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Abstract

Alzheimer disease (AD) is a heterogeneous disease with many genes are associated with AD risk. Most
proteomic studies, while instrumental in identifying AD pathways and genes, focus on single tissues and
sporadic AD cases. Multi-tissue proteomic signatures for sporadic and genetically defined AD (e.g.,
pathogenic variant carriers in APP and PSEN1/2 and risk variant carriers in TREM2) will illuminate the
biology of this heterogeneous disease.1,2 Here, we present one of the largest multi-tissue proteomic
profiles, accessible through our web portal, based on 1,305 proteins in brain (n=360), cerebrospinal fluid
(CSF; n=717), and plasma (n=490) from the Knight Alzheimer Disease Research Center (Knight ADRC)
and Dominantly Inherited Alzheimer Network (DIAN) cohorts.3-5 We identified proteomic signatures in
brain, CSF, and plasma for sporadic AD status and replicated these findings in multiple, independent
datasets. The area under the curve (AUC) for CSF proteins was 0.89 in discovery and 0.90 in the
replication dataset, which was significantly higher than the AUC for CSF p-tau181/AB42 (AUC = 0.81; P =
2.4x10-6). We also identified a specific proteomic signature for TREM2 variant carriers that differentiated
TREMZ2 variant carriers from sporadic AD cases and controls with high sensitivity and specificity (AUC =
0.81 - 1). In addition, the proteins that showed differential levels in sporadic AD were also altered in
autosomal dominant AD, but with greater effect size (1.4 times, P = 3.8x10-5), and proteins associated
with autosomal dominant AD, in brain tissue also replicated on CSF (p=1.36x10-9). Enrichment analyses
highlighted several pathways including AD (calcineurin, APOE, GRN), Parkinson disease (a-synuclein,
LRRK2), and innate immune response (SHC1, MAPK3, SPP1) for the sporadic AD or TREM2 variant
carriers. Our findings show the power of multi-tissue proteomics’ contribution to the understanding of AD
biology and to the creation of tissue-specific prediction models for individuals with specific genetic
profiles, ultimately supporting its utility in creating individualized disease risk evaluation and treatment.

Main Text

Alzheimer disease (AD), the most common cause of dementia, is a heterogeneous neurodegenerative
disease characterized by neuronal loss, neuroinflammation, and memory decline.® Clinical sequelae
reduce quality of life and cost the healthcare system up to $244 billion annually in the US, with additional
impact on caregivers’ emotional distress.” Proteomic studies have been instrumental in identifying
biomarkers and pathways implicated in AD, but most have been limited to single tissues and only
differentiate between sporadic AD cases and controls. Deep molecular characterization of controls,
sporadic AD cases and genetically defined AD subtypes, such as individuals carrying pathogenic
mutations in amyloid-beta precursor protein (APP) and presenilin genes (PSENT and PSENZ2) or high-
effect risk variants in triggering receptor expressed on myeloid cells 2 (TREM2),28 is critical for fully
understanding the biology of this heterogeneous disease and for identifying novel molecular biomarkers
and therapeutic targets. Here, we present the results of multi-tissue, high-throughput deep proteomic
profiling. We identified proteins associated with AD status that replicated in external datasets. We not
only identified proteomic profiles for sporadic AD, but also for individuals with AD-risk variants in TREMZ2
and pathogenic variants in APPand PSEN1/2. These proteomic profiles enabled the creation of tissue-
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specific prediction models and the identification of causal proteins and pathways for sporadic and
genetically defined AD subtypes.

Study Design

To elucidate the downstream effects of genes and the functional mechanisms associated with AD, we
generated high-throughput, deep proteomic profiles using SOMAscan targeting 1,305 proteins in brain
tissue, cerebrospinal fluid (CSF), and plasma (Fig. 1).° These neurologically relevant tissues were
obtained from well-characterized individuals with comprehensive clinical information about AD
pathology and cognition in the Knight ADRC? and DIAN.34210 After stringent quality control (QC) and
data cleaning, a total of 1,092 proteins from 360 brain tissues remained. These brain proteomic data
include 24 individuals carrying autosomal dominant AD (ADAD) mutations in APPand PSEN1/2,290
individuals with autopsy-confirmed AD, 21 TREMZ2 variant carriers, and 25 cognitively normal individuals
with no significant brain pathology (Table 1). CSF data contained 713 proteins from 176 individuals with
a clinical diagnosis of AD, 47 TREMZ2 variant carriers, and 494 cognitively normal individuals. Plasma
data contain 931 proteins from 105 individuals with a clinical diagnosis of AD, 131 TREMZ2 variant
carriers, and 254 cognitively normal individuals (Fig. 1).

AD status was defined based on neuropathological examination for those samples with brain autopsy
and clinical examination for those with CSF and plasma tissue. In this study we identified proteins with
different levels in clinical AD cases vs. controls and not based on biomarker levels or the ATN framework,
which combines the amyloid-B pathway (A), tau-mediated pathophysiology (T), and neurodegeneration
(N), because one of the goals of this study was to compare the performance of the prediction models
generated in this study with these well-accepted and validated CSF biomarkers (AB and p-tau181).

