1.Cosimi AB, Urton B, Colvin RB, Goldstein G, Laquaglia MP, N NT, et al. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation. 1981;32(6):535–9.
2.Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012;4(3):413–5.
3.Chatenoud L, Primo J, Bach JF. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol. 1997;158(6):2947–54.
4.Chatenoud L, Bluestone JA. CD3-specific antibodies: A portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7(8):622–32.
5.Utset TO, Auger JA, Peace D, Zivin RA, Xu D, Jolliffe L, et al. Modified anti-CD3 therapy in psoriatic arthritis: A Phase I/II clinical trial. J Rheumatol. 2002;29(9):1907–13.
6.Daifotis AG, Koenig S, Chatenoud L, Herold KC. Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin Immunol. 2013;149(3):268–78.
7.You S, Zuber J, Kuhn C, Baas M, Valette F, Sauvaget V, et al. Induction of Allograft Tolerance by Monoclonal CD3 Antibodies : A Matter of Timing. Am J Transl Res. 2012;12(11):2909–19.
8.Belghith M, Bluestone JA, Barriot S, Mégret J, Bach JF, Chatenoud L. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med. 2003;9(9):1202–8.
9.Gandhi R, Farez MF, Wang Y, Kozoriz D, Quintana FJ, Weiner HL. Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset. J Immunol. 2010;184(9):4620–4.
10.Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest. 2005;115(10):2904–13.
11.Legat A, Speiser DE, Pircher H, Zehn D, Fuertes Marraco SA. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front Immunol. 2013;4(DEC):1–15.
12.Long SA, Thorpe J, DeBerg HA, Gersuk V, Eddy JA, Harris KM, et al. Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol. 2016;1(5):7793–802.
13.Horwitz DA, Pan S, Ou JN, Wang J, Chen M, Gray JD, et al. Therapeutic polyclonal human CD8+ CD25+ Fox3+ TNFR2+ PD-L1+ regulatory cells induced ex-vivo. Clin Immunol. 2013;149(PB):450–63.
14. Wallberg M, Recino A, Phillips J, Howie D, Vienne M, Paluch C, et al. Anti-CD3 treatment up-regulates programmed cell death protein–1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology. 2017;151(2):248–60.
15.Ablamunits V, Bisikirska B, Herold KC. Acquisition of regulatory function by human CD8+ T cells treated with anti-CD3 antibody requires TNF. Eur J Immunol. 2010;40(10):2891–901.
16.Hamalainen H, Zhou H, Chou W, Hashizume H, Heller R, Lahesmaa R. Distinct gene expression profiles of human type 1 and type 2 T helper cells. Genome Biol. 2001;2(7):RESEARCH0022.
17.Hess K, Yang Y, Golech S, Sharov A, Becker KG, Weng NP. Kinetic assessment of general gene expression changes during human naive CD4+ T cell activation. Int Immunol. 2004;16(12):1711–21.
18.Birzele F, Fauti T, Stahl H, Lenter MC, Simon E, Knebel D, et al. Next-generation insights into regulatory T cells: Expression profiling and FoxP3 occupancy in Human. Nucleic Acids Res. 2011;39(18):7946–60.
19.Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9(1).
20.Weber C, Weber KSC, Klier C, Gu S, Wank R, Horuk R, et al. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T H 1-like / CD45RO + T cells Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T H 1-like / CD45RO ϩ T cells. Blood. 2011;97(4):1144–6.
21.Biedermann T, Rocken M, Carballido JM. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc. 2004;9(1):5–14.
22.Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M, et al. Interleukin 21 Is a T Helper (Th) Cell 2 Cytokine that Specifically Inhibits the Differentiation of Naive Th Cells into Interferon γ–producing Th1 Cells. J Exp Med. 2002;196(7):969–77.
23. Maddur MS, Miossec P, Kaveri S V., Bayry J. Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8–18.
24.Schraml BU, Hildner K, Ise W, Lee W, Whitney A, Solomon B, et al. The AP–1 transcription factor Batf controls TH 17 differentiation. Nature. 2009;460(7253):405–9.
25.Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T Cells: Mechanisms of Differentiation and Function. Annu Rev Immunol. 2012;30(1):531–64.
26. Xin Chen and Joost J. Oppenhein. Resolving the identity myth: key markers of functional CD4+FOXP3+ regulatory T cells. Int Immunopharmacol. 2011;11(10):1489–96.
27.Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol. 2013;43(11):2797–809.
28.Liu J, Chen D, Nie GD, Dai Z. CD8+CD122+ T-Cells: A Newly Emerging Regulator with Central Memory Cell Phenotypes. Front Immunol. 2015;6(October):6–11.
29. Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, et al. Human and Mouse CD8+CD25+FOXP3+ Regulatory T Cells at Steady State and during Interleukin–2 Therapy. Front Immunol. 2015;6(April):2–11.
30.Park B V., Pan F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol. 2015;12(5):533–42.
31.Silva HM, Vieira PMMM, Costa PLN, Pimentel BMS, Moro AM, Kalil J, et al. Novel humanized anti-CD3 antibodies induce a predominantly immunoregulatory profile in human peripheral blood mononuclear cells. Immunol Lett. 2009;125(2):129–36.
