and therefore, it 137 

is considered the most widely demanded chemical worldwide. 138 

Methanol from storage is pumped to a vaporizer where the liquid gets converted to 139 

vapor with the exchange of low-pressure steam from the steam drum. Then the vapor is 140 

passed to a heat exchanger where along with fresh air is also passed and with the steam-141 

generating from the reactor end, it is heated up. The much heated air-methanol vapor is then 142 

passed into the reactor for reaction with molybdenum as a catalyst, present in the reactor bed, 143 

the reaction being an exothermic reaction cooled water is jacketed outside the reactor for 144 

controlled reaction to take place. The reaction takes place in the reactor and the gas generated 145 

is then passed into another heat exchanger to cool down the temperature. As the temperature 146 

gets decreased it is then passed into the absorption column where a counter-current 147 

absorption takes place between the formaldehyde gas and the solvent water. The absorption 148 

phenomenon takes place and the final product formalin is generated. Fig.1. represents the 149 

process flow sheet of a formaldehyde production unit. 150 
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 151 

 152 

2.1. Catalytic process 153 

Apart from the catalytic vapour-phase oxidation reaction between methanol and air 154 

(oxygen), catalytic oxidation (Liu, et al., 2019; Zou, et al., 2019)way of synthesis reaction is 155 

also followed in which vanadium pentoxide (V2O5) was first introduced as catalyst during the 156 

formation of formaldehyde from methanol. Further research on this catalysis materials turned 157 

into the development of metal oxide catalysts like ion-molybdenum oxide, silver-based oxide 158 

catalyst, etc in the large scale production of formaldehyde with very high conversion yield. 159 

During the process, vaporized methanol and air are mixed together entering the reactor. 160 

Inside the jacketed heat exchanger reactor, feed is passed through the catalyst introduced 161 

tubes. The composition of formaldehyde in theabsorber outlet is controlled by the amount of 162 

water addition. 163 

 164 

Fig. 1. Typical process flow diagram of formaldehyde production plant indicating 

following symbols: V1-V5: valve 1 to 5; CP1-CP7: centrifugal pump 1 to 7; P1-P2: 

pressure gauge 1 to 2; TC1-TC4: temperature controller 1 to 4. 
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2.2. Reactions dynamics information 165 

Formaldehyde is formed due to the reaction between two main reactants methanol and 166 

air/oxygen. In the reactor, this reaction is carried out through the presence of a catalyst which 167 

is followed by the oxidation of hydrocarbon i.e. methanol at its vapor phase and its 168 

geometrical representation is shown in Fig. 2., while water is produced as a by-product. 169 

 170 

 171 

The molecular interaction between methanol and oxygen of the above method (Fig. 2.) 172 

has been represented in Fig. 3. more precisely through its structural concept and ultimate 173 

formalin production from formaldehyde. 174 

 175 

 176 

Fig. 3. Molecular interaction between methanol and air/oxygen during formaldehyde 

production. 

Fig. 2. Representation of reacting molecules during formaldehyde production reaction. 
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The main reactions involved in the formation of formaldehyde from methanol and 177 

oxygen and it’s major by-products formations are given in following Eqs. (1) and (3) through 178 

kinetic expressions: 179 

𝐶𝐻3𝑂𝐻 + 12 𝑂2 𝑘1→ 𝐻𝐶𝐻𝑂 + 𝐻2𝑂     (1) 180 

Corresponding rate expression is in Eq. (2): 181 −𝑟1 = 𝑘1 𝐶𝐻𝐶𝐻𝑂 .  𝐶𝐻2𝑂𝐶𝐶𝐻3𝑂𝐻 .1 2⁄ 𝐶𝑂2      (2) 182 

𝐶𝐻3𝑂𝐻 𝑘2→ 𝐻𝐶𝐻𝑂 + 𝐻2 ↑      (3) 183 

Corresponding rate expression is in Eq. (4): 184 −𝑟2 = 𝑘2 𝐶𝐻𝐶𝐻𝑂 .  𝐶𝐻2𝐶𝐶𝐻3𝑂𝐻       (4) 185 

where 𝑘1 and 𝑘2 are the rate constants and 𝑟1 and 𝑟2 are the reaction rate values 𝐶𝐻𝐶𝐻𝑂, 186 𝐶𝐶𝐻3𝑂𝐻, 𝐶𝐻2𝑂, and 𝐶𝑂2 are the concentration of formaldehyde, methanol, water, and oxygen 187 

respectively.Excepting the above-mentioned reactions, some undesired by-products are also 188 

generated during the reaction including carbon monoxide (CO), carbon dioxide (CO2), 189 

methylformate (C2H4O2). 190 

2.3. Safety and environmental precautions 191 

It is very well known that formaldehyde is a highly toxic material which can cause fatal 192 

accidents and carcinogenic effect on the entire human body due to ingestion up to 30 ml. It 193 

can range from being toxic, carcinogenic as well as allergenic(Hoque, et al., 2018; 194 