To validate and replicate proteins that were associated with AD, TREMZ risk variant carriers or ADAD
mutation carrier status, we followed two approaches: first, for sporadic AD and TREMZ risk variant
carriers, we identified the common set of proteins dysregulated in the three tissues (brain, CSF, and
plasma). For ADAD, only high-throughput proteomic screening was performed on brain tissue. Those
proteins that were associated with ADAD status in brain were analyzed in CSF from 289 ADAD mutation
carriers and 184 non carriers from the DIAN study. Second, for sporadic AD, we used seven publicly
available datasets to replicate our findings (Supplementary Table 1). For brain, we downloaded the mass-
spectrometry data for following 6 studies: the Adult Changes In Thought (ACT), Banner Sun Health
Research Institute (BANNER), Baltimore longitudinal study of aging (BLSA), Mayo Clinic (MAYO), Mount
Sinai Brain Bank (MSBB), the Religious Orders Study and the Memory and Aging Project (ROSMAP). We
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then performed differential abundance analysis jointly for a total of 10,078 proteins measured in 415 AD
patients and 194 controls, called hereafter MassSpec Joint. For CSF, we obtained and analyzed
Alzheimer’s Disease Neuroimaging Initiative (ADNI) multiple reaction monitoring (MRM) proteomic data
containing 320 proteins in 263 samples. We also used results based on BioFinder OLINK data from
Whelan et al.'" and Emory-ADRC mass-spectrometry data from Higginbotham et al.'? For plasma, we
downloaded and performed differential analysis on the AddNeuroMed SOMAscan 1.1K proteomic data
that was processed and deposited by Sattlenecker et al.’® We were not able to use public datasets to
replicate the proteins dysregulated in TREMZ2 or ADAD mutation carriers because there were not enough
carriers in public datasets. Finally, we used the replicated proteins to generate prediction models and run

pathway analyses. We combined the results from this study with our recent pQTL, colocalization, and

Mendelian randomization findings to identify causal proteins.®

Multi-tissue proteomic signatures of AD
Sporadic AD cases

To identify multi-tissue proteomic signatures for clinical AD, we performed differential analysis with a
subgroup of sporadic AD patients and healthy individuals in each of the three tissues, independently.
Specifically, we performed a surrogate variable analysis (SVA)'# to remove batch effects and other
unmeasured heterogeneity in all three proteomic datasets. We then performed regression analysis of log-
transformed protein abundance levels as a dependent variable and sporadic AD status as an independent
variable while considering age, sex, and SVA as covariates.

Brain proteomic profiles for sporadic AD

In the brain, 12 proteins showed significant association for AD status after Bonferroni correction (Fig. 2a,
Supplementary Table 2). We chose the Bonferroni-corrected threshold as it is more conservative than
false discovery rate (FDR). All 12 proteins were nominally significant (P < 0.05) with other AD-related
phenotypes including age at onset and AD neuropathology characteristics such as Braak scores and CDR
at death (Supplementary Table 2, Supplementary Fig. 1-2). As we had proteomic data from CSF and
plasma, we determined which proteins are also associated with AD risk or onset in these other two
tissues. Given low overlap (Fig. 1) in individuals who have proteomic data across tissues, this was used
as an internal validation. By leveraging across-tissue data, any tissue-specific signal will not replicate.
One caveat of using the multi-tissue data is that not all proteins passed QC across all three tissues.
Among the 12 proteins associated with AD status in brain, only 6 were found in both CSF and plasma. Of
these, 5 proteins (SMOCT, HGF, FSTL1, UBC9, and NET 1) were associated with AD status or age at onset
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in both CSF and plasma data (P < 0.05, Supplementary Table 2), which represents an enrichment of 333
fold (P = 5.8x107"3) to what would be expected by chance.

To externally replicate these findings, we used the merged mass-spectrometry brain data (MassSpec
Joint) that includes 10,078 proteins from 415 AD patients and 194 controls, and performed association
analyses with AD status. As the proteomic data available in these studies were generated using a
different platform, we were not able to test all 12 proteins that were significant in our discovery data. Of
the nine proteins that were present in these datasets, 8 replicated (Midkine, SMOC1, CgA, HGF, NRX1B,
UBC9, NET1, and SAP) with P < 0.05 and in the same direction of effect. This represents an enrichment of
35 fold to what would be expected by chance (P = 1.3x1072). In addition, to confirm that our results were
not false positives due to the joint analysis that included all 6 studies, we performed additional analyses
in each study (Johnson et al,’® Higginbotham et al,? and Wingo et al.’®). Individual study analyses also
provided enrichments of 25-34 fold (Supplementary Table 1). We also found a significant correlation in
the effect size for the association of the proteins with AD status between our discovery results and the
merged replication results (MassSpec Joint) (P < 3.6x1073; Supplementary Fig. 3a). Together, these results
indicate that our identified brain proteomic signature replicates in external independent samples and is
extremely robust across orthogonal proteomics platforms.

CSF proteomic profiles for sporadic AD

In CSF, 117 proteins were associated with clinical AD status after Bonferroni correction (Fig. 2a,
Supplementary Table 3). Of these 117 proteins, 78 passed QC in brain and plasma tissues, and 27
proteins (including ERK-1 and LRRK?2) replicated in both tissues (138-fold enrichment, P = 3.3x107°Y). An
additional 44 proteins replicated in brain and 16 in plasma. To externally replicate our identified proteins
in CSF, we downloaded and analyzed Alzheimer’s Disease Neuroimaging Initiative (ADNI) multiple
reaction monitoring (MRM) proteomic data containing 320 proteins in 263 samples. In addition, we
obtained results based on BioFinder OLINK data of 201 proteins in 576 samples presented by Whelan et
al.,’" and from the mass-spectrometry-based Emory-ADRC study that includes 2,875 proteins in just 40
samples presented by Higginbotham et al.’? Of the 117 CSF proteins identified in our study, 90 were
present in these external datasets. Of these, 39 proteins (including 14-3-3, Calcineurin, SMOC1, GFAPR,
SPP1, and Peroxiredoxin-1) replicated in the same direction (14- to 34-fold enrichments, P < 4.4x107). It
is important to mention that the major overlap in the number of proteins with our data is the Emory-ADRC
study, which only includes 40 samples. Therefore, the power to replicate the initial findings is limited. We
expect that a larger number of proteins will replicate in larger studies.
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Several studies have demonstrated that up to 30% of cognitively normal elderly individuals could be pre-
symptomatic for AD'7 and that other neurodegenerative diseases can masquerade, clinically, as AD
dementia.’® Therefore, clinically defined case-control status may not be the best phenotype for novel
biomarker discovery.'® It has been proposed that biomarker-based categorization provides a more
powerful approach to identify proteins altered in AD. CSF AB42 and p-tau levels are one of the best fluid
biomarkers identified to date for distinguishing pathology-free controls from AD dementia and several
studies have demonstrated that CSF p-tau/Ap42 ratio is a marker not only for AD status but also for
predicting AD progression from normal to dementia within 5 years.® As we had access to CSF p-tau/AB42
for most samples with CSF (689 out of 720), we also performed a regression analysis of protein levels
considering p-tau/Ap42 ratio as a predictor. We found 92 proteins that were significant for p-tau/AB42
ratio at Bonferroni-corrected threshold. Of the 117 proteins associated with clinical AD status, 74 were
significant for CSF p-tau/AB42 at Bonferroni-corrected threshold and the remaining were nominally
significant. In fact, we found a very strong correlation (R2=0.86 and P < 1.0x107'%; Supplementary Fig. 4)
of the effect across all 713 QCed proteins between the two analyses. This indicates that using case-
control status for the Knight ADRC is highly accurate and leads to the similar results as using biomarker-
defined case-control status

