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Abstract

Background
Hypertensive nephropathy (HN) is a high burden disorder and a leading cause of end-stage renal disorder.
In spite of huge investigations, the underlying mechanisms are yet largely unknown. Systems biology is a
promising approach to provide a comprehensive insight towards this complex disorder.

Methods
Protein expression profiles of kidney tubule and cortex sub-compartments were retrieved from the PRIDE
database and the quality of the datasets were assessed using principal component analysis (PCA) and
hierarchical clustering. Differentially expressed proteins (DEPs) were detected and their attributed
metabolites were enriched and their interactions were assessed in multi-layer networks. Moreover,
considering the DEPs and the predicted metabolites, key biomedical phenomena with a leading role in HN
pathogenesis were proposed.

Results
Amino acid and purine metabolisms are the most prominent alteration in kidney cortex whereas
dysregulation of energy hemostasis is a key pathogenic mechanism in tubule. Besides, actin cytoskeleton
disorganization is an enriched pathway in both anatomical areas.

Conclusion
The proteomics profiles of kidney sub-compartments were analyzed using a top-down approach to infer
the main pathogenic processes. The constructed holistic map of HN can be exploited to propose novel
therapeutic strategies.

Introduction
As a common cause of diverse non-communicable disorders, hypertension has posed a remarkable
challenge to human health (1). Hypertensive nephropathy (HN) is a progressive disorder regarded as the
second cause of end-stage renal disease (2). The current therapeutic strategies are insufficient due to the
lack of comprehensive knowledge on the underlying mechanisms of this complex disorder (3). The
generation of omics data in line with the holistic approach of systems biology offers a unique
opportunity to approximate this complexity (4).

In this research, various integrative strategies have been employed to reanalyze two proteome profiling
datasets previously generated from the kidney cortex and tubule of a rodent model of HN (5)(6). Although
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proteomics datasets have provided valuable clues about the alteration of a very important layer of
biomolecules, they are most insightful when inspected in their interactions with other molecular types (7).
Therefore, the multi-layer networks of key interactions in kidney sub-compartments were provided to
construct a bigger picture of the molecular events. It was found that, metabolic processes are essential
components in the map of HN molecular pathogenesis.

Methods
Proteomics data acquisition 

Proteomics datasets of (PXD002106, PXD012889) were achieved from an experimental study by Kenneth
et.al. In these two datasets, the protein expression was explored in kidney tubules (PXD002106 dataset)
and inner and outer cortex of kidney (PXD012889 dataset) in two kidney one clip (2K1C) model. A sham-
operated animal model was used for comparison. For retrieving datasets from the Proteomics
Identification database (PRIDE) (8), two keywords of hypertensive nephropathy and kidney were
searched.

Identification and quantification of proteins 

MaxQuant v1.6 (9) was used to convert raw datasets to data tables. The search was carried out for the
Uniprot_Mus musculus proteome database (January 26, 2019, 22,287 entities) by the software integrated
search algorithm called Andromeda (10). Datasets were analyzed by the same following parameters: 1-
Trypsin was specified as cleavage enzyme and up to 2 missed cleavages were allowed, 2-
Carbamidomethylation was selected as a fix modification and protein N-terminal acetylation and
methionine oxidation were selected as variable modifications, 3- Match between runs parameter was
enabled, and 4- False discovery rate (FDR) was considered at 1% for protein and peptide identification.
Default settings were used for Mass analyzer parameters.

Quality control assessment 

Quality control of the datasets was assessed by principal component analysis (PCA) and hierarchical
clustering through the Euclidian cluster approach. R software and ggplot2 package (11) were employed
for performing the PCA and hierarchical clustering, as well as their visualization. 

Differential expression analysis

Perseus version 1.6.2.2 (12) was used to analyze the label-free quantification (LFQ) intensity columns
obtained by the preliminary analysis of MaxQuant. In this step, first, the identified irrelevant protein
groups including contaminants, only identified by site and reverse proteins. Then, the data were
transformed into the logarithmic scale (log2(x)); to specify groups, filter rows, and statistical analysis,
categorical annotation rows were applied. The table rows were filtered based on 3 valid values; while for
the imputation of missing values, the missing values from normal distribution under the imputation tab
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were replaced in the software environment. Student T-test (permutation-based FDR ≤ 0.05) was carried
out to identify the differentially expressed proteins (DEPs).

