Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Pædiatrica 96(5):644-647
Barton K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. Available from https://CRAN.R-project.org/package=MuMIn accessed 16 Sep 2020)
Brownstein J, Skelly D, Holford T, Fish D (2005) Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146(3):469-475
Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer-Verlag, New York
Dominik C, Seppelt R, Horgan FG, Marquez L, Settele J, Václavík T (2017) Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agric., Ecosyst. Environ. 246 (Supplement C) :269-278
Dominik C, Seppelt R, Horgan FG, Settele J, Václavík T, Corley J (2018) Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. Journal of Applied Ecology 55(5):2461-2472
Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):027-046
Eisen L, Eisen RJ (2011) Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annu. Rev. Entomol. 56(1):41-61
ESRI (2016) ArcGIS desktop: release 10.4. Environmental Systems Research Institute, Redlands, CA, USA
FAO (2019) World Food and Agriculture – Statistical pocketbook
Fisheries MoAFa (2001) Regulations for the Agricultural Product Standards (Notification No. 244 of the Ministry of Agriculture, Forestry and Fisheries of Japan). Available from http://www.maff.go.jp/j/kokuji_tuti/kokuji/k0001439.html accessed 16 Sep 2020)
Gardiner MM, Landis DA, Gratton C et al (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecological Applications 19(1):143-154
Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biological Invasions 10(5):585-590
Goka K, Hayasaka D (2013) Can the ecological risk assessment of pesticide conserve biodiversity?: perspective through the mesocosm test as a high tier risk assessment. JpnJ Environ Toxicol 16(2):21-28
Hayashi H, Nakazawa K (1988) Studies on the bionomics and control of the sorghum plant bug, Stenotus rubrovittatus Matsumura (Hemiptera: Miridae) 1. Habitat and seasonal prevalence in Hiroshima Prefecture. Bull Hiroshima Prefect Agric Exp Stn 51:45-53
Heong KL, Schoenly KG (1998) Impact of insecticides on herbivore-natural enemy communities in tropical rice ecosystems. In: Haskell PT and McEwen P (eds) Ecotoxicology: pesticides and beneficial organisms. Kluwer, Dordrecht, Netherlands, pp 381-403
Hori M, Namatame M (2013) Host plant volatiles responsible for the invasion of Stenotus rubrovittatus (Heteroptera: Miridae) into paddy fields. Journal of Applied Entomology 137(5):340-346
Kashin J, Hatanaka N, Ono T, Oyama J, Kidokoro T (2009) Effect of Scirpus juncoides Roxb. var. ohwianus on occurrence of sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae) and pecky rice. Jpn. J. Appl. Entomol. Zool. 53(1):7-12
Kawasaki T, Watanabe K, Domon K, Ogata E, Yoshimura T (2007) Relationship between occurrence of rice leaf bug, Trigonotylus caelestialium (Heteroptera: Miridae) and meteorogical conditions. Annual Report of Plant Protection of North Japan 2007(58):84-87
Kondoh H, Yamanaka T, Saito S, Shoda-Kagaya E, Makino Si (2015) Development of a hazard map for oak wilt disease in Japan. Agric. For. Entomol. 17(2):205-213
Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agronomy Journal 94(2):198-209
Lacasella F, Marta S, Singh A et al (2017) From pest data to abundance-based risk maps combining eco-physiological knowledge, weather, and habitat variability. Ecological Applications 27(2):575-588
Lee JG, Hong SS, Kim JY, Park KY, Lim JW, Lee JH (2009) Occurrence of stink bugs and pecky rice damage by stink bugs in paddy fields in Gyeonggi-do, Korea. Korean J. Appl. Entomol. 48(1):37-44
Meentemeyer R, Rizzo D, Mark W, Lotz E (2004) Mapping the risk of establishment and spread of sudden oak death in California. Forest Ecology and Management 200(1–3):195-214
Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecology 31(6):1177-1194
Miller JR, Turner MG, Smithwick EAH, Dent CL, Stanley EH (2004) Spatial Extrapolation: The Science of Predicting Ecological Patterns and Processes. Bioscience 54(4):310-320
Moraga AD, Martin AE, Fahrig L (2019) The scale of effect of landscape context varies with the species’ response variable measured. Landscape Ecology 34(4):703-715
Murray JV, Low Choy S, McAlpine CA, Possingham HP, Goldizen AW (2011) Evaluating model transferability for a threatened species to adjacent areas: Implications for rock-wallaby conservation. Austral Ecol., 1. pp. 76-89
Nagasawa A, Higuchi H (2012) Suitability of poaceous plants for nymphal growth of the pecky rice bugs Trigonotylus caelestialium and Stenotus rubrovittatus (Hemiptera: Miridae) in Niigata, Japan. Appl. Entomol. Zool. 47(4):421-427