Plasma proteomic profiles for sporadic AD

In plasma, 26 proteins were associated with sporadic AD status after Bonferroni correction (Fig. 2a,
Supplementary Table 4). Similar to previous analyses, we leveraged the multi-tissue data to replicate
these findings. Of the 26 plasma proteins associated with AD status, 16 passed QC in brain and CSF and
seven proteins (including ERK-1, CDON, and SHC1) replicated (175-fold enrichment, P= 6.8x107°). To
externally replicate our findings, we downloaded the AddNeuroMed SOMAscan 1.1K proteomic data that
was processed and deposited by Sattlenecker et al'® and performed differential analysis in 320
individuals with AD and 194 controls. Out of 26 proteins, we were able to test 19 in this dataset and

9 proteins (including CAMK2D and HMG-1) replicated (18.9-fold enrichment, p = 2.8x1070).

In summary, we have identified 8, 39, and 9 proteins that are associated with AD status and replicated in
several independent cohorts using orthogonal technologies in brain, CSF and plasma, respectively. These
proteins likely represent only a subset of proteins that could be associated with AD status, as not all
proteins identified in our study were assayed in the replication datasets and most of the replication
datasets had smaller sample sizes than our discovery data, providing limited power. We also leveraged
multi-tissue data to replicate the single-tissue findings. Sometimes, it may not be possible to use external
datasets for replication, therefore we performed an enrichment test to determine whether the proteins that
showed an internal cross-tissue replication would also replicate in other studies. Our analyses indicate
that proteins identified in each tissue and supported by the two remaining tissues were more likely to
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replicate in external independent datasets (15- to 40-fold enrichments, P < 3.63x103, Supplementary
Table 5), suggesting that multi-tissue proteomic data may be used as a viable replication strategy.

TREMZ2 risk variant carriers

Our group and other, identified several rare coding variants in TREMZ2 that increase risk of AD by almost
two fold, making TREMZ the second strongest genetic risk factor for sporadic AD after APOE.120-23
Multiple TREMZ risk variants have been identified, but it has been proposed that all TREM2 AD-risk
variants cause a partial loss of function?*. Given the low frequency of these variants, performing
separate analysis for each specific variant would not provide enough statistical power. For these reasons,
we combined all TREMZ2 variant carriers in these analyses. We generated proteomic data from 21, 47, and
131 TREMZ2 variant carriers in brain, CSF, and plasma, respectively (Table 1). To identify multi-tissue
proteomic signatures of individuals carrying AD-risk variants in TREMZ2, we compared the protein levels of
TREM2 variant carriers with both cognitively normal individuals and individuals who were diagnosed with
AD dementia, but did not carry any TREM2 or autosomal dominant variant. This is the first time a

proteomic profile for TREMZ2 variant carriers has been generated.

In the brain, 9 proteins (including a-Synuclein) showed differential abundance levels in TREM2 variant
carriers compared to cognitively normal individuals at Bonferroni-corrected threshold (Fig. 3a;
Supplementary Table 6). In addition, 23 proteins (including LRRK2) were associated with AD status after
multi-test correction for TREM2Z risk variant carriers vs. AD (Supplementary Table 7). From the genetic
data available for the replication datasets, we found 4 TREMZ2 variant carriers in Mayo, 7 in MSBB, and 8
in ROSMAP. This low number did not provide any statistical power to support a replication analysis. As
we demonstrated, our multi-tissue study design is a viable alternative approach to identify proteins that
would replicate in external datasets, and we leveraged our data to identify those proteins that replicate
across tissues. Out of these 27 unique TREMZ2-associated proteins (combining 9 and 23 proteins), 11
passed QC in both CSF and plasma, and 5 (ALT, a -Synuclein, MIS, LRRK2, and PAFAH beta subunit)
replicated in both tissues. This represents a 74-fold enrichment (p=7.53x10) to what would be expected
by chance.

In CSF, our analyses identified a total of 38 unique proteins, among which 31 were associated with
TREMZ risk variant carriers vs. cognitively normal individuals and 10 for the TREMZ2 vs. AD, after multiple
test correction (Supplementary Tables 8-9). Out of these 38 proteins, 20 passed QC in the other tissues,
and 7 (14-3-3E, 14-3-3 protein zeta/delta, Somatostatin-28, SMOCT1, Ubiquitin+1, QORL1 and calcineurin)

replicated across tissues (Supplementary Tables 8-9). This represents a 73-fold enrichment (p=7.19x10"
12) to what would be expected by chance.
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In the plasma proteomic data, we identified a total of 69 proteins, among which 65 and 7 showed
differential abundance levels in TREMZ2 variant carriers compared to cognitively normal individuals and
to individuals who were diagnosed with AD dementia, respectively (Supplementary Tables 10-11). Among
the 41 proteins that passed QC in the brain and CSF, 21 proteins (including bone proteoglycan II, PAPP-A,
ERK-1, suPAR and VCAM-1) replicated, which represents a 122-fold enrichment (p=5.47x1028) to what
would be expected by chance.