Hodkovicova, et al., 2019; Payani, et al., 2019).Mainly the occupational hazardousness and 195 

side effects depend upon the composition and phase of the material i.e. formaldehyde and 196 

these hazards include headache, sore throat, watery eyes, breathing problem, and often 197 

cancerous in extreme conditions (Munro, et al., 1999; Salk, et al., 1954; UNC, n.d.). 198 

 199 

 200 
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3. Some design factors used in statistical analysis by response surface methodology 201 

3.1. Experimental domain 202 

Before going to the in-depth discussions on the applicability and feasibility of response 203 

surface methodology in analytical optimization methods, it would be pertinent to know about 204 

some basic ground factors of this tool. The experimental domain is basically the boundary of 205 

the analytical field i.e. upper and lower limits/region of the experimental data variables to be 206 

studied. 207 

3.2. Experimental design 208 

It is mainly an explicit set of experimental matrix consists of the various interaction 209 

combinations of the studying variables. During carrying out the experiments, several types of 210 

available designs can be followed. Some of the popular experimental designs are: (a) central 211 

composite design (CCD), (b) Box-Behnken design (BBD), (c) full three-level factorial 212 

design, which are discussed later. Essentially, they differ from each other concerning their 213 

experimental runs and selectivity of experimental points. 214 

3.3. Independent variables 215 

Independent variables are nothing but those experimental variables thatcan be 216 

manipulated or altered with time irrespective of any other factors/parameters. The response or 217 

outcome of a system can be affected by a huge number of independent variables at a time 218 

during the experiment which is never possible to be included at certain time due to some 219 

economic or screening problems and therefore it is necessary to recognize the parameters 220 

having major effects on the system response(Wongkaew, et al., 2016). 221 

3.4. Dependent variables 222 

It is sometimes also termed as response variables i.e. output or outcome of the 223 

experimental system. It is actually the measured values from experiments depending on 224 

which independent variables can be tuned or controlled to optimize the entire process. 225 
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 226 

4. Response surface methodology and robust design 227 

In the present context, a robust experimental design for the prediction of optimum 228 

process parameters has been developed from the plant data. Therefore selection 229 

methodologies of the independent and response variables for the model are also explored in 230 

this section.  231 

4.1. Parameters selection for the statistical analysis using RSM 232 

Formalin i.e. mainly formaldehyde production process comprises a lot of factors at a 233 

time among which the major parameters having the significant effects on the ultimate quality 234 

of the produced formalin are methanol flow, air-flow, and temperature of the reactor. Hence, 235 

these three major parameters are selected as independent variables of the model. 236 

Simultaneously, the grade of the formaldehyde regulates the quality of the formalin i.e. 237 

mixture of 37% formaldehyde and water while the quality of this formaldehyde depends on 238 

the measurement of the acid value, solid content, and specific gravity. Therefore, these three 239 

are selected as response variables.  240 

4.1.1. Methanol flow 241 

Methanol is the most imperative component in the production of formaldehyde and 242 

formalin in pilot-scale along withan industrial scale. The principle concept behind the 243 

production of formaldehyde is the oxidation of methanol through dehydrogenation. Hence, 244 

philosophically the production of formaldehyde is also possible by the oxidation of methane 245 

but this method is not industrially viable due to its very low reactivity compare to methanol. 246 

During the process, flow-rate of methanol has to be maintained to control its vapor phase 247 

reaction and hence control the corresponding acid value and solid content. Since methanol 248 

helps to prevent the polymerization of the final product and therefore also inhibits to convert 249 
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into paraformaldehyde precipitation. In the present study, methanol flow-rate has been varied 250 

over the range of 49000 kg/hr to 51000 kg/hr. 251 

4.1.2. Air-flow 252 

Methanol reacts with oxygen supplied through air-flow at vapor phase at the presence 253 

of metal oxide catalysts and forms formaldehyde which gets dissolved in water to produce 254 

ultimate formalin at a particular concentration. Generally, methanol reacts with air between 255 

300 to 400 oC in the presence of a catalyst. By controlling the inflow of air within the reactor, 256 

the conversion rate can be controlled and also excess air supply can be standardized to 257 

achieve the solid content, specific gravity and acid value at their optimum level which will 258 

lead to the production of high-quality formalin. Our present process has been carried out with 259 

the air-flow of 710 to 1200 kg/hr. 260 

4.1.3. Temperature 261 

In the production of formaldehyde from methanol and air, the temperature needs to be 262 

maintained in the range of 100 to 120 oC to vaporize the entered methanol to reach the 263 

activation energy before reacting with oxygen in presence of a catalyst. The temperature 264 

range should not be crossed the 120 oC because methanol is quite volatile liquid and 265 

flammable and hence at a higher temperature, it may start to degrade with fire. 266 

