[1] Aradhya MK, Potter D, Simon CJ. Cladistic Biogeography of Juglans (Juglandaceae) Based on Chloroplast DNA Intergenic Spacer Sequences. In: Motley TJ, Zerega N, Cross H, editors. Darwins Harvest New Approaches Orig Evol Conserv Crops. Columbia University Press; 2006. p. 143-170.
[2] Woodworth RH. Meiosis of micro-sporogenesis within the Juglandaceae. Am J Bot. 1930;17:863-869.
[3] Bernard A, Lheureux F, Dirlewanger E. Walnut: past and future of genetic improvement. Tree Genet Genomes. 2018;14:1.
[4] McGranahan G, Leslie C. Walnuts (Juglans). In: Moore JN, Ballington JR. Jr, editors. Genetic resources of temperate fruit and nut crops, part 2. Wageningen: The Netherlands; International Society of Horticultural Sciences; 1991. p. 907-951.
[5] Cook J, Oreskes N, Doran PT, et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett. 2016;11:1-8.
[6] Cooke JEK, Eriksson ME, Juntilla O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 2012;35:1707-1728.
[7] Campoy JA, Ruiz D, Egea J. Dormancy in temperate fruit trees in a global warming context: A review. Sci Hort. 2011;130:357-372.
[8] Chmielewski FM, Rötzer T. Response of tree phenology to climate change across Europe. Agric For Meteorol. 2001;108:101-112.
[9] Menzel A, Sparks TH, Estrella N, et al. European phenological response to climate change matches the warming pattern. Glob Change Biol. 2006;12:1969-1976.
[10] Khanduri VP, Sharma CM, Singh SP. The effects of climate change on plant phenology. The Environmentalist. 2008;28:143-147.
[11] Vitasse Y, François C, Delpierre N, et al. Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol. 2011;151:969-980.
[12] Luedeling E, Gassner A. Partial Least Squares Regression for analyzing walnut phenology in California. Agric For Meteorol. 2012;158-159:43-52.
[13] Črepinšek Z, Solar M, Štampar F, Solar A. Shifts in walnut (Juglans regia L.) phenology due to increasing temperatures in Slovenia. J Hortic Sci Biotechnol. 2009;84:59-64.
[14] Cosmulescu S, Ionescu MB. Phenological calendar in some walnut genotypes grown in Romania and its correlation with air temperature. Int J Biometeorol. 2018;62:2007-2013.
[15] Bernard A, Barreneche T, Delmas M, Durand S, Pommier C, et al. The walnut genetic resources of INRA: chronological phenotypic data and ontology. BMC Res Notes 2019;12-662.
[16] Vahdati K, Massah Bavani AR, Khosh-Khui M, Fakour P, Sarikhani S. Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: A case study of Iran. PLoS ONE. 2019;14(6): e0218725.
[17] Dirlewanger E, Quero-García J, Le Dantec L, et al. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity. 2012;109:280-292.
[18] Olukolu BA, Trainin T, Fan S, et al. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome. 2009;52:819-828.
[19] Charrier G, Bonhomme M, Lacointe A, Améglio T. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol. 2011;55:763-774.
[20] Eskandari S, Hassani D, Abdi A. Investigation on genetic diversity of Persian walnut and evaluation of promising genotypes. Acta Hortic. 2005;705:159-166.
[21] Hansche PE, Beres V, Forde HI. Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement. J Am Soc Hortic Sci. 1972;97: 279-285.
[22] Germain E. Inheritance of late leafing and lateral bud fruitfulness in walnut (Juglans regia L.). Phenotypic correlations among some traits of the trees. Acta Hortic. 1990;284:125-134.
[23] Dvorak J, Aradhya M, Leslie C, Luo MC. Discovery of the causative mutation of the lateral bearing phenotype in walnut. Walnut Research Reports. California Walnut Board. 2015. https://ucanr.edu/repository/a/?get=160313.
[24] Martínez-García PJ, Crepeau MW, Puiu D, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J. 2016;87:507-532.
[25] Marrano A, Martínez-García PJ, Bianco L, Sideli GM, Di Pierro EA, et al. A new genomic tool for walnut (Juglans regia L.): development and validation of the high‐density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnol J. 2019;17:1027-1036.
[26] Arab MM, Marrano A, Abdollahi-Arpanahi R, et al. Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Sci Rep. 2019;9:6376.
[27] Famula RA, Richards JH, Famula TR, Neale DB. Association Genetics of Carbon Isotope Discrimination in the Founding Individuals of a Breeding Population of Juglans regia L. Tree Genet Genomes. 2019;15:6.