Autosomal dominant AD status

Although most AD cases are considered sporadic and manifest after the age of 65,24 around 1-3% of AD
cases show an autosomal dominant (ADAD) inheritance pattern, often with onset before age 65.2°
Pathogenic variants in APP, PSENT and PSEN2 have been identified as the cause of ADAD.? We
generated proteomic data from the parietal cortex of 24 ADAD gene variant carriers (19 individuals with
PSEN1, 1 with PSENZ, and 4 with APP variants) recruited from the DIAN and the Knight ADRC studies. We
identified 109 proteins with differential abundance in ADAD mutation carriers compared to cognitively
normal individuals with no significant brain pathology, at Bonferroni corrected threshold (Supplementary
Fig. 5). In order to validate these findings, we analyzed whether these 109 proteins were also associated
with ADAD status in CSF from 289 carriers and 184 non-carriers from the DIAN study. Due to the limited
amount of CSF samples for these subjects, we were unable to perform proteomic discovery in sporadic
AD or TREMZ2 variant carriers. From those 109 proteins identified in brain, 106 passed QC in CSF
proteomic data and 17 were associated with ADAD in CSF and in the same direction (Fig. 4,
Supplementary Table 12), which represents a 6.4-fold enrichment (p=1.36x10") to what would be
expected by chance.

As presented earlier, we identified 12 proteins associated with sporadic AD status in brain

tissue (Supplementary Table 2). We also sought to determine if the proteins associated with sporadic AD
status showed similar differential abundance in ADAD mutation carriers. We found that most of the
proteins associated with sporadic AD brains displayed even stronger effect size when comparing ADAD
mutation carriers to controls (Supplementary Table 13). The proteins associated with sporadic AD status
showed 39% higher effect sizes in ADAD brain samples on average (P = 3.8x107; Fig. 4). For example,
SMOC1 showed a significant association AD vs. control (Effect = 0.04: P=3.1x10°) but also for ADAD vs.
CO (Effect = 0.13; P=2.3x10). As presented earlier, SMOC1 has also been found to be associated in

sporadic AD status in both CSF (P=8.4x102°) and plasma (P=0.002), suggesting that it could be used to
create a new prediction model for AD, independent of AB and tau.
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Tissue-specific Prediction Models

Our analyses identified tissue-specific proteomic signatures for sporadic AD and TREMZ risk-variant
carriers. Here, we used the proteins that replicated in external datasets (for AD status) or across tissues
(for TREMZ2 variant carriers and ADAD) to create prediction models. To assess the specificity and
selectivity of our prediction models we computed receiver operator characteristic (ROC) curve and area
under the curve (AUC) using the R package pROC. Age at measurement and sex were included as
covariates. We also performed analysis by adding APOE e4 status as a covariate. In sporadic AD cases,
these prediction models were examined for both the discovery and replication datasets.

In brain tissue, our prediction model based on the 8 proteins that replicated in our analysis
(Supplementary Tables 1, 14) led to an AUC of 0.84 in the discovery and an AUC of 0.99 in the replication
cohort (Fig. 2b). In CSF, we found 39 proteins associated with AD status that replicated in external
datasets (Supplementary Table 3). A prediction model including these proteins led to an AUC of 0.90 in
the replication and of 0.89 in the discovery cohort (Fig. 2b). As the number of proteins is too large to
generate a prediction model that could be translated to the clinic, we performed the stepwise model
selection to identify the minimum set of proteins that capture the same information as the 39 identified in
our study. We found a panel of 12 proteins that provided accuracy in distinguishing clinically defined AD
patients from controls almost as high as all 39 proteins and led to an AUC of 0.88 in the discovery and
0.999 in replication data. We compared our prediction model to CSF p-tau/AB42, known and validated
biomarkers. In our dataset the CSF p-tau/AB42 ratio led to an AUC of 0.81, which is significantly lower
than our prediction model (P = 2.4x10°). Using the same approach for plasma, the 9 proteins identified
and replicated in an external dataset (Supplementary Table 4, 14) led to an AUC of 0.79 in both discovery
and replication datasets, which was not statistically different from the AUC with CSF p-tau/AB42 ratio
(AUC=0.82; P>0.05). The prediction model based on each externally replicated protein is similar between
the discovery and replication data (Supplementary Fig. 6).

We also created prediction models that could distinguish TREMZ2 variant carriers from non-carriers in both
sporadic AD cases and controls. Therefore, we included the proteins that were differentially abundant
between TREMZrisk variant carriers when compared not only to AD cases but also to controls. Due to a
lack of external datasets, we included only those proteins that replicated across tissues, as explained
above. In CSF, the prediction model that included 7 proteins (Supplementary Tables 8-9) resulted in an
AUC of 0.79 when comparing TREMZrisk variant carriers to controls. The same proteins showed an AUC
of 0.84 for TREM2Z risk variant carriers compared to AD cases (Fig. 3b). CSF p-tau/AB42 levels have been
shown to be a very good biomarker to distinguish AD cases vs controls, but no previous studies examined

how CSF p-tau/AB42 ratio provides prediction for TREMZ2 variant carriers. In this study, CSF p-tau/Ap42
Page 10/29



showed an AUC of 0.74 for TREMZ2 variant carriers vs AD cases and AUC of 0.53 for TREM2 risk variant
carriers vs cognitively normal individuals. Both AUC values are significantly lower than those from our

TREMZ2-associated prediction model with 7 proteins (P < 1.6x107; Fig. 3b).

In plasma, the 21 proteins included in the model (Supplementary Tables 10-11) led to an AUC of 0.93 in
differentiating TREMZ risk variant carriers from controls, while the CSF p-tau/AB42 ratio led to a
significantly lower AUC of 0.69 (P = 1.1x1072). Similarly, in differentiating TREMZ2 risk carriers from other
AD cases, the same 21 proteins led to an AUC of 0.90, which is significantly higher (P = 1.5x10*) than the
AUC with the CSF p-tau/AB42 ratio (AUC=0.63). As the number of proteins is large, we performed a
stepwise model selection and found a subset of 9 proteins that provided AUCs of 0.89 and 0.88 to
discriminate TREMZ2 variant carriers from cognitively normal individuals and from individuals with AD
dementia, respectively (Fig. 3b). The prediction models including age, sex and APOE e4 status as
covariates provided similar performance (Supplementary Fig. 7).