4.1.4. Specific gravity 267 

Specific gravity basically defines the ratio of the density of a material to the density of 268 

reference material at a standard temperature of 25 oC. The specific gravity of formaldehyde in 269 

formalinsolution typically lies in between 1.100 to 1.150 at standard condition. In our present 270 

investigation, it ranges in between 1.100 to 1.200. Therefore it can be considered that the 271 

material studied in this process is of proper concentration which can be controlled by the 272 

methanol flow, air-flow and providing temperature during the processing. 273 

4.1.5. Acid value 274 



14 

 

Acid value is a major parameter used for the implication of quality assurance of 275 

formalin. This parameter does not consider the pH of the solution rather than quantifying the 276 

acidic index i.e. the quantity of contaminating agent of formic acid in the formalin solution 277 

which should be below 1.000 as per the plant guidelines. Since in formalin solution, 278 

formaldehyde always starts to break down into formic acid which is not desired quality of the 279 

product, it would have no chance of getting neutral or basic nature and therefore the 280 

contamination level by formic acid in the solution is determined. Here, the acid value of the 281 

product solution ranges in between 0.110 to 0.115 which is highly acceptable for further 282 

applications. 283 

4.1.6. Solid content 284 

Solid content in any suspension epitomizes the proportion of non-volatile material 285 

contained in the suspension. It is basically the constituents left after the volatile solvent which 286 

serves as a carrier or vehicle for the solid content, has been vaporized. Typically, the solid 287 

content appears due to rapid polymerization of formalin solution after production to form 288 

paraformaldehyde precipitation which is controlled by the addition of methanol. 289 

Characteristically, the solid content value should be varied in between 60 to 75 based on the 290 

grade of the solution as per the area of application. 291 

4.2. Formulation of experimental designs 292 

4.2.1. Full three-level factorial design 293 

A full three-level factorial design is quite less applicable design matrix due to its 294 

requirement of a higher number of experimental numbers. In general, it is used where factor 295 

number higher than two. Experimental number is calculated using the following 296 

equation(Duan, et al., 2013): 297 𝑁 = 3𝑘        (5) 298 
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where, N is the number of experiments, and k is the number of factors used during the 299 

experiment. Due to the requirement of a higher number of experimental numbers, its 300 

modeling efficiency gets reduced in quadratic functions (Bezerra, et al., 2008). Therefore, 301 

other design matrices such as the Box-Behnken design, central composite design, which 302 

require a much smaller number of experimental points to represent the model, are often used 303 

in common practice economically (Morris, 2000).  304 

4.2.2. Central composite design 305 

It was first developed by Box and Wilson in 1951 (Box & Wilson, 1951). Central 306 

composite design mainly comprises of the following: (a) a complete factorial design, (b) a 307 

surplus design, often termed as star design which contains the experimental points at a 308 

particular distance from the centre, and (c) a centre point. It includes following 309 

characteristics: 310 

 Required experimental number is calculated by following equation: 311 𝑁 = (2𝑘 + 2𝑘 + 1) + 𝐶𝑜      (6) 312 

where,N is experimental number, k is factor  number, and 𝐶𝑜 is number of central 313 

point. 314 

 Coded α-values are calculated using following equation based on number of factors: 315 𝛼 = 2(𝑘−𝑝)/4       (7) 316 

For example, if factor number is three; then corresponding α-value will be 1.68. 317 

 Here all the factors are analysed in five levels including –α, -1, 0, +1, +α. 318 

4.2.3. Statistical analysis through Box-Behnken design 319 

Box-Behnken design was first introduced by George E. P. Box and Donald Behnken as 320 

an experimental designer.The basic fundamentals concepts, advantages and short-comings 321 

were first illustrated by Ferreir et al. (2007)(Ferreira, et al., 2007; Jana, et al., 2018). The 322 

major advantage of this Box-Behnken design matrix is its designing proficiency of all factors 323 
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simultaneously at their maximum or minimum levels with involving any combinational 324 

approach and therefore it can dodge the experimental limitation under extreme conditions 325 

(Kazemia, et al., 2010; Kazemzadeh, et al., 2019). Box-Behnken design includes the 326 

following features (Ferreira, et al., 2007): 327 

 Here, the experimental points are generally sited at hypersphere equidistant from the 328 

central point of the model. 329 

 Required experimental number is calculated by following equation(Latchubugata, et 330 

al., 2018; Chen, et al., 2013): 331 𝑁 = (𝑘2 + 2𝑘 + 1) + 𝐶𝑜      (8) 332 

where, N is number experiments, k is factor numbers, and 𝐶𝑜 is the number central 333 

points. 334 

 The response surface design is developed with all combinations of the factors at 335 

three levels(high, +1, 0, and low, -1levels) (Mujtaba, et al., 2014). 336 

Though Box-Behnken design has been applied in the field of analytical chemistry or at 337 

industrial scale at very low quantity compare to the central composite design, but in present 338 

context this Box-Behnken design(Daraei, et al., 2019) has been considered as our basic 339 

platform of experimental modelling at its large scale application to investigate its robustness 340 

as a statistical optimization tool due to its simplicity of exploration in experimental model 341 

designing in analytical chemistry research. 342 

 343 

Model variables Symbols Coded levels 

Low Medium High 

Methanol flow (kg/hr) X1 49000 (-1) 50500 (0) 52000 (+1) 

