[1] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin. 2017; 67:7-30.
[2] Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol (2019) 16(10):589-604.
[3]El-SERAG H B, RUDOLPH K L. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis[J]. Gastroenterology,2007, 132(7): 2557-2576.
[4] YANG J D, HAINAUT P, GORES G J, et al. A global view ofhepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
[5] ZHANG H, YE Y, LI W. Perspectives of molecular therapy-targeted mitochondrial fission in hepatocellular carcinoma[J/OL]. Biomed Res Int, 2020: 1039312
[6]CHOI C, YOO G S, CHO W K, et al. Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma[J]. World J Gastroenterol, 2019, 25(20): 2416-2429.
[7] Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[J]. Nature, 2016,529(7586):307-315.
[8] Hibino S, Kawazoe T, Kasahara H, et al. Inflammation-Induced Tumorigenesis and Metastasis[J]. Int J Mol Sci, 2021,22(11).
[9] Zaidi M R. The Interferon-Gamma Paradox in Cancer[J]. J Interferon Cytokine Res, 2019,39(1):30-38.
[10] Crusz S M, Balkwill F R. Inflammation and cancer: advances and new agents[J]. Nat Rev Clin Oncol, 2015,12(10):584-596.
[11] Jacquelot N, Seillet C, Wang M, et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma[J]. Nat Immunol, 2021.
[12] Sistigu A, Di Modugno F, Manic G, et al. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting[J]. Cytokine Growth Factor Rev, 2017,36:67-77.
[13] Xiao N, Zhu X, Li K, et al. Blocking siglec-10(hi) tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma[J]. Exp Hematol Oncol, 2021,10(1):36.
[14]Y. Liu, X. Cao, Immunosuppressive cells in tumor immune escape and metastasis[J]. J. Mol. Med. 2016,94:509-522.
[15]A. Mandal, C. Viswanathan, Natural killer cells: in health and disease[J]. Hematology/Oncology and Stem Cell Therapy ,2015,8: 47-55.
[16]A.M. Abel, C. Yang, M.S. Thakar, S. Malarkannan, Natural killer cells: development, maturation, and clinical utilization[J]. Front. Immunol,2018,9 :1869.
[17]M.G. Morvan, L.L. Lanier, NK cells and cancer: you can teach innate cells new tricks[J]. Nat. Rev. Cancer,2016, 16:7-19.
[18] Han C, Jiang Y, Wang Z, et al. Natural killer cells involved in tumour immune escape of hepatocellular carcinomar[J]. Int Immunopharmacol, 2019,73:10-16.
[19] Liu C, Wang X, Genchev G Z, et al. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction[J]. Methods, 2017,124:100-107.
[20] Li C, Pak D, Todem D. Adaptive lasso for the Cox regression with interval censored and possibly left truncated data[J]. Stat Methods Med Res, 2020,29(4):1243-1255.
[21] Subramanian A, Tamayo P, Mootha V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005,102(43):15545-15550.
[22] Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun, 2013,4:2612.
[23] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424.
[24] Fujiwara N, Friedman S L, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine[J]. J Hepatol, 2018,68(3):526-549.
[25] Greten T F, Lai C W, Li G, et al. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma[J]. Gastroenterology, 2019,156(2):510-524.
[26] Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma[J]. Cancer Lett, 2020,470:8-17.
[27] Chan S L, Mo F, Johnson P J, et al. Performance of serum alpha-fetoprotein levels in the diagnosis of hepatocellular carcinoma in patients with a hepatic mass[J]. HPB (Oxford), 2014,16(4):366-372.
[28] Dong M, Chen Z H, Li X, et al. Serum Golgi protein 73 is a prognostic rather than diagnostic marker in hepatocellular carcinoma[J]. Oncol Lett, 2017,14(5):6277-6284.
[29] Choi J, Kim G A, Han S, et al. Longitudinal Assessment of Three Serum Biomarkers to Detect Very Early-Stage Hepatocellular Carcinoma[J]. Hepatology, 2019,69(5):1983-1994.
[30] Ye X, Li C, Zu X, et al. A Large-Scale Multicenter Study Validates Aldo-Keto Reductase Family 1 Member B10 as a Prevalent Serum Marker for Detection of Hepatocellular Carcinoma[J]. Hepatology, 2019,69(6):2489-2501.
[31] Deng T, Hu B, Jin C, et al. A novel ferroptosis phenotype-related clinical-molecular prognostic signature for hepatocellular carcinoma[J]. J Cell Mol Med, 2021,25(14):6618-6633.
[32] Bai Y, Tong W, Xie F, et al. DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J]. Aging (Albany NY), 2021,13(13):17592-17606.
[33] Du Y, Ma Y, Zhu Q, et al. An m6A-Related Prognostic Biomarker Associated With the Hepatocellular Carcinoma Immune Microenvironment[J]. Front Pharmacol, 2021,12:707930.
[34] Ma W, Yao Y, Xu G, et al. Identification of a seven-long non-coding RNA signature associated with Jab1/CSN5 in predicting hepatocellular carcinoma[J]. Cell Death Discov, 2021,7(1):178.