We also leveraged the 17 proteins that were found to be associated with ADAD status and in the same
direction in brain and CSF (Supplementary Table 12) to create potential prediction models

for distinguishing ADAD mutation carriers from non-carriers. In brain data, the model with these 17
proteins provided an AUC of 1, which is significantly higher than the model based on age alone (AUC =
0.76; P = 9.9x107%). In CSF data, the same 17 proteins provided a higher AUC value than the model with
age alone (AUC = 0.87 vs 0.53, P < 2.2x107'%; Fig. 4).

Pathway Enrichment

Finally, we wanted to determine if the proteins identified in our analyses were enriched in common
functional pathways. Functional enrichment analysis was performed with Enrichr.2® As expected, the AD
pathway was significant in CSF in both the sporadic AD (FDR = 1.9x102) and TREMZ variant-specific

analyses (FDR = 5.8x1073, Supplementary Table 15). The proteins that are part of this pathway that were
identified in our analyses include APOE, calcineurin (PPP3R1 and PPP3CA), and MAPKS3 (Fig. 5,
Supplementary Fig. 8). APOE is the strongest and most common genetic risk factor for AD,?” and
individuals with the APOE e4 allele have lower CSF AB42 levels?’ and lower AB42 clearance.?82° Genetic
variants in calcineurin have been associated with higher CSF p-tau levels and earlier age at onset.30

MAPK3 has also been reported to be involved in AD pathology,3'3?2 likely by affecting tau
phosphorylation. In any biomarker discovery study, it is often difficult to determine whether the proteins
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identified are part of a causal pathway or just a product of the disease. Several facts strongly suggest
that many of the proteins identified in this study are, in fact, causal. As mentioned, APOE is known to be

part of the causal AD pathway, and calcineurin and MAPK3 have recently been reported as part of the

causal AD pathway by pQTL and Mendelian randomization analyses® .

Several proteins that are part of the Parkinson disease pathway, including a-synuclein, LRRK2, granulin,
and UCHLT1, were also found to be dysregulated in CSF and plasma for the sporadic AD and TREM2
analyses (FDR < 3.4x1073, Supplementary Table 15). On autopsy, around 30% of the AD cases, including
autosomal dominant AD, present with Lewy bodies, which are deposits of a-synuclein.3* Those reports,
together with our analyses, indicate that PD pathology shares similarities with AD pathology. Similar to a-
synuclein, LRRK2 also showed a strong association with autosomal dominant AD (P = 7.7x10#) and
TREMZ2 (P = 9.3x10). The GRN gene, which encodes the granulin protein, was initially associated with
frontotemporal dementia,3°>3° but recent, large GWAS have also found GRNin both AD37 and PD.38

Granulin, implicated in wound healing®® as a part of the innate immune response pathway, was also
found to be enriched in the proteomic analyses for sporadic AD in CSF (FDR = 6.9x10° ) and plasma
(FDR = 2.1x107), as well as the CSF TREM2-specific analyses (FDR = 1.1x107®). Other dysregulated
proteins identified in our analyses that are also part of this pathway include SHC1, MAPK3, ITGB1, and
SPP1, among others. SPP1 has recently been implicated in microglia activation and the AD pathway.*?
Similar to SPP1, ITBGT is a microglia gene and has been shown to be differentially expressed in the
hippocampus and peripheral blood mononuclear cells (PBMC) of AD cases,*! important in microglia
activation,*? and part of the causal pathway in network analyses.*3 Recent studies have also

demonstrated that meningeal lymphatics affect microglia and AD risk.** Our analyses also found several
endothelial-specific proteins (ERK-1, SHC1, and BCAM).

The 17 proteins that were associated with ADAD status in both brain and CSF in the same direction, were
also enriched for proteins part of the Alzheimer disease pathway (p<1x10-4) and

the cellular response to chemical stimulus pathway (go:0.0070887; p=0.034), which includes, among
others, MIF, a pro-inflammatory cytokine involved on involved in the innate immune response; LILRB; and
CD22 also part of the immune response pathway. IDE is involved in the cellular breakdown of insulin and
has been reported to be involved in the degradation and clearance of naturally secreted amyloid beta-
protein by neurons and microglia.
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In summary, the proteins dysregulated in our analyses are not randomly distributed across functional
groups; they are enriched in specific pathways known to be implicated in AD and other pathways (PD,
immune response) that may be instrumental to AD pathophysiology and may represent new therapeutic
targets. Indeed, our analyses indicate that the proteins identified here are not only dysregulated in AD but
also play a causal role.

Discussion

This is the first large-scale, multi-tissue proteomic characterization of sporadic and genetically defined AD
cases (TREMZ2 and Mendelian cases). We created a web portal
(http://ngi.pub:3838/0ONTIME_Proteomics/) to facilitate the exploration of our analyses and further
investigation into individual protein abundance levels across disease status or sex (Supplementary Fig.
9). In this study, we obtained proteomic measures from Knight ADRC and DIAN cohorts and identified
proteomic profiles for sporadic AD, TREM?Z2 variant carriers, and autosomal dominant AD cases in three
tissues. These proteomic profiles replicated in independent datasets and across tissues, which were used
to create tissue-specific prediction models and to identify novel causal proteins and pathways for
sporadic and genetically defined AD cases. We created and validated tissue-specific prediction models
using proteins identified in CSF and plasma that were as good as, or better than, the current gold
standard antibody-based biomarkers for AD risk. Having new prediction models in CSF and plasma that
are independent from AB and tau might be relevant for clinical trials and therapies that target those
molecules, as biomarkers that do not rely on the targe protein may be needed. We also demonstrated that
there are common proteins associated with AD status across tissues, which has important implications
for the identification and validation of AD biomarkers in future studies.

