Pathogens, plasmids, and cells
The previously described Mhr-DL strain (CGMCC No. 11092) was used as the coating antigen for screening and Western blot analysis of mAbs [27]. Anti-Mhr mouse serum was prepared using the Mhr-DL strain as an immunogen. The baculovirus transfer vector pFastBac™1 (Invitrogen, Carlsbad, CA, USA) was used to construct the pFastBac™1-His-p37 plasmid, which expressed the complete P37 protein. The prokaryotic expression vector pGEX-6P-1 (GE Healthcare, Uppsala, Sweden) was used to express the truncated P37 protein. The insect cell line Spodoptera frugiperda (sf21) (Invitrogen, Carlsbad, CA, USA) was cultured in Grace’s Insect Medium (Invitrogen) at 27°C to propagate recombinant baculovirus. The SP2/0 myeloma cell line (ATCC® CRL-1581™) was cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Grand Island, NY, USA) with 10% inactivated fetal bovine serum (FBS, Thermo Fisher Scientific, North Shore City, New Zealand) in a humidified incubator with 5% CO2 at 37°C and was then fused with mouse spleen cells.
Acquisition of the p37 gene and generation of recombinant baculovirus
The p37 gene fragment was amplified by PCR with forward (5´-CGGGATCCATGCTGAAGAAGCTGAAG-3´) and reverse (5´-CCGCTCGAGTTACTTGATGGCCTTCTC-3´) primers designed using Premier 5.0 software (PREMIER Biosoft, Palo Alto, CA, USA) based on the reference sequence (GenBank Accession No. X14140.1). The signal peptide sequence was removed from the p37 gene coding region and the p37 gene was optimized and synthesized by BGI Co. (Beijing, China). For protein purification, a 6× His-tag was fused to the NH2-terminal end of the p37 gene. The gene sequence was optimized to obtain the highest possible level of expression, and the target gene (1140 bp) was subsequently cloned into the expression vector pFastBac™1 via two restriction sites (BamH I and Xho I) (Fig. 1).
The linearized baculovirus DNA was transformed into competent DH10Bac (Invitrogen) according to the manufacturer’s instructions. Identification of recombinant baculovirus was carried out using universal M13 primers (forward primer: 5'-GTTTTCCCAGTCACGAC-3', reverse primer: 5'-CAGGAAACAGCTATGAC-3'). pFastBac™1-His-P37 was transfected into logarithmic phase Sf21 insect cells according to the Bac-to-Bac® Baculovirus Expression System instructions (Invitrogen). When the cells exhibited obvious cytopathic effects, the cell supernatant was collected as the first generation recombinant baculovirus and designated P1 baculovirus. P1 baculovirus was then used to infect cells by performing a viral plaque assay to generate a high viral titer of P2 baculovirus. Prepared P2 baculovirus was used for expression studies.
Expression and purification of P37 protein
For P37 protein expression, three generations of high titer seed virus stocks were prepared by infecting Sf21 cells at a multiplicity of infection (MOI) of 0.1 plaque forming units (PFUs). Cells in 24-well plates were infected with pFastBac™1-His-P37 baculovirus, and uninfected Sf21 cells were used as mock control. The cell culture medium was aspirated after 60 h and fixed with 10% paraformaldehyde (500 μL per well) at room temperature for 15 min. The Sf21 cells were then fixed with 0.2% TritonX-100 for 10 min, washed three times with phosphate buffered saline (PBS), and incubated with mouse anti-Mhr serum (Anti-Mhr serum was prepared and stored by our laboratory, and diluted 1:500 in PBS) at 37°C for 1 h. The cells were then washed three times with PBS, incubated with DyLight 488 AffiniPure Goat Anti-Mouse IgG (H+L) (diluted 1:500 in PBS; Pierce, Rockford, IL, USA) at 37°C for 1 h, and washed three times with PBS. The fluorescent signal was visualized with an EVOS inverted fluorescence microscope (Life Technologies, Carlsbad, CA, USA).
Sf21 cells infected with 5 MOI pFastBac™1-His-P37 virus were harvested 72 h post infection. Cells were suspended in PBS (1% of the original volume), lysed by ultrasonic lysis for 30 min (pulse on 3 s, pulse off 5 s, 130 watts), centrifuged at 9000 rpm for 30 min at 4 °C to remove the precipitate, and purified using Ni-NTA affinity chromatography (Genscript, Nanjing, China). The purified sample was mixed with 5× loading buffer at a ratio of 4:1 and boiled for 10 min. The expressed protein was separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. The membrane was blocked with 5% skim milk powder in PBS solution overnight at 4°C, incubated with anti-Mhr mouse serum (1:100) at room temperature for 1 h, and washed three times with PBS containing 0.5% Tween 20 (PBST). After incubation for 1 h at room temperature with DyLight™ 680-Labeled Antibody To Mouse IgG (H +L) (1:10000) (KPL, Gaithersburg, MD, USA), washed three times with PBST, and scanned using an Odyssey infrared imaging system (Licor Odyssey, Lincoln, NE, USA).
