1.Sisk, C. L. & Foster, D. L. The neural basis of puberty and adolescence. Nat. Neurosci. 7, 1040–1047 (2004).
2.Sisk, C. L. Hormone-dependent adolescent organization of socio-sexual behaviors in mammals. Curr. Opin. Neurobiol. 38, 63–8 (2016).
3.Danska, J. S. Sex Matters for Mechanism. Sci. Transl. Med. 6, 258fs40–258fs40 (2014).
4.Jansen, R. et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics 15, 33 (2014).
5.Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).
6.Ober, C., Loisel, D. A. & Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 9, 911–922 (2008).
7.Jessen, H. M. & Auger, A. P. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics 6, 857–61 (2011).
8.Sugathan, A. & Waxman, D. J. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol. Cell. Biol. 33, 3594–610 (2013).
9.Shen, E. Y. et al. Epigenetics and sex differences in the brain: A genome-wide comparison of histone–3 lysine–4 trimethylation (H3K4me3) in male and female mice. Experimental Neurology 268, 21–29 (2015).
10.Morrison, K. E., Rodgers, A. B., Morgan, C. P. & Bale, T. L. Epigenetic mechanisms in pubertal brain maturation. Neuroscience 264, 17–24 (2014).
11.Ratnu, V. S., Emami, M. R. & Bredy, T. W. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J. Neurosci. Res. 95, 301–310 (2017).
12.Shirtcliff, E. A., Dahl, R. E. & Pollak, S. D. Pubertal Development: Correspondence Between Hormonal and Physical Development. Child Dev. 80, 327–337 (2009).
13.Banks, W. A. Brain Meets Body: The Blood-Brain Barrier as an Endocrine Interface. Endocrinology 153, 4111–4119 (2012).
14.Herting, M. M. et al. The role of testosterone and estradiol in brain volume changes across adolescence: a longitudinal structural MRI study. Hum. Brain Mapp. 35, 5633–45 (2014).
15.Dai, J. & Scherf, K. S. Puberty and Functional Brain Development in Humans: Convergence in findings? Dev. Cogn. Neurosci. 100690 (2019). doi:10.1016/j.dcn.2019.100690
16.Vijayakumar, N., Op de Macks, Z., Shirtcliff, E. A. & Pfeifer, J. H. Puberty and the human brain: Insights into adolescent development. Neuroscience and Biobehavioral Reviews 92, 417–436 (2018).
17.Herting, M. M. & Sowell, E. R. Puberty and structural brain development in humans. Front. Neuroendocrinol. 44, 122–137 (2017).
18.Thompson, E. E. et al. Global DNA methylation changes spanning puberty are near predicted estrogen-responsive genes and enriched for genes involved in endocrine and immune processes. Clin. Epigenetics 10, 62 (2018).
19.Almstrup, K. et al. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood. Sci. Rep. 6, 28657 (2016).
20.Wyatt, A. K. et al. Changes in Methylation Patterns of Kiss1 and Kiss1r Gene Promoters across Puberty. Genet. Epigenet. 5, GEG.S12897 (2013).
21.Aylwin, C. F., Toro, C. A., Shirtcliff, E. & Lomniczi, A. Emerging Genetic and Epigenetic Mechanisms Underlying Pubertal Maturation in Adolescence. J. Res. Adolesc. 29, 54–79 (2019).
22.Wu, H. & Zhang, Y. Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell 156, 45–68 (2014).
23.Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U.S. A. 102, 10604–9 (2005).
24.Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell 14, 924–32 (2015).
25.Yu, H. & Gerstein, M. Genomic analysis of the hierarchical structure of regulatory networks. Proc. Natl. Acad. Sci. U.S. A. 103, 14724–31 (2006).
26.Singh, A. J., Ramsey, S. A., Filtz, T. M. & Kioussi, C. Differential gene regulatory networks in development and disease. Cell. Mol. Life Sci. 75, 1013–1025 (2018).
27.Dorn, L. D. & Biro, F. M. Puberty and Its Measurement: A Decade in Review. J. Res. Adolesc. 21, 180–195 (2011).
28.Shirtcliff, E. A. et al. Assessing Estradiol in Biobehavioral Studies Using Saliva and Blood Spots: Simple Radioimmunoassay Protocols, Reliability, and Comparative Validity. Horm. Behav. 38, 137–147 (2000).
29.Jones, M. J., Moore, S. R. & Kobor, M. Principles and Challenges of Applying Epigenetic Epidemiology to Psychology. Annu. Rev. Psychol. (2018). doi:10.1146/annurev-psych–122414–033653
30.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
31.van Dongen, J. et al. Genome-wide analysis of DNA methylation in buccal cells: a study of monozygotic twins and mQTLs. Epigenetics Chromatin 11, 54 (2018).
32.Theda, C. et al. Quantitation of the cellular content of saliva and buccal swab samples. Sci. Rep. 8, 6944 (2018).
33.Lee, F. S. et al. Adolescent mental health—Opportunity and obligation. Science (80-.). 346, 547–549 (2014).
34.Morrow, E. H. The evolution of sex differences in disease. Biol. Sex Differ. 6, 5 (2015).
35.Arathimos, R., Sharp, G. C., Granell, R., Tilling, K. & Relton, C. L. Associations of sex hormone-binding globulin and testosterone with genome-wide DNA methylation. BMC Genet. 19, 113 (2018).
36.Breton, C. V. et al. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ. Health Perspect. 125, 511–526 (2017).
37.Xu, H. et al. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum. Mol. Genet. 23, 1260–70 (2014).
38.Zhang, F. F. et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6, 623–629 (2011).
39.Maschietto, M. et al. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Sci. Rep. 7, 44547 (2017).
40.Liu, J., Morgan, M., Hutchison, K. & Calhoun, V. D. A study of the influence of sex on genome wide methylation. PLoS One 5, (2010).
41.Xu, H. et al. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum. Mol. Genet. 23, 1260–70 (2014).
42.Braun, P. R. et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry 9, 47 (2019).
43.Klein, S. L. et al. Opinion: Sex inclusion in basic research drives discovery. Proc. Natl. Acad. Sci. U.S. A. 112, 5257–8 (2015).
44.Morris, N. M. & Udry, J. R. Validation of a self-administered instrument to assess stage of adolescent development. J. Youth Adolesc. 9, 271–80 (1980).
45.Coleman, L. & Coleman, J. The measurement of puberty: a review. J. Adolesc. 25, 535–50 (2002).
46.Shirtcliff, E. A., Dahl, R. E. & Pollak, S. D. Pubertal Development: Correspondence Between Hormonal and Physical Development. Child Dev. 80, 327–337 (2009).
47.Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45, e22 (2017).
48.Teschendorff, A. E. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29, 189–196 (2013).
49.Zheng, S. C. et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics 10, 925–940 (2018).
50.Smith, A. K. et al. DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 168, 36–44 (2015).
51.Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
52.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
53.Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
54.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
55. Shen L, Sinai M (2019). GeneOverlap: Test and visualize gene overlaps. R package version 1.20.0, http://shenlab-sinai.github.io/shenlab-sinai/