Air flow (kg/hr) X2 700 (-1) 950 (0) 1200 (+1) 

Temperature (oC) X3 110 (-1) 115 (0) 120 (+1) 

 344 

Table 1. Coded variables formulation in Box-Behnken design. 
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4.3. Codification of the levels of parameters 345 

Codification of the parameter levels are of important concern because of its 346 

compatibility at different orders of magnitude excepting higher influencing the evaluation of 347 

the design which considers the transformation of each studied real assessment into the 348 

coordinates with dimensionless systems having the proportionality with experimental space 349 

(see Table 1.). To transform the real assessment into coded value by codification as per the 350 

determinate design, following equation is followed: 351 

𝑥𝑖 = (𝑧𝑖−𝑧𝑖0∆𝑧𝑖 ) 𝛿𝑑       (9) 352 

where, ∆𝑧𝑖 is the gap between the real value at the central point and at superior or inferior 353 

level, 𝛿𝑑 is primary coded limit value within the matrix for each parameter, and 𝑧𝑖0 is real 354 

value at the centre of the design. 355 

4.4. Model adequacy check and analysis of fitted design 356 

After procuring the model based on the experimental points of the preferred design, 357 

fitting of the model with corresponding mathematical correlation is obligatory to exemplify 358 

the response performance of fitted model at its studied level. It has been discovered that the 359 

mathematical model fitted on the function often may not be a silver bullet to emphasize the 360 

required domain and therefore it would be exorbitantly reliable to illustrate the model 361 

adequacy in terms of the application of analysis of variance which imperatively relies on 362 

comparing treated model variation with the variation for random errors of generated 363 

responses (Bezerra, et al., 2008). In this model adequacy verification an important 364 

deterministic parameter is sum of the squares error or residuals (SError)which has been 365 

expressed in following Eq (10): 366 𝑆𝐸𝑟𝑟𝑜𝑟 = ∑ (𝑦𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑜𝑏𝑠𝑖)2𝑛𝑖=1      (10) 367 
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where, ypredi  indicates the predicted value by the model at point i and yobsi indicates the 368 

observed value by the model at point i.e, STotal (sum of square of the total) is another 369 

important parameter in the analysis of fitting accuracy which is expressed in Eq (11): 370 𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑦𝑜𝑏𝑠𝑖)2𝑛𝑖=1       (11) 371 

PRESS or prediction residual error sum of the squares quantify the fitted design by 372 

measuring how the model fits each point in the design which is shown in Eq. (12): 373 𝑃𝑅𝐸𝑆𝑆 = ∑ (𝑦𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑜𝑏𝑠𝑖)2𝑛𝑖=1      (12) 374 

Usually, a wide variation between the residual error and PRESS residual designates a pinch 375 

point where the model gets well-fitted. 376 

The model adequacy can also be verified by lack of fit test (LOF) because it can 377 

analyse the model failure percentage by the interpretation of data points in experimental 378 

domain through the comparison between residual error and pure error which should be 379 

insignificant. If the model does not fit the data properly, then it will be significant (Nair, et 380 

al., 2014). LOF (FLOF) test can be expressed by Eq. (13): 381 𝐹𝐿𝑂𝐹 = 𝑆𝐿𝑂𝐹/(𝑓−𝑝)𝑆𝑃𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟/(𝑛−𝑝)      (13) 382 

where, FLOF indicates the sum of squares for LOF, SPure error indicates sum of squares for 383 

pure error, f indicates no. of specifically different parameter interactions, n indicates 384 

experimental number in the set and p indicates factor number in the set. 385 

Apart from the above mentioned parameters, one more essential parameter is 386 

coefficient of determination or regression (R2) which would be discussed later in result and 387 

discussion section. 388 

4.5. Optimization of multiple responses 389 

During the optimization analysis of multiple responses, the considered parameters 390 

should meet the desirable criteria to reach optimum conditions. Fig. 4. exemplifies the 391 
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schematic algorithm of process flow for design of experiment approach through response 392 

surface methodology.In this type of optimization analysis, generally multicriteria method of 393 

analysis is followed which is known as desirability function approach. Each desirability 394 

function made up of conversion of each response varying over the range of 0 to 1. 395 

 396 

 397 

When the response comes to its target, desirability function becomes 1 and vice-versa 398 