Metabolites prediction 

To predict metabolites, which may have a connection with the differentially expressed enzymes, all the
related metabolites were first identified by Metscape plugin version 3.0 (13) of Cytoscape version 3.7
(14). Using Ingenuity pathway analysis (IPA) version 49932394 (QIAGEN Inc.)
(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), the specific metabolites
related to the specific enzymes in metabolic pathways were selected.

Pathway enrichment analysis

IPA was applied for core analysis. The directional changes were identified by the calculated z-score using
the Ingenuity Knowledge Base. Z-score >2 was considered as a significant alteration in the activities.
Fisher exact test was utilized to select significant pathways with adjusted P-value ≤ 0.05. 

Protein-protein interaction network construction and functional enrichment analysis

Interactions between the DEPs were constructed using STRING database version:11.1 of Cytoscape
CluePedia  plugin version 1.5.5 (15). ClueGO plugin version 2.5.5 (16) was applied for the functional
enrichment analysis considering FDR ≤0.05. The highly connected sites of the networks were determined
by Molecular Complex Detection (MCODE) plugin (version 1.5.1) (17).

Metabolites-Proteins interaction network construction

MetScape plugin of Cytoscape was utilized to discover and construct correlations between the predicted
metabolites and the related enzymes. The search in the MetScape was based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. In this step, the pathway-based option was selected and the
constructed network included compounds, reactions, enzymes, and genes. 

Metabolites functional and pathway enrichment analysis 

Metabolite set enrichment analysis and pathway analysis of predicted metabolites was carried out by
MetaboAnalyst 4.0 (18). Out degree centrality was applied for pathway topology analysis. The Fisher
exact test was considered as the over-representation analysis. The predicted metabolites were annotated
by the Kyoto Encyclopedia of Genes and Genomes (KEGG) (19) and enrichment analysis was performed
based on Small Molecule Pathway Database (SMPDB) (20).

Results
Considering the increasing trend in big data generation and rapid advancements in bioinformatics tools,
re-analysis of pre-existed datasets for discovering new pathways and molecular keys in pathological
conditions is of utmost importance. In this study, a systematic approach was adopted to generate a map
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of key events during the progression of HN (Fig. 1). Different proteomics datasets were entirely explored
and two datasets generated by Kenneth et al. were chosen for further analysis. The datasets were
proteomics profiles of tubules (PXD002106), as well as the inner and outer cortex (PXD012889) in a
mouse model of HN known as 2K1C. In this model, unilateral renal artery constriction with a clip
decreased renal artery perfusion and consequently systemic hypertension. Based on these profiles, the
investigators have underscored the pivotal roles of Periostin, Transgelin and Vimentin in HN
pathogenesis.

To provide further insights into the molecular pathogenesis, the above-mentioned datasets were re-
analyzed with a systemic unsupervised approach. Using MaxQuant, we identified 2074, 1925, and 2015
proteins (FDR ≤ 0.01) in the tubule, inner, and outer cortex sub-compartments, respectively
(Supplementary Table 1). Since we have previously highlighted the inappropriate quality of the majority
of omics datasets, quality control assessment was performed before further analysis (20) Accordingly,
principle component analysis (PCA) was applied which showed that most samples were scattered
according to their experimental groups, indicating the acceptable quality of the data (Fig. 2a). However, a
few samples not following this segregation pattern were eliminated to enhance the quality of the data.
The quality of datasets was also examined by hierarchical clustering which was in agreement with the
PCA (Fig. 2b). In the following, Perseus was applied to determine the differentially expressed proteins
(DEPs) among the identified proteins considering permutation-based FDR ≤ 0.05. The results indicated
166, 378, and 320 DEPs in the tubule, inner and outer cortex, respectively (Fig. 2c, Supplementary
Table 2). In agreement with previous studies, the alteration range of DEPs in the cortex was higher than
that in the tubule (5)(6) implying the significant involvement of cortex in this disease (Table 1).

