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Abstract

Flash floods are highly devastating, however there is no effective management for their water in Saudi
Arabia, therefore, it is crucial to adopt Rainfall Water Harvesting (RWH) techniques to mitigate the flash
floods and manage the available water resources from the infrequent and rare rainfall storms. The goal
of this study is to create a potential flood hazard map and a map of suitable locations for RWH in Wadi
Nisah, Saudi Arabia for future water management and flood prevention plans and to identify potential
areas for rainwater harvesting and dam construction for both a flood mitigation and water harvesting.
This research was carried out using a spatiotemporal distributed model based on multi-criteria decision
analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria
Decision-Making tools (MCDM). The flood hazard mapping criteria were elevation, drainage density,
slope, direct runoff depth at 50 years return period, Topographic witness index, and Curve Number,
according to the Multi-criteria decision analysis, while the criteria for RWH were Slope, Land cover, Stream
order, Lineaments density, and Average of annual max-24hr Rainfall. The weight of each criteria was
estimated based on Analytical Hierarchy Process (AHP). In multi-criteria decision analysis, 21.55 % of the
total area for Wadi Nisah was classified as extremely dangerous and dangerous; 65.29 % of the total area
was classified as moderate; and 13.15 % of the total area was classified as safe and very safe in flash
flood hazard classes. Only 15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of
the basin has a moderate and a low or extremely low potentiality of RWH, respectively. According to the
developed RWH potentiality map, two possible dam sites were proposed. The maximum height of the
proposed dams, which corresponded to the cross section of dam locations, ranged from 6.2 to 9 meters;
the maximum width of dams ranged from 573.48 to 725 meters; the maximum storage capacity of
reservoirs, which corresponded to the distribution of topographic conditions in the surrounding area,
ranged from 3976104.499 m?3 to 4328509.123 m?; and the maximum surface area of reservoirs ranged
from 1268372.625 m? to 1505825.676.14 m?. These results are highly important for the decision makers
for not only flash flood mitigation but also water management in the study area.

Highlights
1. The potentiality of using RS data and GIS tools together with and Multi-Criteria Decision-Making

tools (MCDM) to assess the flood hazard.

2. In flash flood hazard classes, 21.55 percent of the entire area for Wadi Nisah was categorized as
highly hazardous and dangerous; 65.29 percent of the total area was rated as moderate; and 13.15
percent of the total area was classified as safe and very safe.

3. Two prospective dam locations were presented based on the generated RWH potentiality map.

1. Introduction

Rainfall in Kingdom of Saudi Arabia (KSA) is infrequent and irregular; however, annual rainfall in most of
KSA is 100 mm as an average, thus water management in the country is a major problem owing to
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limited water supplies and increasing climate change uncertainties (Almazroui et al., 2012). As a result, it
is critical for Saudi authorities to employ Rainfall Water Harvesting (RWH) techniques in order to meet
rising water demand, particularly in the agriculture sector, which consumes more than 80% of total annual
water use. RWH is used to supplement surface and groundwater supplies in order to balance supply and
demand in the face of changing meteorological circumstances (Singh et al. 2017). RWH techniques also
play an important role to minimize the impact of flash flood hazard through catch rainfall water in the
suitable location before flood events occur and collect them in industrial lakes or make the harvested
water to be used directly or injected to groundwater storage (Abdulla 2020). As a result, RWH might be a
valuable water supply resource. According to Murray and Ebi (2012), flash floods are produced by an
unusually large quantity of rain falling in a short period of time or a large volume of water being released
quickly from rivers or dams. RWH can be defined as collecting and using precipitation from a catchment
surface area. It is deliberate collection and storage of rainwater or augmentation of ground water
reservoir by man-made structures (Sivanappan 2006). There are numerous methods used for RWH that
differ from region to region. The inhabitants of that region have a significant difficulty in determining
optimum locations and appropriate water collecting technologies on a big scale (Hofkes, 1983). This
current study introduces a more detailed plan for evaluating and developing new water resources in Saudi
Arabia by applying water harvesting of the generated flash flood that will reduce the flood risk at the
outlet of wadi Nisah study area (Sivanappan 2006). In addition, it could be used for recharging the
ground water aquifers, which are basis for sustainable development using new integrated modeling
techniques in central Saudi Arabia, such as Rainfall-Runoff modeling, Geographic information system
(GIS), Remote Sensing (RS). Floods can help to recharge the subsurface alluvium aquifer. The amount of
flood infiltration is a key source of groundwater refilling to unconfined aquifers in dry areas Surface dams
and consecutive dikes might greatly enhance groundwater recharge (Sirdas and Sen, 2007). They are
nevertheless significant for local hydrology research since they refill aquifers and groundwater reservoirs
(Bahat et al., 2009).