(Montgomery, 1997; Myers & Montgomery, 2002). The one-sided desirability can be 399 

evaluated from the Eq. (14): 400 𝐷𝑛 = ∫ [ 𝑂𝑛−𝑂𝑛−𝑚𝑖𝑛𝑂𝑛−𝑚𝑎𝑥−𝑂𝑛−𝑚𝑖𝑛]𝑟01 ; if,𝑂𝑛 ≤ 𝑂𝑛−𝑚𝑖𝑛 401 

      if,𝑂𝑛−𝑚𝑖𝑛 < 𝑂𝑛 < 𝑂𝑛−𝑚𝑎𝑥 (14) 402 
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      if, 𝑂𝑛 ≥ 𝑂𝑛−𝑚𝑎𝑥  403 

where, 𝑂𝑛 is the response value, 𝑂𝑛−𝑚𝑖𝑛 & 𝑂𝑛−𝑚𝑎𝑥 are the minimum and maximum 404 

acceptable values of response n, and r is the positive constant (weight) used to find the 405 

desirability. If the overall desirability is 𝐷′, then it follows Eq. (15): 406 𝐷′ = (𝐷1 × 𝐷2 × 𝐷3 × ∙ ∙ ∙ ∙ ∙)1/𝑘     (15) 407 

where, k is the number of responses and 0 ≤ 𝐷 ≤ 1. 408 

 409 

5. Results and discussions 410 

After exemplification of the model, its validation has to be patterned and this model 411 

validation has been studied through overall efficiency of the model by the evaluation of 412 

deterministic coefficient or regression coefficient R2 which is expressed in Eq. (17-18). Here 413 

a non-linear polynomial functionhas been used to design the experimental system is as 414 

follows (Verma & Sarkar, 2017) in Eq. (16): 415 𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖3𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖23𝑖=1 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗3𝑖=1 + 𝜖  (16) 416 

where, y is the predicted response, 𝑥𝑖 indicates the independent variables, 𝛽0 indicates the 417 

constant term, 𝛽𝑖 indicates the linear coefficient, 𝛽𝑖𝑖 indicates the squared coefficient, 𝛽𝑖𝑗 418 

indicates the interaction coefficient and 𝜖 is the error term. 419 

The predictive efficiency of the proposed BBD designwas assessed by the test data in 420 

the trained data and comparing the predicted and observed values.In addition, the statistical 421 

parameters such as the deterministiccoefficient(𝑅2) in Eq. (17-18), adjusted regression 422 

coefficient (𝑅𝑎𝑑𝑗2 ) in Eq. (19-20),  predicted regression coefficient (𝑅𝑝𝑟𝑒𝑑2 ) in Eq. (21) were 423 

used to compare predicted and measured values of flexible modulus: 424 𝑅2 = 1 − 𝑆𝐸𝑟𝑟𝑜𝑟𝑆𝑇𝑜𝑡𝑎𝑙        (17) 425 

Or, 𝑅2 = ∑ (𝑦𝑝𝑟𝑒𝑑𝑖−𝑦𝑜𝑏𝑠𝑖)2𝑛𝑖=1∑ (𝑦𝑜𝑏𝑠𝑖)2𝑛𝑖=1     (18) 426 
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𝑅𝑎𝑑𝑗2 = 1 − 𝑆𝐸𝑟𝑟𝑜𝑟/(𝑛−𝑝)𝑆𝑇𝑜𝑡𝑎𝑙/(𝑛−1)      (19) 427 

Or, 𝑅𝑎𝑑𝑗2 = 1 − (𝑛−𝑝𝑛−1) (1 − 𝑅2)    (20) 428 

𝑅𝑝𝑟𝑒𝑑2 = 1 − 𝑃𝑅𝐸𝑆𝑆𝑆𝑇𝑜𝑡𝑎𝑙       (21) 429 

𝐹𝑅2 = 𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑚𝑜𝑑𝑒𝑙𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟     (22) 430 

where, all the terms for Eq. (17-21) are already discussed in the section 4.4. In Eq. (22) 𝐹𝑅2 431 

indicates the significance of the regression coefficient.  432 

 433 

 434 

5.1. Conformational study of regression model 435 

In the field of statistical analysis, regression analysis characteristically provides the 436 

information about the correlation efficiency between the operating and response variables. 437 

The practicability of the simulation and its effects on the interaction/operating parameters 438 

sustained by the collected data has been well-fashioned in the proposed model. Table 2 439 

exemplifies the experimental design matrix and corresponding predicted values of response 440 

Air (Kg/Hr) 
Methanol 

(Kg/hr) 

Temperature 

(oC) 

Specific Gravity 

(Kg/m3) 

Acid Value 

(mg KOH/g) 
Solid Content (mg/L) 