Paik CH, Choi MY, H. Y. Seo, Lee GH, Kim JD (2007) Stink bug species and host plants occurred in fallow lands for rice product regulation. Korean J. Appl. Entomol. 46(2):221-227
Pimentel D, Stachow U, Takacs DA et al (1992) Conserving biological diversity in agricultural/forestry systems. Bioscience 42(5):354-362
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2020) nlme: Linear and nonlinear mixed effects models. R package version 3.1-148. Available from https://CRAN.R-project.org/package=nlme accessed 16 Sep 2020)
Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2013) Effect of crop management and landscape context on insect pest populations and crop damage. Agric., Ecosyst. Environ. 166(0):118-125
Saito M, Momose H, Mihira T (2011) Both environmental factors and countermeasures affect wild boar damage to rice paddies in Boso Peninsula, Japan. Crop Protection 30(8):1048-1054
Saito M, Momose H, Mihira T, Uematsu S (2012) Predicting the risk of wild boar damage to rice paddies using presence-only data in Chiba Prefecture, Japan. Int. J. Pest Manage. 58(1):65-71
Sattler C, Gianuca AT, Schweiger O, Franzén M, Settele J (2020) Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agric., Ecosyst. Environ. 297
Schellhorn NA, Parry HR, Macfadyen S, Wang Y, Zalucki MP (2015) Connecting scales: Achieving in-field pest control from areawide and landscape ecology studies. Insect Science 22(1):35-51
Schoenly KG, Cohen JE, Heong KL, Litsinger JA, Barrion AT, Arida GS (2010) Fallowing did not disrupt invertebrate fauna in Philippine low-pesticide irrigated rice fields. Journal of Applied Ecology 47(3):593-602
Sing T, Sander O, Beerenwinkel N, Lengauer T (2020) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):7881
Sugiura N, Koga S, Suzuki Y (2002) Relationship between occurrence of pecky rice caused by rice bugs and meteorological conditions in Kumamoto Prefecture. Kyushu Pl. Prot. Res. 48:54-59
Tabuchi K, Ichita T, Ohtomo R et al (2015) Rice bugs in the Tohoku region: the occurrence and their damage from 2003 to 2013. Bulletin of Tohoku Agricultural Research Center 117:63-115 (in Japanese with English summary)
Tabuchi K, Murakami T, Okudera S et al (2017) Predicting potential rice damage by insect pests using land use data: A 3-year study for area-wide pest management. Agric., Ecosyst. Environ. 249:4-11
Tabuchi K, Sakurai T (2019) Relationship between the occurrence of split-hull paddies and incidence of pecky rice damage caused by adults of two mirid pests, Stenotus rubrovittatus and Trigonotylus caelestialium (Hemiptera: Miridae): a comparison of eight rice varieties. Appl. Entomol. Zool. 63(4):181-188
Takada MB, Yoshioka A, Takagi S, Iwabuchi S, Washitani I (2012) Multiple spatial scale factors affecting mirid bug abundance and damage level in organic rice paddies. Biological Control 60(1):169-174
Takahashi Y, Kikuchi H (2013) Effect of Echinochloa spp. heading after August in paddy field on occurrence of pecky rice caused by Stenotus rubrovittatus. Annual Report of Plant Protection of North Japan 64:126-129
Takeda A, Oku K, Sugeno W, Yasuda T, Watanabe T (2012) Monitoring sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), with a synthetic sex pheromone trap in paddy fields. Jpn. J. Appl. Entomol. Zool. 56(1):26-29
Tscharntke T, Karp DS, Chaplin-Kramer R et al (2016) When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation 204:449-458
Vanreusel W, Maes D, Van Dyck H (2007) Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conservation Biology 21(1):201-212
Winqvist C, Bengtsson J, Aavik T et al (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology 48(3):570-579
Yasuda M, Mitsunaga T, Takeda A et al (2011) Comparison of the effects of landscape composition on two mirid species in Japanese rice paddies. Appl. Entomol. Zool. 46(4):519-525
Yushima K, Kiritani K, Kanazawa J (1973) Ecosystems and Agrochemicals. Iwanami Shoten, Publishers, Tokyo
Zhang W, Lu Y, van der Werf W et al (2018) Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. P. Natl. Acad. Sci. USA 115(33):E7700-E7709
Zharikov Y, Lank DB, Cooke F (2007) Influence of landscape pattern on breeding distribution and success in a threatened Alcid, the marbled murrelet: model transferability and management implications. Journal of Applied Ecology 44(4):748-759
Zou Y, Kraker J, Bianchi FJJA et al (2019) Do diverse landscapes provide for effective natural pest control in subtropical rice? Journal of Applied Ecology 57(1):170-180