Rainwater harvesting refers to techniques for causing, collecting, and storing runoff from a variety of
sources and for a variety of uses. The methods used depend heavily on local conditions, including wadi
terraced beds (Evenari et al., 1971), micro-capture trees (Nat. Acad, Sci. 1974), sheet metal catching
runoff (Chiarella and Beck, 1975; mickelson, 1975), rushing subsurface (Burdass, 1975; Agarwal, 1977,
Smith, 1978), and storing runoff behind a dam (Burdass, 1975; Agarwal, 1977; Smith, 1978),). (Bowler
and Turner, 1977; Myhrman et al., 1978).

There are case studies from many nations across the world that employed some of the approaches or
methodologies for assessing flood hazard and identifying potential RWH locations in the region under
investigation (Singh et al. 2017). The spatial multi-criteria assessment by Analytical Hierarchy (AHP),
developed by Saaty, is one of the techniques to identifying flash flood catastrophe zones. It selects the
required criterion through the parameter and incorporates qualitative and quantitative elements into the
method (Saaty, 1987). The MCA technique has been widely used for the management of complicated
issues and flood risk assessment (Wang et al., 2011; Rahaman et al., 2015).. For Multi-Criteria Decision
Making, a variety of approaches have been presented. MCA techniques give a framework for identifying
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the parts of a complex decision issue, organizing the elements into a hierarchical structure, and studying
the connections between the problem's components (Boroushaki and Malczewski, 2010; Zavadskas et al.,
2014).

One of the best knowledges and most extensively used MCA methods is the analytical hierarchy process
(AHP) established by Saaty (1980) (Yahaya et al., 2010; Orencio and Fuijii, 2013). AHP is used for solving
a variety of MCDM issues, with the pairwise comparison matrix for each examined criterion computing
the weight (Yalcin, 2008; Cozannet et al., 2013; Orencio and Fuijii, 2013; Pourghasemi et al., 2016). AHP
assumes full grouping between various criteria and develops a linear model of additives. The peculiarity
of AHP in many research allows to model uncertainty without compromising any assessment measure's
subjectivity and objectivity. It is dependent on expert opinions, however, and might thus be vulnerable to
cognitive constraints with uncertainty and subjectivity (Pourghasemi et al., 2016). Late in the course of
several research, substantial emphasis was paid to the application of AHP in natural hazard evaluation
(earthquakes and flood): (Savane et al., 2003; Yahaya et al., 2010; Cozannet et al., 2013; Orencio and Fujii,
2013; Saley et al,, 2013; Nejad et al., 2015; Papaioannou et al., 2015; Chakraborty and Joshi, 2016;
Pourghasemi et al., 2016).

AHP applications that use GIS have been utilized widely since the beginning of the 21st century (Mardani
et al., 2015). The integration of AHP and GIS provides an efficient and user-friendly solution to

solve challenging problems, as it combines decision-making support with powerful data mass
processing, viewing and mapping capabilities (Marinoni, 2004). As stated by Kahinda et al. (2008), the
Food and Agriculture Organization of the United Nations (FAO) specified six major criteria for selecting
RWH sites: climate, hydrology, topography, agronomy, soils, and socio-economics. The most prevalent
biophysical parameters utilized to identify potential RWH sites in arid and semi-arid environments were
slope (83 %), land use/cover (75 %), soil type (75 %), and rainfall (75 %) (56 %). The most often used
socio-economic factors were distance to settlements (25 percent), distance to streams (15 %), distance to
highways (15 %), and cost (8 %) (Ammar et al., 2016).

Structural measures are primarily concerned with the hydrological and hydraulic consequences of floods,
which are often addressed by selecting the option that maximizes projected net benefits. Catchment-wide
interventions, according to Colombo et al. (2002), are a type of structural measurement that can help
minimize flash floods. Surface runoff and soil erosion can be reduced by catchment-wide interventions,
and therefore flood peak can be reduced. However, they suggested some water control works structural as
solutions contribute to flood reduction and protection. Some of these structures are used mainly as
floodwater harvesting. The suggested structure according to Tingsanchali (2012) are Check Dams,
Drainage ditches, and Bench-terraces.