This study also identified new proteins and pathways implicated in sporadic AD and individuals with
specific genetic profiles. While validation of some of our findings will require additional follow-up studies,
these results highlight the need for multi-tissue proteomics to fully understand the biology of AD and
create tissue-specific prediction models for individuals with specific genetic profiles, ultimately supporting
its utility in generating clinically useful biomarker arrays. This study indicates that once individuals with
specific genetic profiles are identified, it is possible to create customized prediction models and identify
proteins implicated in disease, an instrumental step toward creating individualized, specific disease risk
evaluation and treatment.

Methods And Materials
Study Participants

This study included the brain (N=360), CSF (N=717), and plasma (N=490) data from the Knight ADRC?
and the Dominantly Inherited Alzheimer Network (DIAN)® cohorts. The recruited individuals were
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evaluated by Clinical Core personnel of the Knight ADRC.

For brain samples, brain autopsy was performed by the Knight ADRC Neuropathology Core and AD status
was determined by postmortem neuropathological analysis. Brain tissues were collected from fresh
frozen human parietal lobes. Neuropathological phenotypes, including Braak tau, CERAD AR, a-synuclein
pathology, postmortem interval (PMI), age at onset, age at death and brain weight, were obtained for all
brain samples. The brain data included 24 individuals carrying autosomal dominant AD (ADAD)
mutations, out of which 18 were from the DIAN cohort. Among these ADAD individuals, 19, 1, and 4
carried pathogenic mutations in PSEN1, PSENZ, and APP, respectively.

Among individuals with CSF and plasma data, AD cases corresponded to those with a diagnosis of
dementia of the Alzheimer's type (DAT) using criteria equivalent to the National Institute of Neurological
and Communication Disorders and Stroke-Alzheimer's Disease and Related Disorders Association for
probable AD,64%643 and AD severity was determined using the Clinical Dementia Rating (CDR®)*® at the
time of lumbar puncture (for CSF samples) or blood draw (for plasma samples). Controls received the
same assessment as the cases but were non-demented (CDR=0). CSF and blood for plasma were
collected in the morning after an overnight fast, aliquoted and stored at -80°C until assayed.>® CSF AB
and tau levels were measured as explained previously.? The Institutional Review Board of Washington
University School of Medicine in St. Louis approved the study and research was performed in accordance
with the approved protocols.

Proteomic Data

For deep omics characterization in brain, CSF, and plasma tissues, we quantified the level of 1,305
proteins using a multiplexed, single-stranded DNA aptamer assay developed by SomalLogic.*’ The assay
covers a dynamic range of 108 and measures all three major categories: secreted, membrane, and
intracellular proteins. The proteins cover a wide range of molecular functions and include proteins known
to be relevant to human disease. Aliquots of gray matter homogenate (150 pl) of tissue were provided to
the Genome Technology Access Center at Washington University in St. Louis for protein measurement. As
previously described by Gold et al,’” modified single-stranded DNA aptamers are used to bind specific
protein targets, which are then quantified by a DNA microarray. Protein concentrations are quantified as

relative fluorescent units (RFU) of intensity in this DNA microarray.

Quality control (QC) was performed at the sample and aptamer levels using control aptamers (positive
and negative controls) and calibrator samples. At the sample level, hybridization controls on each plate
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were used to correct for systematic variability in hybridization. The median signal over all aptamers was
used to correct for within-run technical variability. This median signal was assigned to different dilution

sets within each tissue. For brain and CSF samples, a 20% dilution rate was used. For plasma samples,

three different dilution sets (40%, 1%, and 0.005%) were used.

As described in detail,’ we performed additional QC by identifying and removing protein/analyte outliers
by applying the following four criteria using R. 1) Minimum detection filtering. The limit of detection
(LOD) was computed based on negative controls. If the average expression of an analyte in a sample
was found to be less than its LOD in more than 15% of total sample size, this sample was marked as an
outlier and excluded. 2) Scale factor difference. Scale factor difference was calculated as the maximum
value of the absolute difference between the median expression of analytes per plate and calibration
scale factor. If the maximum difference was greater than 0.5, the analyte was excluded. 3) Coefficient of
variation (CV). The CV for each aptamer was calculated as the standard deviation divided by the mean of
the protein levels in calibrators. If the median coefficient of variation for a particular analyte was greater
than 0.15, this analyte was excluded. 4) Interquartile range (IQR). If more than 15% of the log10
transformed analyte values are located outside of either end of a 1.5-fold of IQR, this analyte was marked
as an outlier and excluded. In addition, if more than 15% of the transformed analyte values in a particular
sample are located outside a 1.5-fold of IQR, this sample was marked as an outlier and excluded.
Analytes and samples that remained after applying these 4 criteria were used for the downstream
statistical analysis.

Differential Abundance Analysis

To obtain proteomic signatures of sporadic AD status, TREMZrisk variant carriers, and autosomal
dominant AD (ADAD) status, we performed differential abundance analysis by using log10-transformed
protein levels as an outcome in a linear regression model. In all three tissues, sporadic AD status and
TREM?Z2 variant carrier status were considered as a main predictor. In brain tissue, ADAD status was also
considered. In each tissue, we performed surrogate variable analysis (SVA) while including status and
age as covariates in a null hypothesis model to remove batch effects in our proteomics data (17 batches
in brain, 50 batches in CSF and 27 batches in plasma data) and correct for other unmeasured
heterogeneity.’* The number of resulting surrogate variables were 10, 32, and 14 in brain, CSF, and
plasma, respectively. Age at death or at measurement (in all regression models except for ADAD-specific
analysis), sex and the resulting surrogate variables were included as covariates. In ADAD analysis in
brain tissue, sex was excluded from covariates as control group was older than ADAD individuals.

In addition, we performed analyses using age-at-onset (AAO) and AD neuropathology characteristics
(Braak neurofibrillary tangle scores and CDR at death) for brain data, AAO and CSF pTau/AB42 ratio for
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CSF data, and AAO for plasma data, while including the same covariates. For AAO, we performed survival
analysis while considering age, sex and surrogate variables as covariates (Supplementary Fig. 1). We
created a survival object using R function Surv and performed a Cox proportional hazards regression
model using the coxph function. In addition, we examined the consistency between effect sizes of AD
status and AD neuropathology measures through the scatter plots. We performed correlation tests using
cor.test in R to test association between effect sizes with Pearson’s product moment correlation
coefficient and two-sided alternative hypothesis. In addition, we performed Fisher's exact test for the
same direction.