To explore the functional role of DEPs, their protein classes were determined. Notably, a considerable
fraction of the DEPs was enzymes, providing an initial clue on the key role of enzymatic pathways in the
disease pathogenesis (Fig. 3). Furthermore, Gene ontology (GO) enrichment analysis was carried out on
different levels, including biological process (BP), molecular function (MF), and cellular component (CC)
(Fig. 3). In agreement with the above findings, a variety of metabolic pathways were enriched in all sub-
compartments, especially in the cortex. Furthermore, terms related to the cytoskeleton were among the
other significantly enriched terms.

To further validate the above findings on the role of metabolic processes pathway enrichment analysis
was conducted on the DEPs utilizing IPA. According to the GO results, a considerable fraction of the
enriched pathways was related to metabolic processes especially for the inner cortex (Fig. 4).
Additionally, the Rho related signaling pathways were enriched in all sub-compartments. Notably, several
previous studies have reported the role of these pathways in vasoconstriction and hypertension (21–23).
Moreover, other significantly enriched pathways such as VEGF signaling, complement system, and
pathway of inositol have been previously recognized to be involved in kidney failure and hypertension
(24–28). “HIPPO signaling” is also among the enriched pathways whose role in HN has not yet been
determined.
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To identify the interaction map of the DEPs, PPI networks were constructed for all sub-compartments
using Cytoscape CluePedia plugin. Since the central genes in networks are the key drivers of biological
pathways and processes (29), the topology of the constructed networks was analyzed and central
proteins were identified in terms of degree and betweenness centrality (Table 2). Noteworthy, a
substantial number of the central DEPs, such as Kyat1, Decr1, Fbp1, Sdha are enzymes involved in
metabolic pathways. This could further signify the critical role of metabolic processes in the progression
of HTN. Moreover, two modules with the highest clustering coefficient scores were identified in each of
the three networks to identify densely connected sub-graphs (Fig. 5).

In agreement with the above findings, the proteins in the modules of the inner cortex network mainly
attributed metabolic processes and cytoskeleton organization. One of the outer cortex modules is also
related to cytoskeleton .Notably, the other module of the outer cortex and one of the modules in the tubule
network are highly rich in proteasome elements which is in line with the previous research on the
renoprotective effects of proteasome inhibitors in HN (30).Remarkably, the other group of highly-
connected proteins in tubule involved in energy metabolism which can be described by increased
mitochondrial function in tubules in HN as also reported in previous animal models (31)(32).

To elucidate the interactions between proteins and other bio-molecules, especially metabolites, integrated
networks composed of DEPs, unique enzymes, reactions, and metabolites were constructed (Fig. 6). For
this purpose, among all DEPs, unique enzymes involving in specific pathways were identified and their
related metabolites were added to explore the relationships between enzymatic and non-enzymatic
proteins with the metabolic reactions and metabolites. Moreover, pathway and functional enrichment
analyses were carried out for the predicted metabolites using MetaboAnalyst. These analyses
underscored the importance of amino acid and purine metabolism as well as energy homeostasis in this
disorder (Fig. 7).

As the above analyses propose the essential role of amino acid and purine metabolisms in the
pathogenesis of hypertensive nephropathy, a few representatives of such processes were further
investigated in more detail; Several enzymes in tryptophan degradation such as Kmo, Kyat1, Kynu, and
Afmid are among downregulated DEPs. Moreover, key enzymes for valine degradation including Bckdha,
Echs1, and Hibadh are downregulated. Also, nearly all enzymes in purine metabolism showed up-
regulation in the examined datasets which led to the accumulation of urate as the end product of this
pathway (Fig. 8). To provide a holistic view of the functional relationships between key dysregulated
enzymes, the map of affected processes is depicted (Fig. 9).

Discussion
Hypertension is a global health problem and a major risk factor of non-communicable disorders such as
cardiovascular and kidney diseases. Despite huge investigations, the complex underlying mechanisms of
these disorders have not been comprehensively understood. However, the recent advancements of high-
throughput technologies and holistic systems biology approaches have provided the opportunity to shed
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light on these complexities. In this study, a systematic approach was adopted to re-analyze previously
generated proteomics datasets on HN to provide clinically-valuable knowledge.