Dams can be constructed for many purposes, which lead to a greater range of impacts and factors. In
Western Iran, the study aimed at selecting an earth dam site utilizing an analysis hierarchy (AHP), a
simple and adaptable approach for tackling multi-attribute (MADM) decision-making issues (Yasser et al.,
2013). Minatour et al. (2015), which focused on the same research area, designed and implemented a
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decision making support system for the selection of dams, including the fuzzy AHP and the multi-criteria
decision-making VIKOR method (MCDM).. Another study on dam site selection was conducted in
Northwest Saudi Arabia in the same year, utilizing a combining of Remote Sensing (RS) methods and a
Geographic Information System (GIS) (Abushandi and Alatawi, 2015). In the instance of Northwest Saudi
Arabia, four factors were used to determine the optimum dam site location: catchment slope, land cover
type, soil type, and soil infiltration rate (Abushandi and Alatawi, 2015). In the Western Iran case from
2013, 9 categories of criteria and 11 sub criteria are considered as most important attributes for
identifying the earth dam site in this study. In particular, the criteria used in this study are the following:
topographical conditions; economic development; wellness dam site; river flow system; annual output
(water volume); reservoir volume; annual sediment volume; probable max flow; annual average
evaporation; materiel and facilities accessible; total cost; water quality; damage to dam body and
reservoir; possible dam breakage; environmental impact; social impact; political impact (Yasser et al.,
2013).. While many of the research described above focused on the impacts on dam construction, other
studies focused only on dam construction factors. For example, For example, a 2003 study proposed 13
indicators for selection of dam sites with a view to sustainable development, including a reservoir
surface; reservoir retention time; flooded biomass; impounded river length; dry left-wing rivers; number of
downstream river tributaries; probability of stratification of the reservoirs; useful life of the reservoir;
access to roads through the forest; People requiring to be resettled; vital natural areas; variety of fish
species and endemism; and damaged cultural property (Ledec and Quintero, 2003). The main objective
and novelty of this paper was to develop a Multi-Criteria Decision Making (MCDM) approach to map the
flood hazard and the optimal site for Rainfall Water Harvesting (RWH) for positioning suitable sites for
the construction of surface dams in wad Nisah. The second goal is identifying potential rainwater
harvesting areas and recommending the optimum sites for building dams to store the harvested water in
Wadi Nisah is quite important for the local society in wadi system where the water resources are very
limited. Furthermore. The particular objectives were to integrate the raster layers of each criteria, a
weighted summation based on the weights generated by pairwise comparison. Elevation, drainage
density, Slope, Direct runoff depth at 50-year return period, Topographic witness index, and Curve Number
were the hazard criteria for selecting RWH sites, while Slope, Land cover, Stream order, Lineaments
density, and Average of annual max-24hr Rainfall were the non-hazard criteria. The RWH suitability map,
study of the suitability map, drainage network, drainage outlet, Triangulated Irregular Network (TIN)
produced from DEM, and profile graph based on DEM revealed two potential dam locations.

2. Material And Methods
2.1 Study area and Climatic conditions

The area of investigation lies between 23°30'- 24°30' N and 46°00"- 47°00' E latitudes as stated in fig. 1.
The research zone is gradually sloping from 4 92m in the low-lyers portion (southeast) to 1172m in the
south-west half, as a consequence of the Najd plateau and Tuaiq steep slopes. The research region is in
the arid to semi-arid zone. The area under investigation has infrequent and variable rainfall, averaging 80
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to 120 mm yearly rainfall (Alsharhan et al., 2001). The study region has a continental climate, with
temperatures that drop drastically in the winter and increase sharply in the summer. The typical winter
temperature is 4 to 16 degrees Celsius, while the average summer temperature is 30 to 45 degrees
Celsius. Summer solar radiation is high, ranging from 400 to 600 Cal/cm2/day, while winter solar
radiation is low, ranging from 200 to 400 Cal/cm?/day (Climate Atlas of Saudi Arabia, 1988). During the
winter and spring, flooding can occur owing to localized heavy rainfall. The drainage from the catchment
regions, which were mostly in the Arabian Shield hilly terrain, was the main cause of the flash floods.

2.2 Mapping of flash floods hazard and the suitable
potential locations for RWH

The method for assessing the hazard of flash floods and determining the best site for a RWH differs by
area and is based on techniques such as GIS, RS, and digitizing cartographic data. That is to say, thisis a
multi-criteria problem, and certain criterion had to be chosen in order to arrive at the optimal option. A
multi-criteria decision analysis tool is a hierarchical analysis process (AHP) that enable users to target
certain criterion and under criteria when weights are allocated. This technique is essential since another
structure might produce a different final grade (Estoque and Murayama, 2010). The AHP-structure for
flash flood risk mapping and suitable RFH-mapping regions as illustrated in Fig.2 was utilized throughout
this investigation.

The AHP procedure for mapping involves the following main steps:

Table 1 Nine-point intensity of importance scale

Intensity of Definition Description
importance
1 Equally important Two factors contribute equally to the objective.
3 Moderately more Experience and judgment slightly favor one over
important the other.
5 Strongly more Experience and judgment strongly favor one over
important the other.
7 Very strong more Experience and judgment very strongly favor one
important over the
Other. Its importance is demonstrated in practice.
9 Extremely more The evidence favoring one over the other is of the
important highest
Possible validity.
2,4,6,8 Intermediate values When compromise was needed.
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« Step (1): Criteria selection;

According to several researches, such as Ouma and Tateishi (2014) and Xiao et al. (2016), we chose the
criteria for assessing flash flood hazard and appropriate RWH site. Elevation, Slope, Curve number,
Topographic witness index, direct runoff depth at 50-year return period, and Drainage density cell to cell,
raster data were chosen as a criterion for flash flood hazard. Slope, Land cover, Stream order, Lineaments
density, and Average of annual max-24-hr Rainfall cell-to-cell raster data were used to determine a
suitable area for RWH. These criteria, also known as decision factors, are found in the level two of the
AHP.

