1. Tamura T., Ishida Y., Otoguro M., Hatano K., Suzuki K. (2008). Classification of 'Streptomyces tenebrarius' Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev. comb. nov. and emended description of the genus Streptoalloteichus. Int. J. Syst. Evol. Microbiol., 58., 688–91. https://doi.org/10.1099/ijs.0.65272-0
2. Zhang X., Ding L., Fan M. (2009). Resistance patterns and detection of aac(3)-IV gene in apramycin-resistant Escherichia coli isolated from farm animals and farm workers in northeastern of China. Res. Vet. Sci., 87, 449–454. https://doi.org/10.1016/j.rvsc.2009.05.006
3. Ziv G., Bor A., Sobagk S., ELAD D., Nouws J. K. M. (2010). Clinical pharmacology of apramycin in calves. J. Vet. Pharmacol. Ther., 8, 95–104. https://doi.org/10.1111/j.1365-2885.1985.tb00930.x
4. Matt T., Ng C. L., Lang K., Sha S., Akbergenov R., Shcherbakov D., Meyer M., Duscha S., Xie J., Dubbaka S. R. (2012). Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc. Natl. Acad. Sci. U. S. A., 109, 10984–10989. https://doi.org/10.1073/pnas.1204073109.
5. Becker K., Aranzana-Climent V., Cao S., Nilsson A., Shariatgorji R., Haldimann K., Platzack B., Hughes D., Andrén P. E., Böttger E. C. (2020). Efficacy of EBL-1003 (apramycin) against Acinetobacter baumannii lung infections in mice. Clin. Microbiol. Infect., 27, 1315–1321. https://doi.org/10.1016/j.cmi.2020.12.004
6. Koch K. F., Davis F. A., Rhoades J. A. (1973). Nebramycin: separation of the complex and identification of factors 4, 5, and 5″. J. Antibiot., 26, 745–751. https://doi.org/10.7164/antibiotics.26.745
7. Ni X., Li D., Yang L., Huang T., Li H. Xia H. (2011). Construction of kanamycin B overproducing strain by genetic engineering of Streptomyces tenebrarius. Appl. Microbiol. Biotechnol., 89, 723–731. https://doi.org/10.1007/s00253-010-2908-5.
8. Kudo F. (2020). Biosynthesis of aminoglycoside antibiotics. Comprehensive Natural Products III: Chemistry and Biology. 2, 588–612. https://doi.org/10.1016/B978-0-12-409547-2.14619-0
9. Kim H. J., LeVieux J., Yeh Y., Liu H. (2016). C3′-Deoxygenation of paromamine catalyzed by a radical S -adenosylmethionine enzyme: characterization of the enzyme AprD4 and its reductase partner AprD3. Angew. Chem., Int. Ed., 128, 3788–3792. https://doi.org/10.1002/anie.201510635.
10. Kudo F., Tokumitsu T., Eguchi T. (2016). Substrate specificity of radical S-adenosyl-l-methionine dehydratase AprD4 and its partner reductase AprD3 in the C3′-deoxygenation of aminoglycoside antibiotics. J Antibiot., 70, 423–428. https://doi.org/10.1038/ja.2016.110.
11. Lv M., Ji X., Zhao J., Li Y., Zhang C., Su L., Ding W., Deng Z., Yu Y., Zhang Q. (2016). Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis. J. Am. Chem. Soc., 138, 6427–6435. https://doi.org/10.1021/jacs.6b02221.
12. Liu W., Amara P., Mouesca J., Ji X., Renoux O., Martin L., Zhang C., Zhang Q., Nicolet Y. (2018). 1,2-diol dehydration by the radical SAM enzyme AprD4: a matter of proton circulation and substrate flexibility. J. Am. Chem. Soc., 140, 1365–1371. https://doi.org/10.1021/jacs.7b10501.
13. Wang J., Ma S., Ding W., Chen T., Zhang Q. (2021). Mechanistic study of the oxidoreductase AprQ involved in the biosynthesis of the aminoglycoside antibiotic apramycin. Chin. J. Chem., 39, 1923–1926. https://doi.org/10.1002/cjoc.202100070
14. Park J., Park S., Nepal K., Han A., Ban Y., Yoo1 Y., Kim E., Kim E., Kim D., Sohng J., Yoon Y. (2011). Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol., 7, 843–852. https://doi.org/10.1038/nchembio.671
15. Du Y., Li T., Wang Y., Xia H. (2004). Identification and functional analysis of dTDP-Glucose-4,6-dehydratase gene and its linked gene cluster in an aminoglycoside antibiotics producer of Streptomyces tenebrarius H6. Curr. Microbiol., 49, 99–107. https://doi.org/10.1007/s00284-004-4212-z.