The proteomics datasets exploited in this study were originally produced by Kenneth et al using a rodent
model of hypertensive nephropathy. The advantage of their approach is the examination of expression
profiles in kidney sub-compartments separately. It was previously shown that the kidney cortex and
medulla possess considerably different gene expression patterns and respond differently to stressors
(33). Hence, profiling the whole kidney tissue can be misleading. Besides, high throughput techniques are
vulnerable to a variety of confounding elements and technical errors leading to unsatisfying quality of a
majority of available data. The datasets examined in this study were appropriately generated as shown
by quality control measures. Also, considering the importance of holistic insight and integration of
biological layers as a trending approach to generate inclusive maps for complex disorders, the multi-layer
networks were constructed for the interactions of different elements in HN. Since an unsupervised
approach into omics data is a crucial criterion for working with big data, we followed this approach which
could be recognized as one of the important superiorities of this study.

Various methods such as pathway and GO enrichment, protein classification, and network analysis were
employed to explore the functional role of DEPs. All these approaches coherently revealed the pivotal role
of energy homeostasis, and metabolic processes in the pathogenesis of hypertensive nephropathy.
Furthermore, the results indicate that actin cytoskeleton organization is involved in the response of all
kidney sub-compartments to hypertension. Accordingly, a large and growing body of evidence has
indicated the role of actin cytoskeleton in the progression of kidney diseases (34–36). Moreover, previous
studies have highlighted Rho GTPase pathway as a key regulator of actin cytoskeleton in podocytes and
vascular injury (37–39). In this regard, fasudil was used as a Rho-kinase in HN models (40). Notably, our
results revealed the considerable dysregulation of this pathway in all sub-compartments. In addition,
Cdc42 the main element of Rho GTPase pathway and a critical protein in the regulation of actin
cytoskeleton is among the central nodes in the inner cortex network (41). Furthermore, proteasome
degradation is another significant term observed in the tubule part. Interestingly, the potential role of
proteasomes in regulating actin cytoskeleton was first demonstrated experimentally by Haarer et.al.in
2011 (42). Remarkably, analysis of the tubule network indicated a deep connection between proteasome
components. Taken together, in line with previous investigations, our findings also underscore the role of
Rho GTPase pathways and proteasomes in the progression of HN which is potentially mediated via actin
cytoskeleton dysregulation.

Consistent with previous studies, our results underline the role of energy hemostasis in the pathogenesis
of hypertensive nephropathy. Different elements in TCA cycle are among the DEPs in the cortex. However,
the terms related to energy metabolism are mainly enriched in the tubule dataset which can be described
to high energy demand of ion transporters. The proteins of NADH: ubiquinone oxidoreductase
supernumerary subunits (NDUF) family are detected to be differentially expressed in the tubule dataset.
Dysregulation of this protein family is shown to be linked with reactive oxygen species (ROS) production
(43). Notably, the above discussed Rho GTPase pathway is also involved in ROS accumulation (44). In
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agreement, glutathione mediated detoxification and glutathione redox reaction are enriched in the cortex
section. It should be noted that a high-metabolic-rate organ such as the kidney is vulnerable to ROS
overload and the consequent inflammatory response.

The regulation of metabolic processes has been long known as one of the key functions of the kidney.
However, the role of these processes in the pathogenesis of HN is just recently investigated. Our results
indicate that a majority of DEPs, especially in the cortex, are functionally attributable to the metabolism
of amino acids in particular, tryptophan, methionine, and valine. Remarkably, a bundle of recent evidence
indicates the attenuation of kynurenine enzyme activity and accumulation of tryptophan pathway
metabolites in HN (44–46). Additionally, dysregulation of methionine metabolism is shown in this
disorder (45). Cianciolo et al. also demonstrated that folate deficiency perturbs the metabolism of
methionine and results in hyperhomocysteinemia in CKD (46). Accordingly, the downregulation of
MTHFD1 was observed which is a key enzyme in folate metabolism. We observed that different enzymes
in valine degradation are downregulated in the inner cortex. Moreover, this process was detected in the
enrichment analyses as well. To the best of our knowledge, this is the first report on the involvement of
valine degradation process in HN. Interestingly, a recent study by Rinchen et.al supported our findings.
Using an animal model of HN, they found that although valine is not differentially expressed, acetylvaline
a derivative of valine is reduced in kidneys (47). Altogether, it seems that the alteration of amino acid
metabolism is a key role player in the progression of HN. However, the exact underlying mechanisms
remain to be understood.