We obtained the minimum number of principal components (PCs) that cumulatively explain 95% of the
variance for each tissue after QC. The number of PCs is 75, 169, and 230 in brain, CSF, and plasma data,
respectively. We considered a Bonferroni-corrected threshold as 0.05 divided by this number of PCs. The
thresholds corresponded to 0.67x10™ in brain, 2.96x10* in CSF, and 2.21x10* in plasma. When we
applied Bonferroni correction and false discovery rate (FDR), we found that the use of these Bonferroni-
corrected thresholds usually provided fewer significant results and is therefore more conservative than
the use of FDR (Supplementary Table 16). Because of this, we chose to apply Bonferroni correction.

Replication Strategies

To internally validate our identified proteins in each tissue, we examined which proteins would be
associated in the remaining tissues at the nominal significance threshold (P < 0.05). In addition, to
externally replicate our sporadic AD findings within the same tissue, we downloaded multiple publicly
available proteomic datasets.

For brain tissue, we downloaded the mass-spectrometry data that were processed and deposited by
Johnson et al'® for following 6 studies: the Adult Changes In Thought (ACT), Banner Sun Health
Research Institute (BANNER), Baltimore longitudinal study of aging (BLSA), Mayo Clinic (MAYO), Mount
Sinai Brain Bank (MSBB), the Religious Orders Study and the Memory and Aging Project (ROSMAP). We
combined these brain proteomics data from all 6 studies (resulting in a total of 10,078 proteins measured
in 415 AD patients and 194 controls) and performed SVA to account for batch effects and unmeasured
heterogeneity. Then we performed differential abundance levels of AD status jointly while considering
age, sex and 11 surrogate variables as covariates. In addition, to confirm that our results were not false
positives due to the joint analysis merging of all 6 studies, we used the results presented by Johnson et
al'® that used ACT, BANNER, BLSA, MSBB, results by Higginbotham et al'? that used DLPFC, and results

by Wingo et al'® that used ROSMAP.
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For CSF tissue, we obtained multiple reaction monitoring ADNI data and performed differential analysis
for 320 proteins in 188 AD patients and 75 controls while considering age, sex and 7 surrogate variables
as covariates. In addition, we used the results based on Emory-ADRC mass-spectrometry

data from Higginbotham et al'? and the results based on BioFinder OLINK data from Whelan et al.’” For
plasma tissue, we downloaded the cleaned SOMAscan 1.1K proteomic data from the AddNeuroMed
study.’3 After excluding 166 individuals with mild cognitive impairment, we performed differential
abundance analysis of 320 AD patients and 194 controls, while including sex, age, batch effects, and
APOE status as covariates. For ADAD status, only high throughput proteomic screening was performed
on brain tissue. To replicate these proteins that were associated with ADAD status in brain, we performed
analysis in CSF from 289 ADAD mutation carriers and 184 non carriers from the DIAN study®, while
including sex, age, and batch effects as covariates.

To compute the fold-enrichment of replication to what would be expected by chance, we used the
Binomial distribution. Under the null hypothesis of no enrichment, the expected number of replicated
proteins is the number of available proteins for testing times the significance threshold (0.05 x 0.05 in
across-tissue replication and 0.05 x 0.5 in external replication). We computed the enrichment as the ratio
of the observed replications by the expected replications and the p-value based on the Binomial
probability.

ADNI

Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Prediction Models

To obtain tissue-specific prediction models, we performed logistic regression models considering multiple
proteins as main predictors and sporadic AD and TREMZ2 variant carrier status as an outcome, while
including sex, age, and with and without APOE e4 allele status as covariates. In sporadic AD status,
externally validated proteins were used for both discovery and replication datasets. In brain, we used the
combined mass-spectrometry brain proteomics data from ACT, BANNER, BLSA, MSBB, MAYO, and
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ROSMAP for replication. In CSF, we downloaded the Emory-ADRC mass-spectrometry data that were
processed and deposited by Higginbotham et al.’? and used for replication. In plasma, we used cleaned
data from the AddNeuroMed'® SOMAscan 1.1K proteomic dataset for replication. In TREMZ variant
carrier status modeling, we used proteins validated across tissues for discovery data.

When there were more than 10 proteins, we also performed stepwise regression analysis to reduce the
number of proteins by selecting the best model by Akaike information criterion (AIC) using step function
in R. We considered both forward and backward selection and chose the model with fewer proteins when
there were two competing models. The well accepted CSF biomarker using p-Tau/AB42 ratio was
considered as a gold standard for comparison. Receiver operator characteristic (ROC) curves and areas
under the curves (AUC) were computed using the R package pROC V1.12.1. The roc.test function within
the same package was used to compare AUC values for two models (such as AUC based on the identified
proteins vs. AUC based on p-Tau/AB42 ratio).

Pathway Enrichments

Functional enrichment analysis was performed with Enrichr.2® For sporadic AD findings, the genes that
target our proteins identified and validated internally or externally (9, 42 and 14 genes in brain, CSF, and
plasma, respectively) were used as an input for enrichment analysis. For TREM2 carrier status, we
considered 6, 10 and 21 genes that replicated across tissues, in brain, CSF, and plasma, respectively.
Among multiple gene-set libraries, KEGG, Reactome, Panther pathways and GO biological process were
considered. The significance of functional enrichment was reported as the p-value of Fisher’s exact test,
followed by Benjamini—Hochberg adjustment for false discovery rates (FDR) in testing multiple
hypotheses. We considered results with FDR < 0.05 as significant and included them for creating the dot
chart and tile plots to graphically display our findings.