Observed Predicted Observed Predicted Observed Predicted 

0 0 0 1.118 1.108 0.147 0.126 67.6 64.733 

-1 0 -1 1.119 1.115 0.15 0.138 67.8 65.775 

0 -1 -1 1.118 1.115 0.149 0.146 67.8 67.338 

+1 -1 0 1.114 1.115 0.142 0.143 67.2 66.163 

+1 +1 0 1.119 1.112 0.149 0.134 68.7 66.213 

0 -1 +1 1.113 1.108 0.146 0.134 68.1 67.113 

-1 -1 0 1.114 1.121 0.142 0.157 67 69.488 

-1 0 +1 1.105 1.103 0.113 0.110 64.8 63.300 

0 +1 -1 1.102 1.107 0.112 0.124 63.1 64.088 

0 0 0 1.103 1.108 0.114 0.126 63.2 64.733 

0 +1 +1 1.104 1.107 0.112 0.115 63.3 63.763 

0 0 0 1.104 1.108 0.116 0.126 63.4 64.733 

+1 0 +1 1.104 1.108 0.112 0.124 63.5 65.525 

+1 0 -1 1.101 1.103 0.114 0.117 62.1 63.600 

-1 +1 0 1.114 1.113 0.127 0.127 61.8 62.838 

Table 2. Experimental design matrix with respect to the Box-Behnken design factors. 
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variables given by the process simulation. After configuring the quadratic model with linear 441 

regression fit, the independent variables have been found with good adequacy and the 442 

corresponding consequential regression model has been optimized which has been 443 

represented in the given Table 3 and the model equations of response variables are also 444 

described with their significant terms in Table 3. 445 

 446 

Responses 

Specific  gravity 

(Kg/m3) 

Acid value 

(mg KOH/g) 

Solid content 

(mg/L) 

SD 0.0027 0.0050 0.8398 

Mean 1.02 0.1298 64.85 

C.V. % 0.2434 3.8400 1.29 

R2 0.9864 0.9540 0.8845 Radj2
 

0.9232 0.9077 0.8429 Rpred2  0.8406 0.9235 0.8063 

Adeq. Prec. 18.4756 20.5429 24.8145 

PRESS 0.0009 0.0026 111.28 

Model equations with significant terms: 

Sp. Gr. = 1.11 + 0.0049X2 + 0.0063X3 - 0.0028X22. 

Acid value = 0.127 – 0.0132X1 + 0.0099X2 – 0.0067X22. 

Solid content = 63.64 – 3.9X1 + 1.05X2. Radj2  = adjusted R2; R2 = regression coefficient; Rpred2  = predicted R2; C.V = coefficient of 

variation; SD = standard deviation; Adeq. Prec. = adequate precision; PRESS = predicted 

residual error sum of square. 

 447 

Statistically, the accuracy of any model is typically evaluated by the regression 448 

coefficient or determination of coefficient (R2) (Singh, et al., 2010; Latchubugata, et al., 449 

2018). From Table 3. it can be demonstrated that the regression model has been well fitted in 450 

the optimization of specific gravity and acid value due to > 95% of their regression 451 

Table 3. Regression summary of predicted responses specific gravity, acid value, 

and solid content. 
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coefficient (0.98 and 0.95 respectively) and in case of solid content prediction, the model 452 

cannot well explain the model adequacy and goodness of fit to low value of R2 (< 90%). 453 

Usually, p-value < 0.05 defines the significant terms of a model at its 95% confidence level 454 

within probability limit. As per the system of statistical analysis, typically p-values are 455 

considered as the smallest values as level of significance which can be determined using p-456 

value = 1 – level of significant. It designates the mode terms are as follows: (i) highly 457 

substantial (i.e. p < 0.01); (ii) substantial (0.01 < p < 0.025); (iii) ordinary (0.025 < p < 0.05); 458 

and (iv) weak (0.05 < p < 0.1) and the values higher than the 0.1 are considered as 459 

insignificant model terms. Herein, present context the p-values < 0.05 i.e. significant, have 460 

mainly come into the linear terms of the model. In case of sp. gr. p-values are significant only 461 

for model term, X2, and X3 while in case of acid value and solid content, significant p-terms 462 

are include for model, X1,  X2, X22 and model, X1,  X2 respectively. The F-values of 29.13, 463 

44.92, and 57.03 for sp. gr., acid value and solid content respectivelyand corresponding 464 

standardized errors of 0.0006, 0.0012, and 0.1945 are also indicating that the model terms are 465 

highly significant as well as accurately fitted as shown in Table 4. 466 

 467 

Responses Source Sum of squares Mean square F-value p-value 

Specific gravity Model 0.0019 0.0002 29.13 <0.0001 

- X1 0.0000 0.0000 1.52 0.2216 

- X2 0.0002 0.0002 31.17 <0.0001 

- X3 0.0001 0.0001 8.80 0.0039 

- X1X2 8.71E-06 8.71E-06 1.19 0.278 

- X1X3 4.33E-06 4.33E-06 0.5929 0.4434 

- X2X3 2.89E-06 2.89E-06 0.3929 0.5313 

- X12 0.0000 0.0000 1.67 0.1996 

Table 4. ANOVA analysis of response surface functions based on Box-Behnken 

design model. 
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- X22 0.0000 0.0000 5.21 0.025 

