
Page 1/19

Heritability And Genetic Correlations For Hormone-Sensitive Cancers In
The UK Biobank: A Molecular Evidence of Shared Aetiology
Muktar Ahmed 
(

ahmmb001@mymail.unisa.edu.au
)

University of South Australia
 https://orcid.org/0000-0002-9524-7027
Ville-Petteri Mäkinen 

University of South Australia
 https://orcid.org/0000-0002-7262-2656
Anwar Mulugeta 

University of South Australia
Jisu Shin 

University of South Australia
 https://orcid.org/0000-0001-9376-8251
Terry Boyle 

University of South Australia
Elina Hypponen 

University of South Australia
 https://orcid.org/0000-0003-3670-9399
Sang Hong Lee 

University of South Australia
 https://orcid.org/0000-0001-9701-2718

Article

Keywords: cancers, genetic, disease, hormone-sensitive

Posted Date: October 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-926833/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

Version of Record: A version of this preprint was published at Communications Biology on June 21st, 2022. See the published version at
https://doi.org/10.1038/s42003-022-03554-y.

https://doi.org/10.21203/rs.3.rs-926833/v1
mailto:ahmmb001@mymail.unisa.edu.au
https://orcid.org/0000-0002-9524-7027
https://orcid.org/0000-0002-7262-2656
https://orcid.org/0000-0001-9376-8251
https://orcid.org/0000-0003-3670-9399
https://orcid.org/0000-0001-9701-2718
https://doi.org/10.21203/rs.3.rs-926833/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s42003-022-03554-y


Page 2/19

Abstract
Hormone-related cancers, including cancers of the breast, prostate, ovaries, uterine, and thyroid, globally contribute to the majority of cancer
incidence. We hypothesize that hormone-sensitive cancers share common genetic risk factors that have rarely been investigated by previous genomic
studies of site-specific cancers. To test this hypothesis, we analysed five hormone-sensitive cancers in the UK Biobank as a single disease. We
observed that a significant proportion of variance in disease liability was explained by the genome-wide single nucleotide polymorphisms (SNPs), i.e.,
SNP-based heritability on the liability scale was estimated as 10.06% (SE 0.70%) for the disease. Moreover, we found 55 genome-wide significant
SNPs for the disease, using a genome-wide association study. Our finding suggests that heritable genetic factors may be a key driver in the
mechanism of carcinogenesis shared by hormone-sensitive cancers. 

Introduction
Cancer continues to dominate as one of the major global public health problems with increasing incidence 1 and multiple aetiologies 2. The risk of
cancer is in part modifiable, and demographic and lifestyle factors have been reported to explain some of the variability in cancer 3. There is also a
genetic component to cancer, evidenced from twin and sibling studies 4, 5. Large-scale genomic studies have also identified germline variants (single-
nucleotide polymorphism [SNPs]) that are linked with the susceptibility to various types of cancer, using population samples 6, 7.

Cancer is a broad term for a heterogeneous group of diseases, all sharing an uncontrolled cell growth. However, there is also evidence for shared
mechanisms; for example, hormonal pathways affect the development of several types of cancer 8. Group of cancers that share a characteristic
mechanism of carcinogenesis that involves hormones, namely breast, uterine, prostate, ovary, testis, osteosarcoma, and thyroid cancers, are termed as
hormone-sensitive cancers 9. Human genomic studies of hormone-sensitive cancers have been limited to investigating site-specific cancers
independently. While a few genome-wide association studies (GWASs) have provided evidence for a shared genetic basis between a limited number of
cancer types (i.e., breast, prostate, endometrial and ovarian cancer) 10, 11, 12, it is unclear if the common germline genetic factors play a significant role
in the shared mechanism of carcinogenesis 5, 13 .

Estimating SNP-based heritability can quantify the proportion of variance in disease liability explained by the genome-wide SNPs. When treating
multiple hormone-sensitive cancers as a single disease, estimated SNP-based heritability can inform if the common germline variants contribute to the
carcinogenic risk shared between hormone-sensitive cancers. Furthermore, analyses of shared heritability between the disease and other hormone-
related phenotypes such as IGF-1, oestradiol and sex hormone binding globulin (SHBG) may provide information about the relationships between
modifiable environmental risk factors and the risk of hormone-sensitive cancers.

The aim of this study was to estimate the SNP-based heritability for grouped hormone-sensitive cancers, using a broad definition including breast,
prostate, uterine, ovarian, and thyroid cancers, among 15,197 hormone-sensitive cancer cases in a total of 288,837 participants in the UK Biobank
(UKB). We also examined the genetic correlation between hormone-sensitive cancers and other non-cancer traits, with a view of establishing genome-
wide level interactions.

Methods
Study design and cohort characteristics

We used data in the UK Biobank (UKB) (http://www.ukbiobank.ac.uk). The UKB is a large prospective study that aims to improve the diagnosis,
treatment, and prevention of disease. Full details are described elsewhere 50. It includes more than 500,000 participants aged 37-73 years, with
baseline recruitment conducted between 2006 and 2010. Informed consent was obtained during enrolment, as was permission to access medical and
other health-related data for research purposes. The UKB has approval from the North West Multi-Centre Research Ethics Committee (MREC) and the
National Information Governance Board for Health and Social Care (11/NW/0382).

Cancer status was ascertained through linkage to national cancer registries 51. Information on cancer registrations was available up to October 2016,
which includes the diagnoses code according to the International Classification of Diseases (ICD; ninth and tenth editions). We mapped all cancer-
related ICD codes into “phecodes” which better reflect disease coding as relevant for clinical practice 52. We excluded participants who had self-
reported having had cancer but did not have a record in the cancer registry. For participants with multiple cancer diagnoses, we included the first
diagnosed cancer based on the date of diagnosis. As controls, we used participants with no report of any type of cancer-based on self-report, cancer
registry, or hospital inpatient data, or benign or in situ tumours from the cancer registry. Applying criteria previously used by others 9, we grouped
cancers according to whether they were sensitive to hormonal variation, classifying cancers of the breast, endometrium, ovary, prostate, and thyroid as
“hormone-sensitive cancer”. Our analyses included 235,512 controls and 15,197 hormone-sensitive cancer cases. Incident cancer cases were defined
as those diagnosed after the baseline assessment before the end of follow-up ( October 2016) and prevalent cases were those diagnosed before
baseline assessment in the UKB. The basic covariates and covariates used for statistical adjustments are described in detail in the supplementary file
(Supplementary method).
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Genotypic Data: to control for artifacts introduced to the data during genotyping, initial standard quality control (QC) measures were applied to all data
sets before analyses. The genotype data in the UKB includes 92,693,895 SNPs genotyped from 488,377 study participants. The QC procedure for the
genotypic data focused on two levels i.e., at individual and SNP level. First, at the individual level, we exclude individuals with a call rate of less than
95% and individuals who did not self-identify as white British ancestry or who exhibited sex inconsistencies (sex mismatch between self-reported
phenotype sex and genotype determined sex data) and had a putative sex chromosome aneuploidy (chromosomal anomalies). To check identical
genes shared through common ancestors, we randomly selected individuals from a pair and excluded those pairs in which their genomic relationship
is larger than 0.05. Furthermore, to avoid bias induced as a result of population stratification and to ensure participants are taken from a relatively
homogenous population, we checked the population substructure in the Principal Component (PC) analysis to the excluded individual as population
outliers with the first or second PC outside ± 6 SD of the population mean. Based on the release of the UKB genotype dataset, for those who were
included in both the first and second, we calculated the genotype discordance rate between imputed genotype of the two versions for each SNP and
each individual and exclude those with a genotype discordance rate of more than 0.05. Secondly at the SNP level, genetic markers with an INFO score
<0.6, markers that deviate significantly from Hardy-Weinberg equilibrium (HWE) (1.00E-07) or with a call rate <0.95, with MAF <0.01 and ambiguous or
duplicated SNPs were excluded. Additional specific cohort-level quality control measures can be found in the reference cohort-specific publications 53.
To avoid systematic differences between cases and controls being interpreted as genetic variance, a more stringent quality-control process was then
applied to the data. This included excluding individuals with incomplete phenotype data and re-moving markers with a minor allele frequency of less
than 1%. In this study, we used high-quality SNPs from the International HapMap Project [HapMap3] that were reliable in estimating genetic variance
and covariance at the genome-wide level, feasible for more complicated analyses and there was no substantial difference between estimated genetic
variance from HapMap3 and 1000 genome SNPs54. After QC, 1,217,312 HapMap3 SNPs with 288,837 study participants have remained for the
analyses.