32.Shu L, Qi CF, Schlom J, Kashmiri S V. Secretion of a single-gene-encoded immunoglobulin from myeloma cells. Proc Natl Acad Sci U S A. 1993;90(17):7995–9.
33. Vaz De Andrade E, Freitas SM, Ventura MM, Maranhão AQ, Brigido MM. Thermodynamic basis for antibody binding to Z-DNA: Comparison of a monoclonal antibody and its recombinant derivatives. Biochim Biophys Acta - Gen Subj. 2005;1726(3):293–301.
34.Secchiero P, Sblattero DI, Chiaruttinf C, Melloni E, Macor P, Zorzet S, et al. Selection and characterization of a novel agonistic human recombinant anti-trail-r2 minibody with anti-leukemic activity Department ofMorphology and Embryology, University ofFerrara, Ferrara ; 1 Department of Medical Sciences, University Piemonte Orien. 2009;22(I):73–83.
35.Han T, Abdel-Motal UM, Chang D, Sui J, Muvaffak A, Campbell J, et al. Human Anti-CCR4 Minibody Gene Transfer for the Treatment of Cutaneous T-Cell Lymphoma. PLoS One. 2012;7(9):e44455.
36.Abdel-Motal UM, Harbison C, Han T, Pudney J, Anderson DJ, Zhu Q, et al. Prolonged expression of an anti-HIV–1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer. Gene Ther. 2014;21(9):802–10.
37.Van Wauwe JP, Goossens JG. The mitogenic activity of OKT3 and anti-Leu 4 monoclonal antibodies: A comparative study. Cell Immunol. 1983;77(1):23–9.
38.Chatenoud LFCLC et al. In vivo cell activation following OKT3 administration.pdf. Transplantation. 1990;49(4):697–702.
39.Malcolm SL, Smith EL, Bourne T, Shaw S. A humanised mouse model of cytokine release : Comparison of CD3-speci fi c antibody fragments. J Immunol Methods. 2012;384(1–2):33–42.
40. Herold KC, Burton JB, Francois F, Poumian-Ruiz E, Glandt M, Bluestone JA. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3??1(Ala-Ala). J Clin Invest. 2003;111(3):409–18.
41.Li Li, Nishio Junko MA van et al. Differential response of regulatory and conventional CD4+ lymphocytes to CD3 engagement: clues to a possible mechanism of anti-CD3 action? J Immunol. 2013;197(7):3694–704.
42.Chatenoud L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol. 2003;3(2):123–32.
43. Besançon A, Baas M, Goncalves T, Valette F, Waldmann H, Chatenoud L, et al. The induction and maintenance of transplant tolerance engages both regulatory and anergic CD4+ T cells. Front Immunol. 2017;8(MAR):1–11.
44.Bluestone J, Mackay C, O’Shea J, Stockinger B. The functional plasticity of T cell subsets. Nat Rev Immunol. 2009;9(11):811–6.
45. Yang J, Fan H, Hao J, Ren Y, Chen L, Li G, et al. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion. 2012;52(6):1333–47.
46.Sousa IG, do Almo MM, Simi KCR, Bezerra MAG, Andrade RV, Maranhão AQ, et al. MicroRNA expression profiles in human CD3+ T cells following stimulation with anti-human CD3 antibodies. BMC Res Notes. 2017;10(1):124.
47.Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, et al. The transcription factors Blimp–1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Publ Gr. 2011;12(4):304–11.
48.Liu W, Putnam AL, Xu-yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203(7):1701–11.
49.Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, et al. CD4+CD25+CD127low/- regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol. 2009;131(1):109–18.
50.Saraiva M, Garra AO. The regulation of IL 10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–81.
51.Dummer CD, Carpio VN, Felipe L, Gonçalves S, Manfro RC, Veronese FV. FOXP3 + regulatory T cells : From suppression of rejection to induction of renal allograft tolerance ☆. Transpl Immunol. 2012;26(1):1–10.
52.Long SA, Thorpe J, Herold KC, Ehlers M, Sanda S, Lim N, et al. Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. Cell Immunol. 2017;319:3–9.
53.Speiser DE, Utzschneider DT, Oberle SG, Münz C, Romero P, Zehn D. T cell differentiation in chronic infection and cancer: Functional adaptation or exhaustion?. Vol. 14, Nature Reviews Immunology. Nature Publishing Group; 2014. p. 768–74.
54.Curran TA, Jalili RB, Farrokhi A, Ghahary A. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells. Immunobiology. 2014;219(1):17–24.
55.Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of. Blood. 2006;109:2871–8.
56.Ratajczak P, Janin A, Peffault de Larour R, Koch L, Roche B, Munn D, et al. IDO in Human Gut Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2012;18(1):150–5.
57.Babraham Institute. Barbraham Bioinformatics, Cambridge.
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
58. University of California Santa Cruz. USCS Genome Browser.
http://genome.ucsc.edu/cgi-bin/hgGateway?db = hg19
59.Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol. 2009;5(9):1–10.
60.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
61.Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
62.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.
63.Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(D1):377–86.
64.Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr : interactive and collaborative HTML5 gene list enrichment analysis tool. 2013;