- X32 0.0000 0.0000 1.72 0.1936 

- Residual 0.0006 7.30E-06 - - 

- Cor total 0.0025 - - - 

Acid value Model 0.0100 0.0011 44.92 <0.0001 

- X1 0.0006 0.0006 24.98 <0.0001 

- X2 0.0009 0.0009 36.66 <0.0001 

- X3 0.0000 0.0000 0.4726 0.4937 

- X1X2 2.80E-07 2.80E-07 0.0113 0.9156 

- X1X3 4.93E-07 4.93E-07 0.0199 0.8882 

- X2X3 8.86E-08 8.86E-08 0.0036 0.9525 

- X12 0.0000 0.0000 1.81 0.1815 

- X22 0.0002 0.0002 8.55 0.0044 

- X32 0.0000 0.0000 0.4104 0.5235 

- Residual 0.0021 0.0000 - - 

- Cor total 0.0121 - - - 

Solid content Model 361.97 40.2200 57.03 <0.0001 

- X1 53.64 53.6400 76.06 <0.0001 

- X2 10.29 10.2900 14.59 0.0003 

- X3 2.21 2.21 3.13 0.0803 

- X1X2 1.32 1.32 1.87 0.1749 

- X1X3 1.18 1.18 1.68 0.1986 

- X2X3 0.4923 0.4923 0.698 0.4058 

- X12 1.69 1.69 2.4 0.1249 

- X22 0.0105 0.0105 0.0149 0.903 

- X32 0.0175 0.0175 0.0248 0.8753 

- Residual 59.95 0.7053 - - 

- Cor total 421.92  -  -  - 

Lack of fit = 3 

Pure error = 2 

Which can be recommended as valid LOF test. 

 468 
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5.2. The influence of interacting parameters on response variables: a statistical approach 469 

To get the confirmation about the model adequacy and goodness of fit in the present 470 

investigation, the specific gravity, acid value, and solid content offer a valuable estimation of 471 

the proposed real environment through the model regression equations described in Table 3., 472 

having very good and significant LOF of 3 (Table 4.), the simulated results are compared to 473 

the observed collected data and the results are illustrated in Fig. 5(a-c).  474 

 475 

 476 

To envisage the influential effects of interaction parameters on the independent 477 

operating variables, a detail explanation has been explored through the sensitivity analysis of 478 

3-dimensional surface plots considering the each response variables as a function of two 479 

independent variables which are displayed in Figs. 6, 8 and 10. 480 

5.2.1. Specific gravity 481 

Figs. 6 (a-c). represent the 3D surface plots of an important response specific gravity as 482 

a function of two essential variables air flow and methanol flow-rate, air flow and 483 

temperature, and also temperature and methanol flow-rate respectively while third parameter 484 

is considered to be zero value or at the centre location of the design. As displayed in the plots, 485 

the specific gravity has been increased gradually from 1.012 to 1.117 i.e. we can say from 486 

lower region to higher region with correspondingly increase in air flow and temperature 487 

Fig. 5. Predicted values vs actual data for the design responses (a) Specific 

gravity, (b) acid value, and (c) solid content. 
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slightly within the range of -1 to +1 and therefore, the p-value is significant at this place 488 

which is p < 0.05 (Table 4.). The reason behind this might be the quadratic effect of air flow 489 

with a p-value of < 0.0001. Again at the lower values of methanol flow-rate, specific gravity 490 

becomes significant comparatively due to its lower p-value of 0.221which is not significant. 491 

492 

 493 

Figs. 7, 9 and 11. represent the comparative briefs on the respective responses of the 494 

system specific gravity, acid value and solid content based on their corresponding predicted 495 

and observed data collected from the design of experiment. 496 

497 

 498 

 499 

Fig. 7. Comparison between predicted and observed values of specific gravity 

based on the simulation outcomes. 

Fig. 6. Response surface characterization model displaying specific gravity as a 

function of two parameters while third one remains at its centre position: (a) 

temperature (X3) and air flow (X2); (b) methanol flow-rate (X1) and air flow (X2); and 

(c) temperature (X3) and methanol flow-rate (X1). 
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5.2.2. Acid value 500 

Herein, Figs. 8(a-c). represent the 3D surface plots of an important response acid value 501 

as a function of two essential variables air flow and methanol flow-rate, air flow and 502 

temperature, and also temperature and methanol flow-rate respectively while third parameter 503 

is considered to be zero value or at the centre location of the design as similar as specific 504 

gravity. As shown in the figure, the acid value has been increased gradually from 0.110 to 505 

0.115 due to some significance terms present in the model development. The acid value has 506 

been increased with the respected decrement in temperature and increment in air flow 507 

because the p-valuesare significant at X1 and X2 i.e. p < 0.05 (Table 4.). This is may be 508 

because of non-linear quadratic effect of temperature in the system. 509 

510 

 511 

Fig. 9. displays the predicted vs observed data plot for the comparison with simulation 512 

results of acid value. 513 

Fig. 8. Response surface characterization model displaying acid value as a function of 

two parameters while third one remains at its centre position: (a) temperature (X3) 

and air flow (X2); (b) methanol flow-rate (X1) and air flow (X2); and (c) temperature 