16. Gao W., Wu Z., Sun J., Ni X., Xia H. (2017). Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering. PLoS ONE., 12, e0181971. https://doi.org/10.1371/journal.pone. 0181971.
17. Gu Y., Ni X., Ren J., Gao H., Wang D., Xia H. (2015). Biosynthesis of epimers C2 and C2a in the gentamicin C complex. ChemBioChem., 16, 1933–1942. https://doi.org/10.1002/cbic.201500258
18. Wu Q., Gou L., Lin S., Liang J., Yin J., Zhou X., Bai L., An D., Deng Z., Wang Z. (2013). Characterization of the N-methyltransferase CalM involved in calcimycin biosynthesis by Streptomyces chartreusis NRRL 3882. Biochimie,, 95, 1487–1493. https://doi.org/10.1016/j.biochi.2013.03.014
19. Ni X., Zong T., Zhang H., Gu Y.; Huang M., Tian W., Xia H. (2016). Biosynthesis of 3″-demethyl-gentamicin C components by genN disruption strain of Micromonospora echinospora and test their antimicrobial activities in vitro. Microbiol. Res., 185, 36–44. https://doi.org/10.1016/j.micres.2016.01.005.
20. Park J. W., Park S. R., Han A. R., Ban Y. H., Yoo Y. J., Kim E. J., Yoon Y. J. (2010). The nebramycin aminoglycoside profiles of Streptomyces tenebrarius and their characterization using an integrated liquid chromatography-electrospray ionization-tandem mass spectrometric analysis. Anal. Chim. Acta., 661, 76–84. https://doi.org/10.1016/j.aca.2009.12.014.
21. Mandhapati A. R., Shcherbakov D., Duscha S., Vasella A., Böttger E. C., Crich D. (2014). Importance of the 6′-hydroxy group and its configuration for apramycin activity. ChemMedChem., 9, 2074–2083. https://doi.org/10.1002/cmdc.201402146
22. O'Connor S., Lam L. K. T., Jones N. D., Chaney M. O. (1976). Apramycin, a unique aminocyclitol antibiotic. J. Org. Chem., 7, 2087–2092. https://doi.org/10.1021/jo00874a003
23. Barreiro E. J., Kümmerle A. E., Fraga C. A. M. (2011). The methylation effect in medicinal chemistry. Chem. Rev., 111, 5215–5246. https://doi.org/10.1021/cr200060g
24. Li S., Guo J., Reva A., Huang F., Xiong B., Liu Y., Deng Z., Leadlay P. F., Sun Y. (2018). Methyltransferases of gentamicin biosynthesis. Proc. Natl. Acad. Sci. U. S. A., 155, 1340–1345. http://dx.doi.org/10.1073/pnas.1711603115.
25. Kim H. J., McCarty R. M., Ogasawara Y., Liu Y., Mansoorabadi S. O., Vieux J. L., Liu H. (2013). GenK-catalyzed C-6' methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc., 135, 8093–8096. https://doi.org/10.1021/ja312641f
26. Huang C., Huang F., Moison E., Guo J., Jian X., Duan X., Deng Z., Leadlay P. F., Sun Y. (2015). Delineating the Biosynthesis of Gentamicn X2, the Common Precursor of the Gentamicin C Antibiotic Complex. Chem. Biol., 22, 251–261. https://doi.org/10.1016/j.chembiol.2014.12.012.
27. Bury P. D. S., Huang F., Li, S., Sun Y., Leadlay P. F., Dias M. V. B. (2017). Structural basis of the selectivity of GenN, an aminoglycoside N-methyltransferase involved in gentamicin biosynthesis. ACS Chem. Biol., 12, 2779–2787. https://doi.org/10.1021/ acschembio.7b00466.
28. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. (1992). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene., 111, 61–68. https://doi.org/10.1016/0378-1119(92)90603-M