Statistical Information
For the Univariate heritability estimate, we assumed a linear mixed model for the heritability analysis as follows:

y = Xb + Zaa + ϵ

where y is a vector of the response variable (cancer status); b is the vector of regression coefficients for the fixed effects; a is additive genetic effects
with variance; ε is residual (environment effects) with variance and Z and X is the design of matrix of the fixed effects 14.

For the heritability estimate, the genomic relationship matrix (GRM) was constructed using plink software 55, 56. To estimate the Univariate heritability
of the subgroups of cancers, two different methods were applied. First, we used the genomic relationship matrix-restricted maximum likelihood
(GREML) method, which is based on the individual level genotype data. Second, as linkage disequilibrium score (LDSC) regression method largely
depends on summary level genotype data, using the UKB individual genotype data, we computed the summary statistics. We used the pre-computed
LD score for white Europeans 57 which is considered suitable for standard LDSC analysis in European populations to use it in a command-line tool of
LDSC. For each method, we used both incident and prevalent cases together in the dataset as cases. The analyses were repeated restricting
prospective [incident] cancer cases only. With the use of the prevalence rate of the subgroups of cancers, the observed scale estimates were
transformed to liability scale according to Lee et al using MTG2 software. We used χ2 which is distributed following a chi-square distribution with 2
degrees of freedom and Wald tests.

The GREML method requires individual-level genotype data and is computationally demanding 55. The sample size of the UKB is large, therefore, we
randomly subdivided the dataset to shorten computing time and applied a meta-analysis approach. We first divided the samples into two groups,
UKBB1 (91,472 individuals from the first release) and the other samples except for UKBB1, named as UKBB2. In UKBB2, 197,365 individuals with
genotype data passed the QC. We further randomly divided the UKBB2 into two groups of equal size (denoted as UKB2A [n=98,682] and UKB2B
[n=98,683]) and fitted all models mentioned above for each group. We then meta-analysed the heritability and other related estimates from UKB2A,
UKB2B, and UKBB1 using the Fisher’s method 58. For UKBB2, we used the same variables for adjustment as UKBB1.

Genome-wide association (GWAS) analysis

Recent advances in computational methods have facilitated the investigation of genetic variants and their effects on multiple complex diseases, i.e.,
GWAS. After estimating heritability, we, therefore, extend the analysis to estimate the effects of genome-wide SNPs associated with causal genes on
the group of hormone-sensitive cancers as a single trait GWAS, using a logistic regression model. The phenotype used for the GWAS analysis is
similar to the SNP-based heritability estimate. In total, 15,197 hormone-sensitive cancer cases, including breast cancer, prostate, endometrial, ovarian,
thyroid, and 223,207 controls were included in the GWAS analysis. The phenotype is similarly adjusted to multiple variables to the heritability estimate
to identify significant SNPs using the list of common SNPs from HapMap3. We first computed the statistical power of the study for hormone-sensitive
cancers using the online available software GAS Power calculator for genomic study 59. The power calculation is conducted under the assumptions of
genetic models (i.e., additive), 5% minor allele frequencies (MAFs), pair-wise LD, a 6.34% disease prevalence, 1:1 case-to-control ratio, and 5% level of
significance. We found the sample size of hormone-sensitive cancers was sufficient to achieve 80% statistical power according to the additive genetic
model applied. The power curve is attached in the supplementary file. [Supplementary Fig. 2].
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We performed post GWAS analyses that involves constructing a quantile-quantile (QQ) plot for hormone-sensitive cancers in each case [all hormone-
sensitive cancers Vs prospective hormone-sensitive cancer cases only]. We further quantified the degree of genomic inflation factor (lambda = λ) i.e.,
how best the observed data points fit to the expected value. The QQ plots in each case showed the bulk of the distribution is in the lower tail of the
graph.

We identified genome-wide significant SNPs for hormone-sensitive cancers using plink software 56 to obtain the GWAS P-values that were used for the
Manhattan plot for qqman package in R. For the post GWAS analysis to see the genomic inflation factor (λ = lambda), we plot QQ plot using QCEWAS
package in R. λ is the median of the resulting chi-square test statistics divided by the expected median of the chi-square distribution. The median of a
chi-squared distribution with one degree of freedom is 0.4549364, i.e., [qchisq(0.5,1) = 0.4549364]. A λ value is calculated from p-values in the output
we have from the genome-wide association analysis. Low significant results are removed (there are more significant results than expected) to increase
the lambda value. To rescale the lambda value to provide better information, we use the following formula to rescale the lambda calculated 60.

where n is the study sample size for cases and controls respectively, and ncases,1000 and ncontrols,1000 is the target sample size of 1000.

Phenotypic correlation:

Estimates of phenotypic and genetic correlation were computed separately between hormone-sensitive cancer and each non-cancer trait. The
phenotypic correlation was estimated using Pearson correlations between each pair of traits for complete observation in R. To examine the genetic
architecture further, we performed phenotypic correlation for components of hormone-sensitive cancers using the leave-one-out analysis approach.
The results are summarized and presented in Table 2.

Genetic correlation analysis

As Bivariate LDSC estimates are not biased with sample overlap wherein controls are common in both traits and computationally very efficient 24, we
run the genetic correlation to generate an overview of the genetic relationship between hormone-sensitive cancers and the six non-cancer subgroup
traits. We then used the Bivariate GREML approach to estimate the genetic correlation between hormone-sensitive cancers and seven non-cancer
traits. Further, we examine the genetic correlation between each component of hormone-sensitive cancers using a pair-wise comparison approach. The
genetic correlation (rg ± SE) is calculated using cross-trait LD Score regression method.