« Step (2): Reclassify the selected criteria;

The criterion data was categorized into a few different categories. According to the amount of flash
hazard for flash flood criteria or the level of appropriateness for RWH for acceptable RWH criteria, each
class was assigned a specific rank. These levels were referred to as Alternatives or Decision sub-factors,
and they were found at AHP level three.

« Step (3): Specification of weights for each criterion;

In this step, the relative importance of each of the two criteria was established in this stage based on the
majority of expert opinions, end user feedback, and comparable prior research such as Kazakis et al.
(2015), Papaioannou et al. (2015), and Ouma and Tateishi (2014). The intensity of this importance was
taken from table 1. By determination of intensity of importance for each criterion, we compared between
criteria and developed the pair wise comparison diagonal matrix as shown at table 2 for flash flood
hazard criteria and table 3 for suitable location of RWH criteria.

Table 2 Comparison Matrix for criteria of flash flood hazard

Criteria Runoff depth  Drainage Elevation Slope TWI CN
density

Runoff depth 1 2 3 1 1/3 1/2
gégisr}?yge 1/2 1 1 1 1/5 1/3
Elevation 1/3 1 1 1/2 1/4 1/3

Slope 1 2 2 1 1/2 2

TWI 3 5 4 2 1 1

CN 2 3 3 1/2 2 1

Total 7.833333333 14 14 6 4.28333333 5.16666667

Table 3 Comparison Matrix for criteria of suitable locations of RWH
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Criteria Rainfall Land cover Slope Stream Lineaments

order density
Rainfall 1 1 1/3 3 3
Land cover 1 1 1/3 5 3
Slope 3 3 1 7 5
Stream order 1/3 1/5 1/7 1 1
Iaglnzz?tr;\ents 1/3 1/3 1/5 1 1
Total 5.666666667  5.533333333  2.00952381 17 13

Then, the relative weights of these criteria were then calculated by normalizing any rows and columns for
pairwise comparison diagonal matrices, which meant dividing each element in every column by the total
of that column at a new normalized matrix, and finding the Eigen vectors of these matrices as shown in
Appendix Table A1 and A2, which were computed by taking the average of each row values in the
normalizing m. Each criteria's weight values are equal to the Eigen vector of the normalizing matrices.

Appendix Table A3 and A4 summarized all of the preceding three steps. The weights for each criterion
were specified using the pairwise comparison matrix. To generate the best fit to the weight set, the main
eigenvector of the pairwise comparison matrix was determined. The priorities were represented by weight
values, which were absolute integers between zero and one. It indicated that the weights sum to one
when using a weighted linear combination. Appendix Table A3 shows a summary of the flood causative
factors or variables development, including the numerous components, their relative weights, and how
they were ordered in terms of their effect on flood occurrences in the research region. The sub-factors (J)
in Appendix Table A3 and A4are the ranges of the decision factor (i) that contribute to the decision
ranking values. Appendix Table A3 and A4 illustrate how the three-level hierarchical structure was
deconstructed and how ranking decisions were made for future flash flood hazard mapping and RWH
mapping appropriate locations.

« Step (4): Evaluation the weights of each criteria;

We have examined and combined RWH cells in the vicinity of drainage networks at acceptable locations
with high relative suitability. If the slope creates a cell that's insufficient, check the regional TIN and profile
diagram for usage at a dam location. For further selection, a 20-km buffer layer was employed. Dams
have been compared for 20 km till just one spot has been discovered in a 20 km buffer zone. Figure 4
shows how the dam site is selected;

P

Were CR is a Consistency ratio, Cl is a consistency index and Rl is a Random index. The consistency
index (CI) is defined as a factor which measure consistency of the diagonal comparison matrices. The
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following equation was used to find it;
o

Where A,,.« is @ largest eigenvalue of the comparison matrices and N is the dimension of the diagonal
comparison matrices.

The Random index (RI) was obtained from the following table 4 according to Saaty (1990).

Table 4 Random index values for each number of criteria

N 1 2 3 4 5 6 7 8 9 10
R O 0O 08 09 112 124 132 141 145 149

In this step, the AHP-GIS multi criteria model was developed by overlaying the classified weighted raster
data of criteria, which obtained from previous steps with a weighted linear combination using raster
calculator analyst tool in ArcMap. Then the overlay final maps were divided to five Classes according to
the weighted linear combination method using the following equation, and implied that the determined
weights of criteria were acceptable.