Preparation of mAbs against P37 protein
Four 6-week-old female BALB/c mice were purchased from the Laboratory Animal Center of Harbin Veterinary Research Institute, CAAS (Harbin, China). The mice were immunized with 80 μg of the purified P37 protein. Protein emulsification and immunization were performed as previously described [28]. P37 protein emulsified with complete Freund’s adjuvant (Sigma-Aldrich) was injected subcutaneously. After an interval of 3 weeks, the mice were boosted with P37 protein emulsified in incomplete Freund’s adjuvant (Sigma-Aldrich). After a 2-week interval, mice were intraperitoneally administered 80 μg of P37 protein without adjuvant. Mice were euthanized by cervical dislocation 3 d later and their splenocytes were fused with SP2/0 cells as previously described [29]. The fused cells were mixed with DMEM medium containing hypoxanthine-aminopurine-thymidine (HAT) (Sigma-Aldrich, New York, NY, USA) and 20% FBS. Cells were cultured together and the media were replaced with selection medium containing hypoxanthine-thymidine (HT) (Sigma-Aldrich) and 10% FBS after 5 d [23]. Hybridoma supernatants were collected after 7 d and screened for the presence of Mhr-specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA) [26]. The purified P37 protein was used as the coating antigen at a concentration of 5 ng/μL as previously described [26]. Positive hybridoma cells were cloned three times by limiting dilution and stored in liquid nitrogen.
Characterization of mAbs against P37 protein
The subtypes of mAbs produced were determined using the SBA Clonotyping System-HRP kit (Southern Biotech, Birmingham, AL, USA) according to the manufacturer’s instructions. The hybridoma supernatant was added as a primary antibody and horseradish peroxidase (HRP)-conjugated goat anti-mouse antibody was used as the secondary antibody. Color development and screening were performed as described above. The reactivity of mAbs to Mhr was determined by Western blot analysis as described above and Mhr-specific antigen in the lung tissue of Mhr-infected pigs was detected using immunohistochemical assays. The proteolytic antigen retrieval step of the immunohistochemical assay was modified to include proteinase K (Merck Life Science Co. Ltd, Shanghai, China). Uninfected lung tissue was used as the negative control.
Preliminary identification of P37 protein B cell line epitopes using P37-specific mAbs
To identify the epitopes of the mAbs produced against the P37 protein, a series of nucleotide sequences encoding aa regions of P37 were cloned into the BamH I and Xho I sites of pGEX-6P-1 (Fig. 9). After sequencing, E. coli BL-21 cells were transformed with the recombinant plasmids, which were induced by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated at 37°C with shaking for 6 h. Cultures were harvested and lysed, and lysates were analyzed by SDS-PAGE and Western blot. Lysate from induced pGEX-6p-1 E. coli BL-21 cells was used as the negative control. The prepared mAbs against the P37 protein were used as the primary antibody, and DyLight™ 680-Labeled Antibody to Mouse IgG (H + L) (1:10,000) was used as the secondary antibody. The plate was incubated for 1 h at room temperature in the dark, washed three times with PBST, and analyzed using the Odyssey infrared imaging system (Licor Odyssey).
Precise localization of the P37 protein B cell epitope
To define the minimal linear epitope of the P37 protein, aa199–226 were deleted one by one (listed in Table 2) and their corresponding peptides were assessed by Western blot as described above. The immunoreactivity of the core epitope to corresponding mAbs was then analyzed.
Multiple alignment of P37 amino acid sequences
Multiple alignments of aa sequences of the P37 protein of seven Mhr isolates (GenBank accession Nos. CP002170.1, CP002669.1, CP003231.1, CP016817.1, NC_019552.1, NC_022807.1, and NZ_LS991950.1) were performed using the Clustal W method within DNASTAR software version 7.0 (https://www.dnastar.com/software/).
Homology modeling of P37 epitopes
Homology modeling of aa1–379 of the P37 protein was performed using SWISS-MODEL (https://www.swissmodel.expasy.org/interactive). The spatial locations of the identified P37 protein epitopes were determined by mapping the epitopes to a three-dimensional model of the P37 protein using Chimera 1.11.2 software (https://www.cgl.ucsf.edu/chimera/).