As most oestradiol hormone is bound to the serum protein sex-hormone binding globulin (SHBG) and Albumin, i.e., biologically unavailable to exhibit
its physiologic effect, implying the need to compute the free hormone level, we calculated the free concentration using serum oestradiol and the
concentration of SHBG and Albumin with their respective association constant K 61.

cFO = (E2 − NTotal)/( NSHBG − E2 + NE2
)

where cFo = calculated free oestradiol; E2= serum oestradiol level; NE2 =0.64x109*Albumin level +1; NSHBG = 5.55x104 * SHBG level; and NTOTAL = NSHBG

+ NE2

Leave-one-out (LOO) approach to determine the genetic correlation of hormone-sensitive cancers

The iterative scheme of leave-one-out analysis is carried out by using a different possible combination of hormone-sensitive cancers in cross-trait
LDSC regression. The grouped hormone-sensitive cancer comprised of 5 distinct heterogeneous cancers and we created a 5-fold leave-one-out
analysis that involves the different possible combinations of the hormone-sensitive cancers. During each iterative step, we exclude data of one
independent cancer at a time and use the remaining cancer types as grouped hormone-sensitive cancers to compute the genetic correlation in
Bivariate LDSC. These steps are iteratively completed five times. The analysis sketch map demonstrating all the possible combinations is summarized
in Supplementary Fig. 4.

Gene-environment interaction

Finally, we checked the gene-environment interaction for hormone-sensitive cancers with selected traits using Bivariate GREML and GxEsum
techniques for traits with continuous level measurement. The Bivariate GREML approach is applied with the assumptions of gene-environment
interactions in contrast to the Univariate GREML model that assumes the absence of GxE interactions. Here in this method, we stratified the hormone-
sensitive cancer phenotype by traits regarded as environments [i.e., BMI-normal Vs high; metabolic environment-favourable Vs unfavourable; and sex-
male Vs female] to look for interactions. Such approach allows us to test whether the genetic effects are heterogeneous if individuals lie in the same
environment thereby test for gene-environment interaction.

( ) ( )
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A recently proposed alternative method for quantitative traits, called GxEsum is able to estimate gene-environment interaction. This method is built on
LDSC approach by using GWAS summary statistics and suggested as computationally efficient method 26. For SNP effects modulated by quantitative
environment, the expected chi-square statistics (χ²) is

E χ2 | ιj =
Nδ2

g1

M ∗ lj + 1 + 2(δ2
g1 + δ2

τ1)

,

where N is the number of individuals, M is the number of SNPs, δ2
g1is the variance due to GxE,  δ2

τ1 is the variance due to residual heterogeneity or

scale effects caused by residual-environment interaction (RxE), ιj is the LD score at the variant j.

The P-value in this study is calculated applying the Wald-test with the assumption of the distribution of estimated genetic correlation was normal. The
statistical significance level was set at p<0.05 (2-tailed).

Software: We have used the well-established MTG2 14 software to conduct the Bivariate GREML analyses and estimate the genetic correlation
coefficient between each non-cancer trait and subgroups of cancer. For MTG2, the source code, executive binary file, user manual, and toy examples
for practice are readily available for downloads using the link https://sites.google.com/sit/honglee0707/mtg2. The GxEsum model is implemented in
the script that is publicly available at https://github.com/honglee0707/GxEsum. The version of source code used in the manuscript is deposited with
DOI:10.5281/zenodo.4659681 at https://zendo.org/record/4659681#.YGKZXc9xeUk. The rest statistical analyses were performed using publicly
available software that includes plink1.9, LDSC, and analysis packages in R & Python.

Reporting summary: Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability: All data will be available to approved users of the UK Biobank upon application. The authors state that all data necessary for
confirming the conclusions presented in the manuscript are represented fully within the manuscript.

Results
The characteristics of participants stratified by a group of cancer diagnoses are shown in Table 1. A total of 250,709 white Europeans were analysed
in this study; including 15,197(6.06%) hormone-sensitive cancer cases. In summary, 53.8%(n=155,392) of the study samples were women, 93.48%
(n=270,014) were current alcohol drinkers, 42.5%(n=122,628) were overweight, 54.59%(n=157,690) had never smoked and 35.2% (n=101,521) were
previous smokers. There was a total of 21,973 incident cancer cases [diagnosed with cancer after baseline during follow-up] with a median follow-up
year of 7.7 years (interquartile range [IQR]=7.08 - 8.4) and 24,438 prevalent cancer cases (diagnosed with cancer before baseline assessment).

  

[ ]
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Table 1
Descriptive statistics for overall cancer, obesity-related and hormone-sensitive cancers in the UK Biobank (N=276,028)

Characteristics Controls*,
N(%)

235,512

Overall cancer cases,
N(%)

Obesity related cancer cases⁑,
N(%)

Hormone-sensitive cancer cases‡

N(%)

Sex        

Male 110,150(86.8) 16,725(13.2) 12,504(9.4) 5,730(4.3)

Female 125,362(84.1) 23,791(15.9) 13,602(8.8) 9,467(6.0)

Age at initial assessment        

39-49 years 56,854(24.1) 4,595(11.3) 1,615(2.4) 666(0.98)

50-59 years 81,500(34.6) 11,580(28.6) 7,976(7.9) 4,696(4.7)

60-73 years 97,158(41.2) 24,341(60.0) 20,970(15.6) 12,481(10.0)

BMI (kg/m2)        

Underweight[<18.5kg/m2] 1189(0.5) 230(0.5) 132(8.8) 75(5.0)

Normal[18.5-25kg/m2] 77,882(33.0) 13,0551(32.2) 7,841(8.2) 4,818(5.0)

Overweight[25-30kg/m2] 99,872(42.4) 17,153(42.3) 11,408(9.3) 6,575(5.4)

Obese[≥30kg/m2] 55,833(23.7) 9,929(24.5) 6,638(9.7) 3,688(5.4)

Missing 736(0.3) 149(0.3) 87(9.0) 41(4.2)

Smoking Status        

Never 130,787(55.5) 19,867(49.0) 12,944(8.2) 8,113(5.1)

Former 80,716(34.2) 16,032(39.6) 10,624(10.5) 5,833(5.8)

Current 23.255(9.9) 4,432(11.0) 2,416(8.5) 1,189(4.2)

Missing 754(0.3) 185(0.4) 122(11.8) 62(6.0)

Alcohol Consumption        

Never 7,070(3.0) 1,355(3.3) 916(10.4) 590(6.7)

Former 7,746(3.3) 1,622(4.0) 1,007(10.4) 512(5.3)

Current 220,529(93.6) 37,526(92.6) 24,171(8.9) 14,091(5.2)

Missing 167(0.07) 23(0.06) 12(4.7) 4(1.5)

Educational Status        

None 36,048(15.3) 8,174(20.2) 5,464(11.7) 3,010(6.5)

NVQ/CSE/A-levels 107,162(45.5) 17,548(43.3) 10,974(8.4) 6,339(4.9)

Degree/Professional 90,481(38.4) 14,400(35.5) 9,385(8.5) 5,693(5.2)

Missing 1,821(0.7) 394(0.9) 283(11.9) 155(6.5)

Abbreviations: BMI=Body Mass Index

*Controls are individuals without any cancer record in the cancer registry and who have had no self-report of cancer. ⁑Obesity-related cancer
includes postmenopausal breast cancer, prostate cancer, colon & rectal cancer, liver, stomach, pancreatic, oesophagus, thyroid, gallbladder,
meningioma, ovary, uterus, kidney and multiple myeloma. ‡Hormone-sensitive cancers are those hormones sensitive cancers that include breast,
prostate, endometrial, ovarian, and thyroid cancers.