(X3) and methanol flow-rate (X1). 
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514 

 515 

5.2.3. Solid content 516 

Here, Figs. 10 (a-c). have explained the influential effects of methanol flow-rate, air 517 

flow and temperature due to interaction with the corresponding response solid content though 518 

the response surface analysis and the respective optimization analysis has been studied via 519 

numerical optimization and statistical desirability studies which has been discussed later 520 

section in depth. Figs. 10(a), 10(b), and 10(c) have well designed the response solid content 521 

as a function of temperature and air flow, air flow and methanol flow rate, temperature and 522 

methanol flow rate respectively. As displayed in the figure, response values are increasing 523 

slightly at the lower values of methanol flow-rate from 62 to 65 in average while the 524 

methanol flow lies near -1 level. From ANOVA result also it can be well explained that the p-525 

values are highly significant in model terms, X1, and X2 with p << 0.05 which indicates very 526 

high goodness of fit also validating the result as well-fitted. 527 

Fig. 9. Comparison between predicted and observed values of acid values 

based on the simulation outcomes. 
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528 

 529 

530 

 531 

Fig. 11. illustrates the comparative study between predicted and observed values of 532 

solid content as per the design of experiment analysis with average similarity. 533 

5.3. Parameter optimization 534 

In multiple-response optimization study, the optimum conditions should meet 535 

simultaneously the desired criteria of proposed model which can be recognised visually 536 

through the superimposed plot of response surface 3D plot and desirability contour plot. By 537 

considering the acid value and solid content simultaneously reach the minimum and specific 538 

gravity reach the targeted value under the influence of optimum state, the corresponding 539 

Fig. 11. Comparison between predicted and observed values of solid content 

based on the simulation outcomes. 

Fig. 10. Response surface characterization model displaying solid content as a 

function of two parameters while third one remains at its centre position: (a) 

temperature (X3) and air flow (X2); (b) methanol flow-rate (X1) and air flow (X2); 

and (c) temperature (X3) and methanol flow-rate (X1). 

 



30 

 

optimized outcomes have been achieved via desirability study and their analysis through 540 

response surface model.  541 

 542 

Response variables Observed values Predicted values Error prediction (%) 

Specific gravity 1.113 1.1122 0.07 

Acid value 0.127 0.126 0.8 

Solid content 62.591 62.601 -0.016 

Error (%)= [(Observed-Predicted)/Predicted] × 100 

 543 

From the optimization study through statistical numerical optimization it has been 544 

shown that the standard deviation between the observed and predicted values of the response 545 

functions are not high (see Table 5.) and therefore it can be considered that the model is fit to 546 

the optimal analysis rationally. Fig. 12(a) and 12(b). represent the graphical desirability 547 

study confirming the optimum predicted point on the model which shows the viable response 548 

values in the range factors zone with the overall desirability of 0.744. The optimum points are 549 

identified by taking into account the model responses specific gravity, acid value, and solid 550 

content. The high quality of the product i.e. formalin has been achieved at a low flow-rate of 551 

methanol (towards -1 level), higher flow rate of air (towards +1 level) and medium range of 552 

applied temperature (see Fig. 12(a) and (b).) simultaneously. The corresponding optimum 553 

response are specific gravity of 1.110, acid value of 0.117, and solid content of 62.063. 554 

Table 5. Simulation results of the responses after optimization via DOF. 
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 555 

 556 

6. Conclusion and future prospects 557 

Ever since proceeding decades, the development in formaldehyde processing has been 558 

involved significantly in research and development in the novel and innovative solution for 559 

chemical as well as polymer industry to revitalize the production quality and productrecovery 560 

Fig. 12. (a) Optimization desirability study of the process parameters and (b) 

Optimum simulation predictions via design of experiment based on BBD. 
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through the control of quality assurance and hazardousness. Although the formaldehyde 561 

production in various chemical and pharmaceutical process industries has been popularized 562 

exorbitantly in this twentieth century due to its over-reached application in the field of 563 

biomedical, polymer, plywood, construction etc. Therefore, research investigations are also 564 

spurring towards the opening of newer and safer way of formaldehyde production and quality 565 

control at optimized level. Present context has well-represented the philosophical concept of 566 

response surface methodology as a unique approach for the design of experiment in formalin 567 

production plant. It emphasizes the robustness of design experiment tool for the optimization 568 

of produced formalin by controlling the quality maintaining parameters of formaldehyde 569 

through the help of statistical analysis in a well-organised fashion. By the implementation of 570 

proposed design, practically in processing plant, the project engineers will not have to face 571 

any intricacy to render the parameter setting as well as quality assertion determination of 572 

formalin like a trial and error process.The current prediction method and simulation of 573 

optimized parameters for the quality assertion of the product will not only assist the 574 

manufacturing sectors but also will be helpful for the end users to identify the product 575 

superiority in marketing industry. 576 
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