[28] Arab MM, Marrano A, Abdollahi-Arpanahi R, Leslie CA, Cheng H, et al. Combining phenotype, genotype and environment to uncover genetic components underlying water use efficiency in Persian walnut. J Exp Bot. 2019;erz467.
[29] Marrano A, Sideli GM, Leslie CA, Cheng H, Neale DB. Deciphering of the Genetic Control of Phenology, Yield and Pellicle Color in Persian Walnut (Juglans regia L.). Front Plant Sci. 2019;10:1140.
[30] Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L) reference genome. bioRxiv 809798; doi:https://doi.org/10.1101/809798.
[31] Bernard A, Barreneche T, Lheureux F, Dirlewanger E. Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. PLoS ONE. 2018;13(11):e0208021.
[32] Astle W, Balding DJ. Population Structure and Cryptic Relatedness in Genetic Association Studies. Statist Sci. 2009;24:451-471.
[33] Paterson AH, Beavis WD. QTL analyses: power, precision, and accuracy. In: Paterson AH, editor. Molecular Dissection of Complex Traits. CRC Press: New York; 1998. p. 145-162.
[34] Wang SB, Feng JY, Ren WL, Huang B, Zhou L, et al. Improving power and accuracy of genome-wide association studies via multi-locus mixed linear model methodology. Sci Rep. 2016;6:19444.
[35] Zhang YM, Jia Z, Dunwell JM. Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits. Front Plant Sci. 2019;10:100.
[36] Amiri R, Vahdati K, Mohsenipoor S, et al. Correlations between some horticultural traits in walnut. HortScience 2010;45:1690-1694.
[37] Aradhya MK, Velasco D, Wang JR, Ramasamy R, You FM, et al. A fine‐scale genetic linkage map reveals genomic regions associated with economic traits in walnut (Juglans regia). Plant Breed. 2019;00:1-12.
[38] Bolaños-Villegas P, Yang X, Wang HJ, Juan CT, Chuang MH, et al. (2013). Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. Plant J. 2013;75:927-940.
[39] Behnke HD. Plant trichomes – Structure and ultrastructure: General terminology, taxonomic applications, and aspects of trichome-bacteria interaction in leaf tips of Dioscorea. In: Rodriguez E, Healey PL, Mehta I, editors. Biology and chemistry of plant trichomes. Plenum: New York; 1984. p. 1-21.
[40] Lin RZ, Li RQ, Lu AM, Zhu JY, Chen ZD. Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata: homology of floral envelopes in Juglandaceae. Bot J Linn Soc. 2016;181:279-293.
[41] Zhao ML, Ni J, Chen MS, Xu ZF. Ectopic Expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J Causes Late-Flowering and Heterostylous Phenotypes in Arabidopsis but not in Jatropha. Int J Mol Sci. 2019;20:2165.
[42] Cho LH, Pasriga R, Yoon J, Jeon JS, An G. Roles of Sugars in Controlling Flowering Time. J Plant Biol. 2018;61:121-130.
[43] Ponnu J, Wahl V, Schmid M. Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci. 2011;2:70.
[44] R Development Core Team. R: A language and environment for statistical computing. Vienna: Austria; R Foundation for Statistical Computing; 2008. Available online at: http://www.R-project.org/.
[45] Wickham H. Tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. 2017. https://CRAN.R-project.org/package=tidyverse.
[46] Wei T, Simko VR. Package "corrplot": Visualization of a Correlation Matrix (Version 0.84). 2017. https://github.com/taiyun/corrplot.
[47] Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 2015;67:1-48.
[48] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2008;81. Available online at: http://pngu.mgh.harvard.edu/purcell/plink/.
[49] Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a Pseudo-Testcross: Mapping strategy and RAPD markers. Genetics. 1994;137:1121-1137.
[50] Van Ooijen JW. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Netherlands; Kyazma B.V.; 2006.
[51] Kosambi D. The estimation of map distances from recombination values. Annals of Eugenics. 1944;12:172-175.
[52] Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77-78.
[53] Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics. 1999;152:1203-1216.
[54] Saintagne C, Bodénès C, Barreneche T, Pot D, Plomion C, Kremer A. Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity. 2004;92:20-30.
[55] Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B. A High-performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics. 2012;28:3326-3328.
[56] Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26: 2867-2873.
[57] Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics. 2014;197:573-598.
[58] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14:2611-2620.
[59] Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801-1806.
[60] Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes 2004;4:137-138.
[61] Lipka AE, Tian F, Wang Q, Peiffer J, Li M, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397-2399.
[62] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. 2012;44:825-830.
[63] Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12:e1005767.
[64] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289-300.
[65] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-265.
[66] Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225-2229.