SNP-based Heritability (SNP-h2) for Groups of Cancers
All grouped cancer (prevalent and incident) cases were included for the estimation of SNP-based heritability using individual-level data 14, 15. We also
used GWAS summary statistics to estimate SNP-based heritability, applying summary-level data 16. In both approaches, the estimated heritability was
transformed from the observed scale to the liability scale 15, assuming that the population lifetime prevalence of the group of cancers was the same
as the proportion of cases in the sample used in this study. From the estimates in Fig. 1, it is apparent that the SNP-based heritability estimated in
GREML for hormone-sensitive cancers was the high (h2 =10.06%(se=0.70%), P=2.11E-46). In addition, the SNP-based heritability was examined for
overall cancers and by grouping those cancer related to obesity. Significant heritability estimates for other cancer subgroupings was also observed,
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e.g. obesity-related cancer (h2 = 5.26%(se=0.47%), P=4.56E-28); overall cancer (h2 = 4.38%(se=0.31%), P=3.27E-44); non-hormone-sensitive cancer (h2

=3.06%(se=0.72%), P=2.15E-05); and non-obesity-related cancers (h2 =1.69%(se=0.48%), P=4.66E-04). The SNP-based heritability estimate using
summary-level data shows a similar pattern of heritability estimates for all the subgroupings of cancer (Supplementary Table 5).

We also restricted the analysis to incident cancer cases only in the UKB. Similarly, heritability estimates in the liability scale for hormone-sensitive
cancers were consistently higher than any other group of cancers when using incident cases only (h2 = 5.92%, se=1.10%, P=7.84E-08 for GREML and
h2 = 5.60%, se=1.58%, P=3.94E-04 for LDSC) (Supplementary Table 5). The heritability estimates for non-obesity related cancers were not statistically
significant in both methods (h2 = 0.43%, se=0.75%, P=5.67E-01 for GREML and h2 = 0.97%, se=2.50%, P=6.98E-01 for LDSC). In contrast, we observed
a significant but lower heritability estimates for prospective overall cancer cases (h2 = 3.1%, se=0.48%, P=9.29E-11 for GREML and h2 = 1.84%,
se=0.72%, P=1.06E-02 for LDSC).

Genome-wide common SNPs association study (GWAS) for hormone-sensitive
cancers
The heritability estimates for hormone-sensitive cancers were consistently shown to be significant and higher than the other cancer subgroups across
all methods applied in the liability scale for both scenarios (i.e., all cancer cases and incident cancer cases only). This clearly suggests that a
significant proportion of phenotypic variation in hormone-sensitive cancer is explained by the aggregated effects of inherited genetic factors. We
further carry out GWAS using genome-wide common SNPs, to identify genetic variants that are associated with hormone-sensitive cancer risk (see
method).

We combined heterogeneous cancers that share a characteristics mechanism of carcinogenesis that involve hormones into a single phenotype of
hormone-sensitive cancer, totalling 15,197 cases (combined prevalent and incident) and 235,512 controls. Interestingly, our primary GWAS of grouped
hormone-sensitive cancer uncovered 55 genome-wide significant variants that are associated with the risk of hormone-sensitive cancer at the genome-
wide significant level of p<5x10−8 (Fig. 2). This analysis demonstrated the existence of shared genetic variants across the different cancer types
grouped as hormone-sensitive cancers. For these genetic variants, we replicated 36 independent SNPs associated with the risk of a specific type of
cancer, such as breast, prostate, endometrial or ovarian cancer, which were identified in previous GWAS 17, 18, 19, 20, 21, 22, 23. Significant signals for each
independent hormone-sensitive cancer involves 8q24.1, 10q26.13, 11q13.3, 16q12.1 & 17q12 genomic regions, of which 12 were for breast, 18 for
prostate, 2 for endometrial cancer, and 1 for ovarian cancer corresponded to previously identified as causal variants involved in the components of
hormone-sensitive cancer (Supplementary Table 6).

In a GWAS analysis restricted to 7,038 incident hormone-sensitive cancer cases only (i.e., excluding prevalent cases), we found that significant
associations were reduced from 55 to 33 significant SNPs. For these significant loci, 16 SNPs were located in already known susceptibility regions for
hormone-sensitive cancers among the white European population, but they were independent of previously reported variants. The remaining 17 SNPs
were in regions previously found to be associated with hormone-sensitive cancers among white Europeans. A list of SNPs identified from GWAS in
hormone-sensitive cancers can be found in Supplementary Table 7. It was noted that genomic inflation factors were close to 1 for both GWAS
analyses with all and incident hormone-sensitive cancer cases (λ1000(all cases) =1.003 and λ1000(prospective cases) = 1.003) (Supplementary Fig. 3 ).

Phenotypic correlation between hormone-sensitive cancer and non-cancer traits
For better understanding of the genetic basis of hormone-sensitive cancer, we first quantify the phenotypic correlation with non-cancer traits known to
be associated with cancer risk. The non-cancer traits were glycaemic traits [blood glucose level, HbA1c, type 2 diabetes (T2D)]; anthropometric traits
[Waist-Hip Ratio (WHR), body mass index (BMI), WHR-adj-BMI, Waist Circumference (WC), Height-standing, body fat percentage,)]; metabolic traits and
lipid profiles [cholesterol, triglyceride, high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A and B]; female specific factors [age
at menopause]; behavioural-lifestyle factors [alcohol consumption, smoking, educational status and Townsend deprivation index (TDI)]; and cardiac
traits [systolic blood pressure, diastolic blood pressure, C-reactive protein (CRP), cardiovascular disease status as binary trait and vitamin D].

We observed a modest phenotypic correlation in selected glycaemic, cardiovascular and anthropometric traits. For example, there was a positive
phenotypic correlation (rp ) between standing height and hormone-sensitive cancer (rp =0.0130, se=0.0020; (P=1.78E-10)) and WC (rp =0.0106,
se=0.0020; (P=2.36E-07)). Further to this, we observed a significant positive correlation for disease traits that involves T2D (rp = 0.0084, se=0.0020;
(P=4.49E-05)) and negative correlation with cardiovascular disease (rp = -0.0090, se=0.0020; (P=9.64E-06)). For the cancer related traits, a negative
correlation was observed between hormone-sensitive cancers and oestradiol level (rp= -0.0190, se=0.0022; (P=2.20E-16)) ; SHBG (rp= -0.0059,
se=0.0022; (P=7.35E-03)).