« Step (5): Mapping for flash flood hazard and suitable potential locations for RWH.

The AHP-GIS multi criteria model was created in this phase by utilizing the raster calculator analyst tool
in ArcMap to overlay the categorized weighted raster data of criteria collected in previous steps with a
weighted linear combination. The overlay final maps were then separated into five classes using the
weighted linear combination approach and the equation below:

[

Where LC is linear combination; Di is decision parameter; W; is AHP weight criteria; n is numbers of
Criteria.

As a result of the LC, the final flash flood hazard map was reclassified into five new classes. These
classes were extremely risky, risky, moderately risky, safe, and very safe. In addition, based on its LC, the
Suitable sites for RWH final map was categorized into five new classes. These classes were excellent,
very good, moderate, poor and unsuitable.

2.3 Methodology of flash flood mitigation

Following the evaluation of floods, the second phase of flood control is reducing flood hazard. As a result,
in this section of the research, we demonstrated one technique of reducing flood risks, namely the
construction of dams, which is dependent on two key components. First, determine potential dam
building sites. Second, create dam profiles to determine their storage capacity.
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2.3.1 Choose possible dam sites

According to Yasser et al. (2013), The research area's prospective dam sites were selected using an
integrated interpretation of the rainfall harvesting potential layer map, drainage stream layer map,
Triangulated Irregular Network (TIN) obtained from DEM, and profile graph based on contour lines layer
map generated from DEM. We have assessed RWH suitability cells in the vicinity of drainage networks
with high relative suitability and mixed them strongly at appropriate locations. If the slope generates a
cell that is inadequate, examine the regional TIN and profile diagram to see if this cell should be used at a
dam site. A 20-km buffer layer of possible dam sites was used for further selection. Dams were compared
around 20 kilometers from each other until only one place was found in a buffer zone of 20 kilometers.
Figure 4 illustrates the method for selecting the dam site.

2.3.2 Profile of proposed dams’ sites

A 1-meter interval contour layer was produced using DEM for each suggested potential dam, and the base
height was chosen based on the dam's elevation. The Triangulated Irregular Network (TIN) and a 1-meter
interval contour line layer are utilized to generate interpolation lines, which are essential to get cross
section profiles and compute reservoir volume. As a result, dam heights were measured at 1-meter
intervals.. Furthermore a 1-meter interval contour layer was constructed to calculate the dam height at a
maximum reservoir capacity if the height of the dam did not grow owing to a potential catchment limit
leakage. The storage capacity and the surface of the reservoir may be estimated with ArcGIS 3D Analyst
Tools if dam height, dam position and soil surface (TIN) are available. Figure 4 shows the framework of
the profile processing.

3. Results
3.1 Multi-criteria decision analysis for Wadi Nisah

The AHP was used to map flash flood hazards and possible locations in the Wadi Nisah study area as a
Multicriteria Decision Analysis Tool in this part. Meanwhile, the AHP-GIS tool was chosen as a flood and
RWH distribution approach because the AHP-GIS tool calculates all of the criteria for each cellular spatial
raster data in the area under study to produce a precise result with the final overlay mapping. AHP's
possible depth of runoff over 50 years was one of the criteria utilized to derive the final flood danger
map.. It was calculated cell-by-cell using the SCS-CN method by solving the weighted Curve Number,
maximum soil moisture retention depth, and 50-years return period rainfall depth equations (Abdelkader
et al. 2021) . As a result, the maximum possible soil moisture retention depth map was created cell-by-cell
as shown in figure (5 a, b).

Similar to flood hazard mapping, RWH mapping in the Wadi Nisah study region is based on an average of
annual max-24hr Rainfall depth as one of the AHP criteria for mapping the RWH. Therefore, it was
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created for each cell raster data using the Kriging geostatistics approach for historical rainfall data, as
shown in figure 5c.

3.1.1 Flash flood hazard map

The flash flood hazard map for the Wadi Nisah study region was created by overlaying for categorized
maps of the criteria that were chosen in the AHP structure based on their flash flood hazard rating choice
(table 4). As illustrated in Figure 6, these criteria were Elevation, Drainage Density, Slope, and Direct
Runoff Depth at 50-Year Return Period, Topographic Witness Index, and Curve Number. Then, using the
raster calculator tool in ArcMap to extract the final map of flash flood hazard, each of the criteria is given
its proportionate weight according to table (5).

According to the weighted linear combination, this overlay final map of flash flood hazard was classified
into five classes. As indicated in figure, these courses were very risky, dangerous, moderately dangerous,
safe, and very safe. Figure 8 shows that the highly risky and dangerous classifications accounted for
21.55 %. These are places in the settled regions that are near to the main channel of stream order 7 and
are typically at low altitudes. Nonetheless, the moderate hazard was 65.29 % of the total area, while the
safe and extremely safe classes accounted for 13.15 %.