Our analysis is in favor of purine metabolism dysregulation and uric acid accumulation in HN. On the
other hand, previous studies have shown that uric acidemia activates renin-angiotensin system (RAAS)
via ROS accumulation which will finally result in systemic hypertension and potential kidney damage
(48). Hence, it seems that purine metabolism dysregulation and uric acid overload form a vicious cycle
worsening kidney damage in HN, this process seems a reasonable candidate for therapeutic targeting.
Fortunately, there are safe drugs in the market for xanthine dehydrogenase inhibition whose repositioning
for HN can be investigated in future trials. In agreement with this suggestion, allopurinol is being
assessed for diabetic nephropathy (49)(50)

Taken together, based on a holistic integrative approach, this study agrees with previous investigations
underscoring the impact of metabolic pathways dysregulation in HN pathogenesis. Hence, this disorder
can be viewed as an “acquired error of metabolism.”. This insight will hopefully pave the way for the
development of novel therapeutics.
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Figures

Figure 1

The schematic overview of present study. We employed a system biology approach to provide a
comprehensive map of hypertensive nephropathy.
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Figure 2

Datasets quality was assessed: Unsupervised quality control methods showed an appropriate
segregation of samples based on study groups (a, b). Volcano plots of differentially expressed proteins
with FDR<0.05 are shown. Up-regulated and down-regulated proteins depicted with green and red,
respectively (c).



Page 15/22

Figure 3

Gene ontology (GO) enrichment analysis determined key biological process involved in HN pathogenesis
and protein classification were performed based on their types. GO molecular function analysis of
differentially expressed proteins (DEPs) showed the majority of proteins are enzymes. GO enrichment
analysis revealed the involvement of DEPs in metabolic process as well as actin cytoskeleton
dysregulation. GO terms were summarized as parent terms and false discovery rate less than 0.05 was
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considered as significant threshold. The biological process, molecular functions, and cellular components
are depicted with green, yellow, and red respectively. The protein type section exhibits the classification of
proteins concerned with their biological role.

Figure 4

Pathway enrichment analysis was performed for each dataset. The involvement of Rho GTPase signaling
and actin cytoskeleton is highlighted in all kidney sub-compartments. Rho GTPase related terms, the
metabolic process and actin related pathways are marked with one star, two stars and underline,
respectively. Terms with positive and negative z-score are shown in orange and blue, respectively.
Pathways with adjusted p-value ≤ 0.05 are shown
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Figure 5

Modules were identified in interaction networks of DEPs. Proteins in dense modules of networks were
related to metabolic process, actin cytoskeleton and proteasome degradation.
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Figure 6

Multi-layer networks were constructed for kidney sub-compartments. For DEPs related metabolites were
predicted and metabolic-enzyme-protein networks were constructed.
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Figure 7

Functional enrichment analyses were performed for the metabolites. Enrichment analysis was carried out
for predicted metabolites based on Small Molecule Pathway Database (SMPDB). Amino acids and
nucleotide metabolisms are prominent enriched pathways related to the metabolites The altered
metabolic pathways associated to each sub-compartment based on Kyoto Encyclopedia of Genes and
Genomes. The color indicates adjusted p-value.
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Figure 8

The key affected metabolic pathways. Valine (a), Methionine (b), Tryptophan (c) and purine (d)
metabolisms are the key pathways that have been affected in HN pathogenesis.
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Figure 9

The schematic cross-talk of metabolic process in HN. A holistic metabolic map of key dysregulated
enzymes, affected processes and their cross-talk is shown. Pathways with positive and negative z-score
are shown in orange and blue, respectively
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