The most striking result to emerge from the phenotypic correlation data is that although there were similar patterns of significant correlations with
most of the non-cancer traits in the analysis restricted to incident cases, some estimates were substantially changed. For example, we observed a
substantially reduced positive phenotypic correlation between incident hormone-sensitive cancers and oestradiol level (rp =0.0025, se=0.0022;
(P=2.68E-01)). Interestingly, a significant negative phenotypic correlation observed between incident hormone-sensitive cancers and APOA1 (rp =
-0.0065, se=0.0022; (P=3.83E-03)). The results of these analyses are summarized in Table 2.
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Table 2
Phenotypic Correlation between Hormone-sensitive Cancers and other Non-cancer Traits in the UKB

Traits All hormone-sensitive cancer cases combined (prospective
and retrospective)

Incident hormonal cancers cases

Phenotypic correlation Phenotypic correlation

Glycaemic Traits rp SE p-value rp SE p-value

T2D 0.0084 0.0020 4.49E-05* 0.0072 0.0021 9.33E-04*

Glucose 0.0022 0.0022 3.13E-01 -0.0050 0.0022 2.85E-02*

HbA1c -0.0015 0.0021 4.50E-01 -0.0075 0.0021 4.89E-04*

Anthropometric Traits rp SE p-value rp SE p-value

BMI 0.0059 0.0020 4.05E-03* 0.0054 0.0020 8.91E-03*

WHR 0.0064 0.0020 1.78E-03* 0.0033 0.0021 1.14E-01

WHRadjBMI 0.0053 0.0020 9.68E-03* 0.0028 0.0021 1.70E-01

WC 0.0106 0.0020 2.36E-07* 0.0068 0.0020 1.01E-03*

Height (standing) 0.0130 0.0020 1.78E-10* 0.0089 0.0021 2.11E-05*

Body fat percentage 0.0058 0.0021 5.04E-03* 0.0045 0.0021 3.41E-02*

Lipid Profile rp SE p-value rp SE p-value

Cholesterol 0.0045 0.0021 3.28E-02* -0.0037 0.0021 8.26E-02

Triglyceride 0.0067 0.0021 1.45E-03* -0.0059 0.0021 5.23E-03*

HDL -0.0051 0.0022 2.10E-02* -0.0054 0.0022 2.68E-02*

LDL 0.0051 0.0021 1.39E-02* -0.0014 0.0021 5.30E-01

APOA1 -0.0005 0.0022 8.21E-01 -0.0065 0.0022 3.83E-03*

APOB 0.0050 0.0021 1.61E-02* -0.0017 0.0021 4.08E-01

Behavioural-Lifestyle rp SE p-value rp SE p-value

Alcohol 0.0004 0.0080 8.22E-01 -2.48E-11 0.0021 1.00

Smoking -0.0001 0.0020 9.32E-01 2.24E-11 0.0021 1.00

Education 0.0013 0.0020 5.16E-01 6.80E-11 0.0021 1.00

Townsend -1.28E-05 0.0020 9.95E-01 -1.00E-11 0.0020 1.00

Cardiac Traits rp SE p-value rp SE p-value

Systolic Blood Pressure 0.0018 0.0021 4.00E-01 -0.0015 0.0021 4.93E-01

Diastolic Blood Pressure 0.0067 0.0021 1.48E-03* 0.0023 0.0021 2.74E-01

Cardiovascular Disease -0.0090 0.0020 9.64E-06* -0.0061 0.0021 3.35E-03*

C-reactive Protein 0.0080 0.0021 1.46E-04* -0.0005 0.0021 8.16E-01

Vitamin D 0.0048 0.0021 2.40E-02* 0.0048 0.0021 2.68E-02*

Women Factors rp SE p-value rp SE p-value

Menopausal Status 0.0009 0.0035 7.97E-01 0.0077 0.0036 3.48E-02*

An asterisk indicates significance with P<0.05 using two tailed hypothesis test and normal distribution of the Fischer transformed correlation
coefficient. The estimates are reported with their respective standard error. Abbreviations: rp: phenotypic correlation; rg: genotypic correlation; SE:
standard error; T2D: type II diabetes; HbA1c: glycate haemoglobin; BMI: body mass index; WHR: waist to hip ratio; WC: waist circumference; HDL:
high density lipoprotein; LDL: low density lipoprotein; ApoA1: apolipoprotein A 1; ApoB: apolipoprotein B; SHBG: Sex hormone binding globulin
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Traits All hormone-sensitive cancer cases combined (prospective
and retrospective)

Incident hormonal cancers cases

Phenotypic correlation Phenotypic correlation

Cancer-related rp SE p-value rp SE p-value

SHBG -0.0059 0.0022 7.35E-03* -0.0086 0.0022 1.20E-04*

Testosterone -0.0050 0.0022 2.13E-02* 0.0068 0.0022 2.15E-03*

Oestradiol -0.0190 0.0022 2.20E-16* 0.0025 0.0022 2.68E-01

IGF-1 0.0094 0.0021 7.30E-06* 0.0102 0.0021 2.00E-06*

An asterisk indicates significance with P<0.05 using two tailed hypothesis test and normal distribution of the Fischer transformed correlation
coefficient. The estimates are reported with their respective standard error. Abbreviations: rp: phenotypic correlation; rg: genotypic correlation; SE:
standard error; T2D: type II diabetes; HbA1c: glycate haemoglobin; BMI: body mass index; WHR: waist to hip ratio; WC: waist circumference; HDL:
high density lipoprotein; LDL: low density lipoprotein; ApoA1: apolipoprotein A 1; ApoB: apolipoprotein B; SHBG: Sex hormone binding globulin

Genetic correlation between group hormone-sensitive cancers and non-cancer traits
In further analysis to explain the shared genetic architecture of grouped hormone-sensitive cancers, we estimated the genetic correlation with the six
non-cancer subgroup traits using GWAS summary statistics (Supplementary Table 8) for Bivariate LDSC which is a fast and robust method 24 as a
quick scan in the dataset and for those nominally significant traits using individual-level measurement in Bivariate GREML. We estimate the genetic
correlation between grouped hormone-sensitive cancers and some non-cancer traits using individual-level genotype data analysed in Bivariate GREML.
Interestingly, significant positive genetic correlations were observed between IGF-1 (rg = 8.43%, se=1.38%; (P=1.10E-09)); standing height (rg = 4.32%,
se=1.31%; (P=9.59E-04)) and hormone-sensitive cancer that provides a suggestive clue to cancer aetiology wherein an increase in IGF-1 level and
height confers a higher risk of hormone-sensitive cancer. Moreover, a marginally significant inverse genetic correlations were observed between
hormone-sensitive cancers and three other non-cancer traits, namely serum oestradiol (rg = -40.86%, se=8.60%; (P=2.02E-06)); calculated free
oestradiol (rg = -6.68%, se=1.60%; (P=3.15E-05)); SHBG (rg = -3.33%, se=1.92%; (P=8.20E-02)) and diastolic blood pressure (DBP) (rg = -4.40%,
se=0.02116; (P=3.74E-02)) (Fig. 3).

In an analysis restricted to incident cancer cases, we observed a non-significant but positive genetic correlation for serum oestradiol (rg =17.08%,
se=14.56%; (P=2.41E-01)) (Fig. 4) contrary to the negative genetic correlation estimate obtained when all combined cases were analysed together (Fig.
3). This suggests that the genetic effects of oestradiol may be positively correlated with the genetic risk of incidence of hormone-sensitive cancer 25,
however, after the onset of hormone-sensitive cancer, the genetic association may be driven by a totally different mechanism, resulting in a negative
genetic correlation. For standing height (rg = 9.01%, se=1.97%; (P=4.93E-06)) and IGF-1 (rg = 12.13%, se=2.50%; (P=1.31E-06)), the direction of
estimated genetic correlation is consistent and always positive whether using all cases (Fig. 3) or incident cases only (Fig. 4). Apolipoprotein A (rg

=11.16%, se=2.58%; (P=1.55E-05)) appeared to have a significant negative genetic correlation when using incident cases only, which was different
from the result obtained with all cases, implying tumour suppressive role of Apolipoprotein A in the incidence of hormone-sensitive cancer
development. Compared to all cases, we further noted a slightly significant and higher estimate of negative genetic correlation in calculated free
oestradiol (rg = -8.86%, se=2.80%; (P=1.57E-03)); SHBG (rg = -8.78%, se=2.73%; (P=1.32E-03)) and educational status (rg = -11.95%, se= 4.85%;
(P=1.39E-02)) for prospective cases. For diastolic blood pressure (rg = -2.06%, se= 2.82%; (P=4.62E-01)) a similar non-significant negative genetic
correlation was observed even though the analyses for non-cancer traits were restricted to individuals who did not have cancer at baseline (Fig. 4).