When comparing the flood hazard map with the elevation map, all of the highly risky and dangerous
areas were found to be in areas with lower elevations, with the majority of them being less than 642 m.
The negative correlation between elevation and precipitation contributes to this, although it is not the
primary factor. The visual interpretation of flash hazard maps and comparison between flash hazard
maps and slope maps has been shown to be significantly merged on the micro level, which is primarily
due to the change of pathway, also substantially blended in the Wadi Nisah region of investigation.

The additional hazard and hazardous locations in the Flash Flood Risk map were created for each sub-
basin of Wadi Nisah utilizing ArcMap attribute table as shown in Table 5 for the comparison of flash
floods among AHP analyzing and morphometric analysis.

Table 5 Distribution of the flood risk areas using AHP analysis in Wadi Nisah
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Sub-basin  Area of sub-basin Area of extra dangerous and Percentage of dangerous

No (Km?) dangerous (Km?) area

1 63.642204 1.750793844 2.75%
2 76.019228 5.245702604 6.90%
3 70.904 8.774722712 12.38%
4 45.20139 9.751508373 21.57%
5 110.219101 10.15561139 9.21%
6 354.069741 57.33556672 16.19%
7 19.091777 6.759039202 35.40%
8 152.274961 32.45256444 21.31%
9 35.119855 5.704522175 16.24%
10 150.02387 33.44672397 22.29%
11 159.113482 22.65867792 14.24%
12 21.704524 2.699974089 12.44%
13 38.840428 12.81438742 32.99%
14 849.996967 241.8957683 28.46%

Table 5 shows that the sub-basins no. (7, 13, 14, and 4) have the highest percentages of risky regions for
flood susceptibility based on AHP analysis, suggesting that AHP and morphometric analysis for flash

flood hazard assessment in Wadi Nisah were mostly in accord.

3.1.2 Rainfall harvesting map

The AHP multi-criteria assessment analysis assisted in establishing general rainwater harvesting
suitability regions. Excellent, very good, moderate, poor, and inappropriate appropriateness are five similar
units that indicate possible water harvesting locations. The RWH map was created by overlaying for
classified maps of the criteria that were picked in AHP structure according to their ranking decision of
RWH appropriate areas, similar to the flood hazard map (table 5). As illustrated in figure 9, these criteria
include Slope, Land cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall
cell-to-cell raster data. Then, using the raster calculator tool in ArcMap, each of the criteria is given its
proportionate weight, as indicated in table (5) to produce the final map of prospective water harvesting

sites, as shown in figure 10.

Some of the research area's northern and middle sections were judged to be appropriate for water
harvesting, based on the flood hazard map. The northern zone is well defined by its steep slopes and
extensive hydrological network. The primary locations identified as feasible water collection zones are
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located below 650 m in elevation and on slopes of less than 14 degrees. The primary locations identified
as low and extremely low suitability zones are located in the southern part of the research area. These
zones can be found at heights of more than 650 m and slopes of more than 28 degrees. Rainfall depth
and slope had a greater effect than any other parameter on the zones categorized as low and very low
suitable for water harvesting. According to the prospective sites map for water harvesting, the appropriate
and high suitability regions comprise around 321.87 km?. (15 % of total area). As indicated in figure 10
below, the low and extremely low suitability zones cover around 1230.07 km2 (57.31 % land), whereas the
moderate suitability zone covers just 594.27 km2 (27.69 % area).

From the RWH final map in Wadi Nisabh, it can be seen that all of the highest suitable areas for rainwater
harvesting (excellent class) are located in the “dangerous class” on the hazard final map of flash flood,
and vice versa, implying that flood-prone areas are not required to be valid for water harvesting, but must
be identified to protect lives and plants.

3.2 Suitability analysis for construction of dams in Wadi
Nisah

The prospect of dams being built to minimize flood risks and contribute to the harvesting of water arising
from floods in Wadi Nisah was investigated in this section, based on the identification of dam sites, the
development of dam profiles, and the storage of reservoir for these dams.

3.2.1 Sites proposed for dams

To choose appropriate dam locations, an integrated dataset consisted of a rainwater harvesting potential
layer, drainage stream order layer, Triangulated Irregular Network

(TIN) produced from DEM, and profile graph based on DEM was utilized. As a consequence, two potential
dam sites have been suggested. Figure 11 depicts the position of planned dams with a RWH layer, while
table 6 lists coordinates of the proposed dams' locations.