Tables

Table 1: Summary characteristics of participants with proteomic measures in the Knight ADRC

and DIAN cohorts
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Tissue Status Sample size (N) % Female Age (mean + SD)

Brain CO 25 61.72 88.24 + 8.85
AD 290 33.33 83.98 + 8.83

ADAD 24 76.00 55.67 + 14.58

TREM2 21 57.14 82.57 £ 7.62
CSF CO 494 55.26 73.15 + 6.43
AD 176 46.02 74.60 £ 7.02

TREM2 47 44.68 74.00 £ 6.48

Plasma CO 254 57.48 71.53 + 7.31
AD 105 37.14 72.59 + 7.67

TREM2 131 64.89 74.98 + 8.17

CO = healthy control; AD = sporadic AD cases; ADAD = Autosomal dominant AD; TREMZ2 = AD-
risk variant (p.E151K, p.H157Y, p.L211P, p.R136Q, p.R163Q, p.R47H, p.R62H, p.T96K)

carriers in TREMZ2; CSF = cerebrospinal fluid.
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Study outline In discovery stage, protein measures with SOMAscan targeting 1,305 proteins were
obtained in brain, CSF, and plasma tissues from well-characterized Knight ADRC and DIAN participants
with comprehensive clinical information about AD pathology and cognition. This discovery cohort
contained sporadic AD (290 in brain; 176 in CSF; 105 in plasma), TREMZ2 risk variant carriers (21 in brain;
47 in CSF; 131 in plasma), autosomal dominant AD (24 in brain), and healthy controls (25 in brain; 494 in
CSF; 254 in plasma). Using this large number of samples, differential abundance analyses were
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performed for sporadic AD status, TREM2 risk variant status and autosomal dominant AD status. Several
publicly available external proteomics data were then used to replicate our findings. In addition,
quantitative analyses using several quantitative neuropathology measures, including CDR and Braak
scores in brain and age at onset in three tissues, were performed. Finally, replication proteins were used
for creating a tissue-specific prediction models and pathway enrichment analysis. Our results are
accessible through our web portal http://ngi.pub:3838/ONTIME_Proteomics/.
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Figure 2

Multi-tissue proteomics profiling of sporadic AD a. Volcano plots are shown for brain, CSF, and plasma
tissue. Multiple proteins (12 in brain; 117 in CSF; 26 in plasma; shown in blue) are differentially abundant
in AD (compared to healthy controls) at the Bonferroni adjusted significance. A subset of those identified
proteins also showed differential abundance levels in the other tissue. b. Tissue-specific prediction
models are shown for our discovery data and externally replicated data set. For example, in CSF, among

Page 26/29



117 proteins showing differential abundance levels in AD, 39 proteins (including SMOCT1, Calcineurin, and
ERK-1) were externally replicated showing nominal significance (P < 0.05) and same direction of effects.
The prediction model using these 39 proteins provided an AUC of 0.89 in the Knight ADRC data and 0.9 in
the Emory-ADRC data. In addition, the 12 proteins selected based on stepwise discriminant analysis (14-
3-3 protein zeta/delta, EphAS5, Calcineurin, Somatostatin-28, Cyclophilin A, Contactin-5, GFAR,
Corticotropin-lipotropin, Spondin-1, TCTP, PolyUbiquitin K48, and Peroxiredoxin-6, Supplementary Table
14) led to an AUC of 0.88 in discovery and 0.999 in replication data. This showed that this predication
model outperformed the gold standard CSF AB/tau181 ratio (with P = 2.4x10-6).
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Multi-tissue proteomics profiling of TREM2 variant carrier status a. Volcano plots are shown for brain,
CSF, and plasma tissue. Multiple proteins showed differential abundance levels in TREM2 variant carriers
(compared to controls or other sporadic AD cases) in at least one of the three tissues. A subset of those
identified proteins were replicated in the other tissues. For example, among 38 proteins associated with
the TREM2 variant carrier status, 7 proteins (Supplementary Table 14) were replicated in brain and
plasma. b. The prediction model based on the across-tissue replicated proteins (the pink curve with
proteins validated by the other two tissues and the green curve based on the subset chosen through the
discriminant analysis) showed higher accuracy than the well-accepted p-Tau/AB42 ratio (shown in black),
while including age and sex as covariates. In plasma, out of 26 proteins, the 9 proteins selected based on
stepwise discriminant analysis are Bone proteoglycan Il, STAT3, uPA, ERK-1, VCAM-1, PAPP-A, BSSP4,
XTP3A, and ST00A4. The prediction models of our identified proteins while including age, sex and APOE
status as covariates provided similar performance (Supplementary Fig. 6).
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Figure 4

Proteomic profiling of autosomal dominant AD (ADAD) abundance. a. We found 109 proteins associated
with the ADAD mutation carrier status at Bonferroni corrected threshold (volcano plot in Supplementary
Fig. 5) and the 17 proteins (Supplementary Tables 12 and 14) were replicated in CSF and in the same
direction. The model with these 17 proteins provided significantly higher AUC than the age alone (AUC = 1
vs 0.76; P = 9.9x10-3 in brain and AUC = 0.87 vs 0.53, P < 2.2x10-16 in CSF). b. The 12 proteins
associated with sporadic AD brains displayed even stronger effect size in the ADAD mutation carrier
brains. The effect of ADAD status on log-transformed protein levels (y-axis) roughly corresponded to 1.4
times the effect of AD status (x-axis) among the 12 identified proteins. This slope estimate (1.39,

standard error = 0.21, P = 3.8x10-5) was obtained by fitting a regression line going through the origin,
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which explained the scatterplot better than a regression line allowing the intercept (Multiple R-squared

value = 0.80 without intercept vs. 0.65 with non-zero intercept). The box plots for the select 5 proteins are
displayed.
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Figure 5

Pathway enrichments for multi-tissue findings The dot chart (size corresponding to the number of
identified genes and color corresponding to the FDR corrected significance) presents that several
identified proteins (Calcinuerin, APOE and a-synuclein) enrich in several pathways including Alzheimer
disease, Parkinson disease and several immune related pathways (Supplementary Table 15). The full list
of 79 genes is shown in Supplementary Fig. 8.
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