In the analyses of genetic correlation using summary statistics in the UKB, though not statistically significant the estimates are mostly agreed with the
individual level data estimates. The estimates for genetic correlation using summary statistics in Bivariate LDSC are summarized and presented in
Supplementary Table 8.

Genetic Correlation between Cancers
We further quantified the genetic correlation among the specific types of cancers in the group of hormone-sensitive cancers to see their shared genetic
architecture. We used Bivariate LDSC that is computationally efficient and not biased by sample overlap in two sets of case-control data between
which controls are common 24. In the pair-wise comparison, we observed a positive genetic correlation between colorectal cancer and cancer of the
kidney (rg = 0.3712, se = 0.2965); women breast cancer and uterine cancer (rg = 0.3211, se = 0.1990) although they were not significantly different
from zero. We also found a negative, but non-significant, genetic correlation between prostate cancer and colorectal cancers (rg = -0.1073, se =
0.1314); uterine cancer and multiple myeloma (rg = -0.1474, se = 0.5053) (Table 3). Although none of the estimated genetic correlations were
significantly different from zero i.e., showing there is not a significant linear correlation to one another, most estimates were significantly different from
1 or -1, indicating that these types of cancers are genetically heterogeneous.
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Table 3
A pair-wise comparison of genetic correlation between hormone-sensitive cancers and other cancers using Bivariate LDSC in the UKB

Cancer types            

Women Breast cancer Women Breast cancer          

Colon & rectum 0.2682(0.1383) Colon & rectum        

Cancer of Kidney 0.1579(0.2240) 0.3712(0.2965) Cancer of Kidney      

Multiple Myeloma 0.0156(0.2424) 0.2569(0.3809) -0.0121(0.5338) Multiple Myeloma    

Uterine cancer 0.3211(0.1990) 0.1046(0.2531) 0.5591(0.4364) -0.1474(0.5053) Uterine cancer  

Prostate cancer 0.1040(0.0909) -0.1073(0.1314) -0.0321(0.2160) 0.1411(0.2489) 0.1188(0.1831) Prostate cancer

The positive genetic correlations are colorectal cancer with cancer of the kidney, women breast cancer with uterine cancer. The negative genetic
correlation includes prostate cancer with colorectal cancer, uterine cancer with multiple myeloma. The estimates with the standard error (rg ± se)
are obtained applying the cross-trait ldsc regression.

Leave-one-out (LOO) analysis approach for hormone-sensitive cancers
We conducted an iterative leave-one-out (LOO) analysis that involves a different combination of hormone-sensitive cancers (Supplementary Fig. 4).
There was a significant modest genetic correlation in the leave-one-out analysis between each component of the hormone-sensitive cancers. For
example, we observed a modest positive genotypic correlation between female breast cancer and grouped hormone-sensitive cancer without female
breast cancer (rg = 0.1662, se=0.0930); prostate cancer and grouped hormone-sensitive cancer excluding prostate cancer (rg =0.2209, se=0.1101);
uterine cancer (rp =0.3487, se=0.1889) and grouped hormone-sensitive cancers without uterine cancer. For ovarian and thyroid cancer, since the
number of cases was not sufficient for Bivariate LDSC regression analysis, we excluded the two hormone-sensitive cancers from the leave-one-out
analysis.

We further carried out the genetic correlation analysis into grouped hormone-sensitive cancers and other non-hormone-sensitive cancers in the UKB.
Hormone-sensitive cancers appeared to have a negative genetic correlation with cancer of kidney (rg = -0.0786, se=0.2362); positive genetic correlation
with colorectal cancer (rg =0.1551, se=0.1254) and multiple myeloma (rg =0.1129, se=0.2056).

The genetic correlation between multiple myeloma and hormone-sensitive cancers excluding breast cancers demonstrated a positive genetic
correlation (rg =0.1926, se=0.2295). We observed a higher genetic correlation between hormone-sensitive cancer without prostate cancer and
colorectal cancer (rg =0.3061, se=0.1597). Hormone-sensitive cancers without uterine cancer demonstrated a higher genetic correlation with colorectal
cancer (rg =0.1666, se=0.1229). None of the genetic correlations estimated here were statistically significant probably due to lack of power. Taken
together, while these estimated genetic correlations suggest a common pathway in the aetiology of hormone-sensitive cancer, there is significant
evidence of genetic heterogeneity among the cancer types (Table 4).



Page 12/19

Table 4
Genetic correlation using a leave-one-out analysis approach for hormone-sensitive cancers using Bivariate LDSC in the UKB

Cancer
types

Women Breast
cancer

Prostate
cancer

Uterine cancer Ovarian
cancer

Thyroid
cancer

Colon & rectum Cancer of
Kidney

Multiple
Myeloma

Hormone-
sensitive

0.6796(0.0568) 0.7759(0.0474) 0.4522(0.1637) ⁑ ⁑ 0.1551(0.1254) -0.0786(0.2362) 0.1129(0.2056)

Hormone-
sensitive-
1

0.1662(0.0930)         -0.0152(0.1241) -0.0088(0.2290) 0.1926(0.2295)

Hormone-
sensitive-
2

  0.2209(0.1101)       0.3061(0.1597) 0.0645(0.2853) 0.0526(0.2508)

Hormone-
sensitive-
3

      ⁑   0.1208(0.1247) -0.1960(0.2324) 0.0692(0.2031)

Hormone-
sensitive-
4

    0.3487(0.1889)     0.1666(0.1229) -0.1117(0.2360) 0.1520(0.2096)

Hormone-
sensitive-
5

        ⁑ 0.1629(0.1289) -0.0561(0.2386) 0.0605(0.2108)

Hormone-sensitive cancer type includes five cancers namely women breast cancer, prostate, ovarian, uterine, and thyroid cancer. Hormone-
sensitive-1 is excluding women breast cancer; Hormone-sensitive-2 is excluding prostate cancer; Hormone-sensitive-3 is excluding ovarian cancer;
Hormone-sensitive-4 is excluding uterine cancer; Hormone-sensitive-5 is excluding thyroid cancer. ⁑ the estimate for ovarian and thyroid cancer is
not estimated as the number of cases for the two cancers were not sufficient suggesting that the two-cancer data is not suitable for LDSC
regression.

Gene-environment interaction (GxE) for selected environmental traits
Finally, we investigated the gene-environment interaction, using the hormone-sensitive cancers as the main phenotypes and metabolic health-related
traits as environmental variables. Note that we used prospective cases only for this gene-environment interaction analysis. The hormone-sensitive
cancer phenotype status was adjusted for multiple variables that include assessment centre, batch effect, birthplace, age, sex, educational status, the
10 principal components, smoking status, alcohol consumption, and TDI. Given the characteristics of these environmental variables, we have applied
the Bivariate GREML or GxEsum method 26. The baseline BMI measurement is categorized as normal and higher based on the World Health
Organisation (WHO) BMI threshold recommendations 27; metabolic markers classified as favourable and unfavourable metabolic environment from
the metabolic subgroup analysis in the UKB using machine-learning data-driven analysis 28 and sex as a discrete variable were analysed in Bivariate
GREML. This Bivariate GREML analysis was applied to detect the interaction using individual-level measurement in the UKB.