Table 6 coordinates of proposed dams in Wadi Nisah

Dam No Longitude (E) Latitude (N)

Dam1  from  46031'7.1496"  24°15 28.3104"
to 46° 31'33.7476"  24° 15 9216

Dam2  from  46033'95652"  24°20' 48.2388"

to 46° 33' 16.8768"  24°20' 38.148"
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All dams are built in or near mountainous areas with good valley shapes and high precipitation and
runoff values. Dam number (1), on the aspect of drainage order, is in the 7th order of drainage, whereas
dam number (2) is in the 5th order. The following considerations are likely to explain why all proposed
dam sites are placed in higher levels of drainage networks: first, when comparing proposed dam sites to
slope maps, the two dams are located in low slope areas, which have a relatively high rank to water
harvest in the RWH map. Second, when the proposed dam locations were compared to the stream order
map, the greater degree of stream order was associated with a relatively high rank for water harvest in the
RWH map and a high projected for surface runoff in the flash flood map. Third, data from the whole Wadi
Nisah was processed as a single input during the creation of stream order layer data, resulting in a
multimillion level variance of accumulation value. Furthermore, the flow accumulation model overlooks
consumption of water during transit. The hydrograph curves at the dam sites were created using the SCS-
CN technique and the HEC-HMS model to aid in hydraulic design for planned dams, as illustrated in figure
12 (A and B). Appendix Table A4 and A5 were created to summarize the results of dam hydrologic
models.

3.2.2 Profile of proposed dams Profile

Profiles of proposed dams depending on their location were created using DEM, Triangulated Irregular
Network (TIN), and 1-meter interval contour layers. The dam profile includes the elevation of the dam, the
height of the dam, the width of the dam, the elevation of the reservoir surface, the maximum storage
capacity of the reservoir, the maximum surface area of the reservoir, and the catchment area..

There are three categories of dams, according to Robinson (2006): small dams, middle dams, and big
dams. Only small and intermediate prospective dams for water harvesting were discovered in this study,
as shown in table 7.

Table 7 Size classification of dams

Category Storage (m3) Height (meter)
Small dams < 1,234,000 and = 61,600 <125and =75
Intermediate Dam = 1,234,000 and < 61,675,000 = 12.5and<30.5

Large Dam > 61,675,000 > 30.5
Figure 13 exhibits the multiple volumes of water that may be retained in Dam1's position as well as the
dam's profile. It is located at from 46° 31' 7.1496" E and 24° 15' 28.3104" N to 46° 31' 33.7476" E and 24°
15'9216" N. The dam's elevation is 648 m above sea level. The dam stands 648 meters above sea level.
Table 8 displays Dam 1's storage capacity at various heights. Dam 1 has a maximum height of 6.21 m, a
storage capacity of 4.32 million cubic meters measured from the drainage bed to the dam's top, and a
surface area of 1.8 km2 measured from the drainage bed to the dam's top. According to table 8, Dam 1

was classified as a small dam. The catchment area of Dam 1 is about 1285.85 kmZ. In addition, the
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volume of runoff from the catchment of Dam 1 is about 29.35 million cubic meter at 100-years return
period.

Table 8 Characteristics of proposed Dam 1

I(Er|716)vati0n (Drﬁ)m height (Drﬁ)m width Storage capacity (m®)  Max surface area (m?)
647.7899 0 0 0 0

648 0.21 5 897.990314 12225.29292

649 1.21 320 38780.70583 54314.64617

650 2.21 505 215699.2552 251886.7453

651 3.21 580 681616.3844 515899.4761

652 4.21 655 1333528.876 701389.5395

653 5.21 675 2608209.792 1358737.186

654 6.21 725 4328509.123 1805825.676

Figure 14 shows the multiple volumes of water that may be held in Dam 2's position as well as the dam's
profile. It is located at from 46° 33' 9.5652" E and 24° 20' 48.2388" N to 46° 33' 16.8768" E and 24° 20'
38.148" N. The dam is at a height of 664.4 meters above sea level. Table 8 illustrates the storage capacity
of Dam 2 at various heights. Dam 2 has a maximum height of 9 meters, a maximum storage capacity of
4 million cubic meters measured from the drainage bed to the top of the dam, and a maximum surface
area of 1.268 square kilometers measured from the drainage bed to the top of the dam. Dam 2 was
classed as a minor dam according to table 9. The catchment area of Dam 2 is approximately 154.8 kmZ.
Furthermore, during a 100-year return period, the volume of runoff from Dam 2's catchment is about 3.19
million cubic meters.

Table 9 Characteristics of proposed Dam 2
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Elevation (m)  Dam height Dam width Storage capacity Max surface area (m2)
(m) (m) (m3)

664.3901978 0 0 0 0
664.4803161 0.09 25 144.211507 1911.871687
665.4803161 1 297.5 40900.93225 44301.88769
666.4803161 2 377.5 90588.4336 54201.76447
667.4803161 3 400 167112.3879 84347.85319
668.4803161 4 425 257524.7908 96918.01217
669.4803161 5 445 646700.3523 422114.5187
670.4803161 6 472.5 1166220.089 553772.0419
671.4803161 7 917.5 1876622.667 759731.7304
672.4803161 8 947.5 2774328.069 947661.0919
673.4803161 9 573.48 3976104.499 1268372.625

In general, existing data was used to identify an appropriate region for potential dam sites. Other
variables, such as socioeconomic status, were not available for use in this study. Furthermore, the
population distribution of the villages.

