Results of the systematic literature search
A total of 234 articles were retrieved from the electronic database. Additional four articles were identified through manual search, bibliographic search, and commentator suggestions. Finally, 28 studies were included according to the defined inclusion and exclusion criteria (Figure 1). Countries and study periods included in all articles were shown in Table 1. The geographical distributions of the literature were Asia (5, 17.86%), Australia (1, 3.57%), South America (1, 3.57%), North America (4, 14.29%) and Europe (17, 60.71%), containing 24 cities in 14 countries.
Bacterial isolates
After comprehensive and detailed data compilation, we collected 6685 strains of anaerobic bacteria. The most 4 common genera (> 500) in this article were Bacteroides spp. (1952), Clostridium spp. (1599), Propionibacterium spp. (611) and Prevotella spp. (509). A total of 5125 anaerobic bacteria were analyzed by MALDI biotyper, and VITEK MS analyzed a total of 1,609 anaerobic bacteria. In addition, 49 anaerobic bacteria were analyzed by both MALDI-TOF MS systems.
Performance of the MS system
The overall statistical results of the meta-analysis at the genus and species levels identification were summarized using a forest plots of random-effects model (Figure2 and Figure 3) [3,20-45]. Of these, 6008 (92%; 95% CI of 90% to 93%) were correctly identified at the genus level, while 5656 (84%; 95% CI of 81% to 87%) were correctly identified at the species level by MALDI-TOF MS using a random-effects model.
The pooled identification results of MALDI-TOF MS by random-effects for all anaerobic genera were shown in Table 2. The overall correct identification ratio of MALDI-TOF MS to anaerobic bacteria ranged from 60% to 100% at the genus level and ranged from 51% to 100% at the species level. Significant heterogeneity was found both at the genus level (P < 0.001; I2 = 96.6%) and the species level (P <0.001; I2=98.0%). Identification accuracy of Bacteroides spp. was the highest at 96% with a 95% CI of 95% to 97%. The higher proportion of anaerobic bacteria was Lactobacillus spp., Parabacteroides spp., Clostridium spp., Propionibacterium spp., Prevotella spp., Veillonella spp. and Peptostreptococcus spp. The correct identification rate was higher than 90%. Identification accuracy of Bifidobacterium spp., Solobacterium spp., Finegoldia spp., Capnocytophaga spp., Parvimonas spp., Peptoniphilus spp., Slackia spp., Actinomyces spp., Ruminococcus spp. and Tissierella spp. was similar with an overall correct identification ratio at 80%, followed by Fusobacterium spp., Eggerthella spp. with an identification proportion above 70%. Identification accuracy of Actinobaculum spp., Atopobium spp., Anaerococcus spp. and Flavonifracter spp. was similar with an overall correct identification ratio at 60%. The lowest performance of MALDI-TOF MS was in Eubacterium spp., Bilophila spp., Butyricimonas spp. and Porphyromonas spp. (50%). Multiple factors contributed to this result, including the category of strains, the proportion of common and unusual species, or the reference library version.
Subgroup meta-analyses
We selected the genera (sample number not smaller than 5) identified by MALDI biotyper and VITEK MS to compare the identification accuracy for the same genus of the two systems (Table 3). The identification accuracy rate of MALDI biotyper was higher than VITEK MS for Parabacteroides spp., Eggerthella spp., Peptostreptococcus spp., Parvimonas spp., Bacteroides spp., Clostridium spp. and Peptoniphilus spp., and the efficacy of the two systems were similar for Prevotella spp. and Actinomyces spp. However, the heterogeneity of MALDI biotyper was more significant. In addition, the correct rate of MALDI biotyper for some strains (such as Finegoldia spp. and Fusobacterium spp.) was lower than VITEK MS, and the heterogeneity of MALDI biotype was higher than the latter. To sum up, the results of Table 3 showed that the correct rate of MALDI biotyper identification of anaerobic bacteria was higher than that of VITEK MS, while the heterogeneity of the MALDI biotyper was more significant.
In additional, the identification rate of anaerobic bacteria in European countries (species: 84%, genus: 88%) was lower than that in Asia (species: 84%, genus: 91%) and North America (species: 86%, genus: 94%). The protocol for the studies at different cities was the same. A total of 21 articles reported on the media, including anaerobic horse blood agar, chocolate agar, blood culture bottle, schaedler agar, bacteroides bile esculin agar, CDC anaerobic blood agar, brucella blood plates, columbia blood plates and blood plates. Among them, brucella and columbia blood plates were two most frequently used media (species 73% and genus 92%; species 73% and genus 75%).
It was worth noting that VITEK MS incorrectly identified Actinomyces georgiae as Capnocytophaga gingivalis, MALDI biotyper incorrectly identified Clostridium spp. as Enterococcus spp. (Table 4), and MALDI biotyper also incorrectly identified some rare anaerobic bacteria Mogibacterium timidum and Parvimonas micra as other bacteria, probably due to the lack of corresponding standard spectra in the database.