In the Bivariate GREML analysis that requires individual-level genotype data, sex, BMI, and metabolic environment were included as an environment to
detect their role in the aetiology of hormone-sensitive cancers. In using the GREML method for BMI classified as normal and higher, significant
evidence for GxE interaction was found as the genetic risk of hormone-sensitive cancer was heterogeneous between the two environments. Estimated
genetic correlation was significantly different from 1 (P-value = 6.00E-05 in Table 5). Likewise, the estimated genetic correlation between favourable
and unfavourable metabolic environments was also significantly different from 1 (P-value=1.87E-03), indicating a significant GxE interaction.
Although there is significant heterogeneity between males and females in the genetic risk of hormone-sensitive cancers when sex is included as
environment, the observed genetic heterogeneity may not be because of the gene by sex (GxSex) interaction, given the diversified nature of distinct
cancers types, each of which included is predominantly female or male-only cancer. Therefore, the finding reflects the genetic heterogeneity between
sex-specific cancers (as shown in Tables 5) as a result of diversified cancers, and it is not conclusive that the genetic risk of hormone-sensitive cancers
is modulated by sex as an environment.
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Table 5
GREML based GxE interaction estimates for incident hormone-sensitive cancers using baseline measured traits

Environment h2(se) rg(se) P-Value

Body Mass Index (BMI)      

BMI Normal 8.31% (2.95%) 11.91%(21.95%) 6.00E-05*

BMI High 7.69% (1.37%)    

Metabolic Environment      

Favourable 6.20% (1.61%) 29.78%(22.5%) 1.87E-03*

Unfavourable 14.40% (2.75%)    

⁑Sex      

Female 9.10% (0.89%) 14.82% (5.71%) 9.42E-03*

Male 22.37% (1.34%)    

Abbreviations: h2 =heritability, rg =genetic correlation, se= standard error. The baseline BMI measurement is categorized as normal 18.5-25 kg/m2
and higher BMI (≥25kg/m2); baseline biomarkers and anthropometric measurement as favourable and unfavourable to metabolic health
consequences. For BMI and metabolic health environment all prospective cases are used. ⁑For sex as heterogenous environment all hormone-
sensitive cancer (prospective and retrospectives) cases are used

Further for quantitative environmental traits that include central obesity measured by WC, TDI, Apolipoprotein B, IGF-1, and physical activity measured
in minutes per week were analysed using the GxEsum method based on GWAS summary statistics 26. In the analyses, we did not find any significant
GxE variance (Supplementary Table 9).

Discussion
A growing number of population-based genomic studies have emphasised the role of hormones and their metabolites in modifying gene-phenotype
pathways of cancers 8. In the current study, we conducted a comprehensive analysis to estimate SNP-based heritability, a GWAS that focused on
grouped hormone-sensitive cancer and estimated the phenotypic and genetic correlation with other non-cancer traits in a large contemporary cohort.
This study confirms that Genome-wide common SNPs contribute to a substantial proportion of the phenotypic variance of hormone-sensitive cancers.
In contrast, a relatively small proportion of phenotypic variance is captured by Genome-wide common SNPs for non-hormonal cancers. A cross-cancer
GWAS approach was applied to hormone-sensitive cancers in which we identified multiple genome-wide significant SNPs that had common effects
shared between hormone-sensitive cancers. Interestingly, there was also significant genetic heterogeneity among hormone-sensitivity cancers, i.e.,
estimated genetic correlation for a pair of hormone-sensitivity cancers was significantly different from 1. We also found that the hormone-sensitive
cancer status was significantly associated with non-cancer traits, e.g., IGF-1 and height signifying the suggestive role of these non-cancer traits in the
complex biology of cancer.

In the current study, we applied GREML and LDSC methods of estimating heritability in which the GREML estimates were higher than LDSC. The
variation demonstrated wherein the GREML analysis in the liability scale showed a 10% of phenotypic variability in hormone-sensitive cancer is due to
genetics, further suggesting the existence of shared underlying biology for the combined hormone-sensitive cancers. This further suggests that
previous site-specific independent cancer heritability estimates explain a small fraction of the shared heritability, and a fraction of this heritability can
be explained by Genome-wide common SNPs without the need for other variants such as structural and rare variants in whole-exome and whole-
genome sequencing. In contrast to earlier findings, however, our heritability estimate is substantially lower than summary statistics-based estimates
for each component of site-specific hormone-sensitive cancer that ranges from 7% (ovarian) to 27% (prostate) on a liability scale 29. There are two
likely causes for the discrepancy between heritability estimates in the current study and previous studies. First, the difference could be attributed to the
genetic heterogeneity of the combined cancers as evidenced in our genetic correlation estimates between cancers. Therefore, a reduced heritability is
expected when these genetically heterogeneous cancers are grouped as a single trait. Second, the discrepancy can be explained in part by the
difference in the level of information used wherein individual-level data from the UKB is used in our estimate whereas previous studies used GWAS
summary statistics with a greater number of cases owing to higher heritability estimates. Although the estimates are low as compared to previous site-
specific cancer components, our finding, however, provides a comprehensive analysis suggesting a through reconsideration of cancer classification for
shared biological mechanism of carcinogenesis.

The analytical performance of GWAS is highly dependent upon the size of the cohort and the degree of phenotypic similarity of the combined traits 30.
Therefore, cross-trait GWAS recently adapted to identify common factors of interest in precision medicine that involves identification of genetic
susceptibility loci for inflammatory bowel disease, mostly shared between Crohn’s disease and ulcerative colitis 31, and among five major psychiatric
disorders generating quantified molecular evidence for the need to investigate common pathophysiology for related disorders 32, 33. Despite
overwhelming success in other medical fields, cross-traits analysis has not been widely applied in cancer genetics. Furthermore, based on the GWAS to
date on cancer, many independent cancer susceptibility variants have been identified. When these variants are combined into polygenic risk scores,
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they explain a small fraction of the heritability of cancer and show differential associations by tumour subtypes. However, it is only a few studies have
combined some site-specific hormone-sensitive cancers 10, 12. Therefore, when cross-trait effects exist, the current study has important implications to
systematically integrate the phenome-wide data available for genetic association analysis with improved statistical power in detecting significant
genetic loci for meaningful biological interpretation.

Most cancer genomics research is focused on somatic events, such as acquired mutations; but increasing evidence suggests that germline variants
have been experimentally demonstrated to play a significant role in cancer risk prediction 34 and may also inform decisions about cancer-directed
therapy 35. Therefore, in the current study detecting common genetic variants across major cancers that shared similar aetiologic pathways will
facilitate our understanding of the possible shared genetic basis of these cancers to develop more optimized diagnostic criteria. Our multi-trait GWAS
analysis can be used to look for germline variants and understand how specific genetic variants may contribute to a broad spectrum of illness and
provide information about the degree to which these disorders may have a shared genetic risk factor. To the extent that these genes may have broad
effects, they could be potential targets for developing new treatments that might help treat multiple cancer conditions. In agreement with our findings,
previous studies have implicated these genes in liability to each site-specific cancer in different population 36, 37, 38, 39. This supports the
implementation of such combined analysis that provides more insight in the complex pathway underlying hormone-sensitive cancer biology with the
expected molecular evidence on shared genetic risk factors seen in previous studies of major psychiatric and inflammatory disorders. This molecular
evidence of shared genetic influence in hormone-sensitive cancers can be extended to design public health intervention addressing multiple cancers at
affordable cost in genetic screening.