4. Conclusion

In arid regions, such as Saudi Arabia, the water scarcity is a critical issue due to increasing the water
demand, however the water resources are limited with the rainfall events. Thus, water harvesting of flash
floods in such regions is a must and essential for the local society. GIS software and satellite images are
frequently utilized in quantitative analysis to assess flash flood hazard and drainage basin suitability for
RWH because they can gather, process, and analyze huge data sets in a short amount of time. This
research was carried out using a spatiotemporal distributed model based on multi-criteria decision
analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria
Decision-Making tools (MCDM). The research included a multi-criteria decision making analysis (MCDM)
in order to determine the potential hazards of Wadi Nisah in space and in time and assess the adequacy
for RWH. Analysis of the flood risk and optimal RWH location was based on the Analytical Hierarchy
Process. The flood hazard mapping criteria were elevation, drainage density, slope, direct runoff depth at
50 years return period, Topographic witness index, and Curve Number, according to the Multi-criteria
decision analysis, while the criteria for RWH were Slope, Land cover, Stream order, Lineaments density,
and Average of annual max-24hr Rainfall. The weight of each criteria was estimated based on Analytical
Hierarchy Process (AHP). Also, elevation, drainage density, Slope, Direct runoff depth at 50-year return
period, Topographic witness index, and Curve Number were the hazard criteria, whereas Slope, Land
cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall were the RWH criteria.

Page 16/36



A weighted summation utilizing the weights produced by pairwise comparison was used to integrate the
raster layers of all criterion. In terms of percentages, 21.55 % of the entire area in Wadi Nisah was
classified as highly hazardous and dangerous; 65.29 % area was classified as moderate; and 13.15
percent of the total area was classified as safe and very safe in flash flood hazard classifications. Only
15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of the basin has a moderate
and a low or extremely low potentiality of RWH, respectively.

Besides the RWH suitability map, a suitability map analysis, a drainage network, a drainage outlet, a
triangular DEM-based irregular system (TIN) and a DEM-based profiled graph showed two potential dam
sites. A profile of each dam comprised a cross-section of the dam site, potential dam heights, potential
dam widths, dam height, potential storage capacity, and reservoir surface with a dam, as well as a
proposed dam sites were developed. All the dam locations in Wadi Nisah were planned in a low altitude
area. The maximum height of dams, which corresponded to the cross section of dam locations, varied
from 6.2 m to 9 m; maximum width of dams varied from 573.48 m to 725 m; the maximum storage
capacity of reservoirs, corresponding to distribution of topographic conditions in surrounding area, varied
from 3976104.499 m?3 to 4328509.123 m?3; the maximum surface area of reservoir varied from
1268372.625 m?to 1805825.676.14 m?.

However, the importance of this study and results as preliminary for sustainable flash flood management
and water harvesting, especially for the local society and the results should be considered by the decision
makers for further steps for better and secure water management in such water scarcity regions. One
source of uncertainty in this study was the assessment on functions of preference value of criteria for
measuring flash flood hazard and RWH in the Wadi Nisah area. The preference values for all of the
criteria classes had linear functions, which were probably correct for some criteria but incorrect for others.
Although the relative preference judgements within each criteria were based on previous research, the
allocation weight value judgments were subjective and difficult to confirm in simple experiments. As a
result, additional research into these judgements will be required for future research in the study location.
Furthermore, high-resolution DEM data, such as 2.5 m, should be collected since the topographic
characteristics derived from DEM vary significantly with resolution.
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Location map of Wadi Nisah.
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Flowchart of AHP method for flash flood hazard and suitable locations for RWH mapping
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Nisah c) Average of annual max-24hr rainfall map.
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The criteria maps for AHP of flash flood hazard in Wadi Nisah.
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Figure 7

Flash flood hazard map for Wadi Nisah.
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Figure 8

Percentage of area chart covered by different classes of flood Hazard in Wadi Nisah.
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Figure 9

Criteria maps for AHP of Rainwater harvesting in Wadi Nisah.
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Figure 10

Percentage of area covered by different rainwater harvesting suitability in Wadi Nisah.
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Figure 11

Location of two proposed dam sites with RWH map.in Wadi Nisah
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Figure 12

A) Hydrograph curve for Dam (1) at different return periods, B) Hydrograph curve for Dam (2) at different

return periods.
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Figure 13

Cross section of proposed Dam 1.
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Figure 14

Cross section of proposed Dam 2.
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