[35] Liu P, Wei J, Mao F, et al. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Endoplasmic Reticulum Stress-Related Gene Analysis[J]. Front Oncol, 2021,11:641487.、
[36] Jiang L, Zhao L, Bi J, et al. Glycolysis gene expression profilings screen for prognostic risk signature of hepatocellular carcinoma[J]. Aging (Albany NY), 2019,11(23):10861-10882.
[37] D'Angiolella V, Donato V, Forrester F M, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair[J]. Cell, 2012,149(5):1023-1034.
[38] Fu J, Qiu H, Cai M, et al. Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis[J]. Cancer Sci, 2013,104(4):508-515.
[39] Serpas L, Chan R, Jiang P, et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA[J]. Proc Natl Acad Sci U S A, 2019,116(2):641-649.
[40] Guo D, Ma D, Liu P, et al. DNASE1L3 arrests tumor angiogenesis by impairing the senescence-associated secretory phenotype in response to stress[J]. Aging (Albany NY), 2021,13(7):9874-9899.
[41] Wang S, Ma H, Li X, et al. DNASE1L3 as an indicator of favorable survival in hepatocellular carcinoma patients following resection[J]. Aging (Albany NY), 2020,12(2):1171-1185.
[42] Feldbrugge L, Jiang Z G, Csizmadia E, et al. Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis[J]. Purinergic Signal, 2018,14(1):37-46.
[43] Yu J, Lavoie E G, Sheung N, et al. IL-6 downregulates transcription of NTPDase2 via specific promoter elements[J]. Am J Physiol Gastrointest Liver Physiol, 2008,294(3):G748-G756.
[44] Craft C S, Broekelmann T J, Mecham R P. Microfibril-associated glycoproteins MAGP-1 and MAGP-2 in disease[J]. Matrix Biol, 2018,71-72:100-111.
[45] Zhu X, Cheng Y, Wu F, et al. MFAP2 Promotes the Proliferation of Cancer Cells and Is Associated With a Poor Prognosis in Hepatocellular Carcinoma[J]. Technol Cancer Res Treat, 2020,19:1079245172.
[46] Wang L, Huang J, Jiang M, et al. Tissue-specific transplantation antigen P35B (TSTA3) immune response-mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation[J]. Immunol Res, 2012,52(3):258-268.
[47] Zhang L, Huang Y, Ling J, et al. Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma[J]. Future Oncol, 2018,14(10):927-936.
[48] Gao S, Gang J, Yu M, et al. Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer[J]. BMC Cancer, 2021,21(1):791.
[49] Zhang R, Gao X, Zuo J, et al. STMN1 upregulation mediates hepatocellular carcinoma and hepatic stellate cell crosstalk to aggravate cancer by triggering the MET pathway[J]. Cancer Sci, 2020,111(2):406-417.
[50] Matsusaka K, Fujiwara Y, Pan C, et al. alpha1-acid glycoprotein enhances the immunosuppressive and protumor functions of tumor-associated macrophages[J]. Cancer Res, 2021.
[51] Wang Y, Liu T, Tang W, et al. Hepatocellular Carcinoma Cells Induce Regulatory T Cells and Lead to Poor Prognosis via Production of Transforming Growth Factor-beta1[J]. Cell Physiol Biochem, 2016,38(1):306-318.
[52] Pena-Asensio J, Calvo H, Torralba M, et al. Anti-PD-1/PD-L1 Based Combination Immunotherapy to Boost Antigen-Specific CD8(+) T Cell Response in Hepatocellular Carcinoma[J]. Cancers (Basel), 2021,13(8).
[53] Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C[J]. J Hepatol, 2013,59(1):81-88.
[54] Zhu A X, Finn R S, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018,19(7):940-952.
[55] Sun L, Gao F, Gao Z, et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma[J]. J Immunother Cancer, 2021,9(4).
[56] Yang X D, Kong F E, Qi L, et al. PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma[J]. Mol Cancer, 2021,20(1):20.
[57] Dai X, Guo Y, Hu Y, et al. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma[J]. Theranostics, 2021,11(7):3489-3501.
[58] Liu J, Yi J, Zhang Z, et al. Deoxyribonuclease 1-like 3 may be a potential prognostic biomarker associated with immune infiltration in colon cancer[J]. Aging (Albany NY), 2021,13(12):16513-16526.
[59] Wang L, Huang J, Jiang M, et al. Tissue-specific transplantation antigen P35B (TSTA3) immune response-mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation[J]. Immunol Res, 2012,52(3):258-268.
[60] Tu K, Li J, Mo H, et al. Identification and validation of redox-immune based prognostic signature for hepatocellular carcinoma[J]. Int J Med Sci, 2021,18(9):2030-2041.
[61] He M, Li Q, Zou R, et al. Sorafenib Plus Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin vs Sorafenib Alone for Hepatocellular Carcinoma With Portal Vein Invasion: A Randomized Clinical Trial[J]. JAMA Oncol, 2019,5(7):953-960.
[62] Zhang X, Hu B, Sun Y F, et al. Arsenic trioxide induces differentiation of cancer stem cells in hepatocellular carcinoma through inhibition of LIF/JAK1/STAT3 and NF-kB signaling pathways synergistically[J]. Clin Transl Med, 2021,11(2):e335.