Epidemiologic studies have identified an association between height, IGF-1, oestradiol, and cancer incidence to provide clues to cancer aetiology. The
risk of IGF-1 in cancer is further established in deciphering the mechanism of height to cause cancer 40, 41. In the current study, we found a positive
genetic correlation in all cases of hormone-sensitive cancers with IGF-1 and standing height, which suggests there is an increased correlation in height
and IGF-1 concertation to develop hormone-sensitive cancer. The observed correlation between standing height and caner development might be
explained by the increased standing height that reflects more stem cells as a risk of acquiring mutations during cell division over time, and further
circulating level of IGF-1 as the major determinants of height 42. There can be, however, other possible explanations. In contrast, serum oestradiol level
showed a negative genetic correlation with all cases of hormone-sensitive cancers suggesting the presence of lowered risk. However, in the analysis
restricted to prospective hormone-sensitive cancers cases, serum oestradiol exhibited a positive genetic correlation (although not significant),
suggesting that exposure to ovarian steroids increases the risk of developing hormone-sensitive cancers 43. The current study further revealed that the
positive genetic correlation of height and IGF-1 with cancer remained positively significant with prospective cases suggesting that the correlation is
related to the commonality within the combined cancers in their gene alteration and gene expression pattern.

Contrary to expectations for the rest of the traits, this study did not find a statistically significant genetic correlation between non-cancer trait
subgroups and hormone-sensitive cancers. From previous epidemiological studies, it has been suggested that there is a correlation between non-
cancer traits and specific hormone-sensitive cancers. This does not appear to be the case in our analysis. The observed low correlation can be
explained in part by the underpowered nature of the current study to detect a phenotypic and genetic correlation between hormone-sensitive cancers
and non-cancer traits. Therefore, non-genetic factors could be a major reason, if not the only one, significantly explaining the phenotype variance in
cancer. Although the estimated genetic correlations are low, they can still be used as a training set in genomic risk prediction to improve the accuracy.
In genomic risk predictions when traits were combined as a single trait, slightly increased prediction accuracy was observed 44, 45. This suggests that
substantial improvements in predictive power are attainable using training sets of combined cancer with molecular evidence of shared genetic
contribution.

Apart from considering the correlation of variables, detecting the interaction with the environment may have an important implication in clinical care
46, 47. Globally, the incidence of cancer has been steadily increasing for the past decades mirroring an increase in the prevalence of obesity 1. The
genetic effects of hormone-sensitive cancers can be modulated by obesity. Therefore, we sought to estimate the gene-environment interaction to shed
light on the causal relationships of modifiable environmental risk factor such as BMI and hormone-sensitive cancers. Further, we found significant
interaction between genetics and adiposity-related factors as environment to interact with and modulate the development of hormone-sensitive
cancers. The nominally significant GxSex interaction observed cannot be fully attributed to the gene-interaction effect of sex since this might have
occurred as a result of unequal distribution of hormone-sensitive cases by sex, i.e., majority of the grouped cancers are female dominated cancer
types. Although the combined cancers demonstrated a shared aetiology, the pairwise genetic correlation comparison evidenced that they are
heterogeneous. i.e., the five hormone-sensitive cancers have their unique pathogenic variants besides the shared genes. There is also further
heterogeneity within the site-specific cancers. Endometrial cancer, for example, is a heterogeneous cancer that is believed to have 2 biologically
different subtypes that exhibit a different mechanism of tumorigenesis and disease progression 48.

A major strength of the present study is that it constitutes a greater number of hormone-sensitive cancers grouped to better understand the complex
underlying pathway of the disease biology. Previous studies were focusing on each site-specific hormone-sensitive cancer independently. Further,
information on non-cancer traits was used from the large dataset of the UKB. This study offers significant insights into the heritability estimates of
hormone-sensitive cancer. However, our findings should be interpreted in light of the limitations. First, participants in the UK Biobank are restricted to
middle and old age, which is not representative of the general population on a variety of sociodemographic, lifestyle, and health-related characteristics,
with evidence of a “healthy volunteer” selection bias 49. Second, while the total sample size was large for the grouped cancer, the number of cases for
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some specific hormone-sensitive cancers (e.g., uterine and thyroid) could be limited resulting in a large standard error for genetic correlation analysis.
Therefore, further studies with a larger sample size for each cancer are warranted to validate our results. Third, in our report of heritability in a liability
scale, we assumed the population level prevalence of the disease trait is identical to the observed sample prevalence, but the disease prevalence such
as cancer in the UKB is often lower than population prevalence as the dataset is not representative of the UK population 49. Finally, the present study
was conducted in a population of European genetic ancestry, so the generalizability of our findings to other ancestry group populations is limited.

In conclusion, we show that common genetic factors are a part to play in the mechanism of carcinogenesis shared by hormone-sensitive cancers,
evidenced by the fact that SNP-based heritability is substantial and there are 55 genome-wide significant variants when combining multiple hormone-
sensitive cancers as a single disease. Albeit these common genetic factors, it is also observed that there is significant genetic heterogeneity between
hormone-sensitive cancers. This finding will have an implication in future research to investigate the complex biological pathways of carcinogenesis
that may result in a new opportunity for early detection of hormone-sensitive cancers in precision health.
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Figures

Figure 1

Estimated SNP-based heritability of groups of cancers using greml approach in the UKB It is shown that the h2 for hormone-sensitive cancers is the
highest among the groups of cancers. The error bars are the 95% confidence interval of the estimates. The x-axis shows the heritability estimates for
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each grouped cancer in y axis.

Figure 2

Manhattan plot for the GWAS analysis of the combined hormone-sensitive cancers in the UKB. The plot shows on the Y-axis the negative log-base-10
of the P value for each of the SNPs positioned along the X-axis in genomic order by chromosomal position. The red line shows the threshold for
genome-wide significance (P < 5x10-8). SNPs with the lowest P value of significance (i.e., highest association with hormone-sensitive cancer) are
positioned at the top of the graph. The Panel in the left side shows the genome wide significant SNPs for all cases of hormonal cancers [prospective
and retrospective cases included]. The panel on the right is for prospective cancer cases only. The list of genetic markers for each analysis is attached
in the supplementary files (Supplementary table 6). The genomic inflation factor (λ=lambda) was rescaled for an equivalent study of 1000
cases/1000 controls (λ1000(all cases) =1.003 and λ1000(prospective cases) = 1.003).

Figure 3

Genetic correlation between all hormone-sensitive cancers [Prospective and Incident] and non-cancer traits using Bivariate GREML in the UK Biobank.
Abbreviations: SHBG: Sex Hormone Binding Globulin, IGF-1=Insulin Like growth factor. The error bars are indicating the 95% CI of the estimates.
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Figure 4

Genetic correlation between prospective hormone-sensitive cancers and non-cancer traits using Bivariate GREML in the UK Biobank. Abbreviations:
SHBG: Sex Hormone Binding Globulin, IGF-1=Insulin Like growth factor. The error bars are indicating the 95% CI of the estimates.
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