1. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Prim [Internet]. 2017;3:17071. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28980624
2. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol [Internet]. 2020;27:1918–29. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ene.14393
3. Penco S, Lunetta C, Mosca L, Maestri E, Avemaria F, Tarlarini C, et al. Phenotypic heterogeneity in a SOD1 G93D Italian ALS family: an example of human model to study a complex disease. J Mol Neurosci [Internet]. 2011;44:25–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21120636
4. Régal L, Vanopdenbosch L, Tilkin P, Van den Bosch L, Thijs V, Sciot R, et al. The G93C mutation in superoxide dismutase 1: clinicopathologic phenotype and prognosis. Arch Neurol [Internet]. 2006;63:262–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16476815
5. Ticozzi N, Silani V. Genotypic and Phenotypic Heterogeneity in Amyotrophic Lateral Sclerosis. Neurodegener Dis [Internet]. Cham: Springer International Publishing; 2018. p. 279–95. Available from: http://link.springer.com/10.1007/978-3-319-72938-1_13
6. Bendotti C, Bonetto V, Pupillo E, Logroscino G, Al-Chalabi A, Lunetta C, et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener [Internet]. 2020;1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32583689
7. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci. 2019;13:1–27.
8. Rouaux C, Panteleeva I, René F, Gonzalez de Aguilar J-L, Echaniz-Laguna A, Dupuis L, et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci [Internet]. 2007;27:5535–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17522299
9. Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, et al. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci [Internet]. 2006;26:8774–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16928866
10. Moloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci [Internet]. 2014;8:252. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25177267
11. Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011;43:470–7.
12. Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, et al. The peripheral nervous system in amyotrophic lateral sclerosis: Opportunities for translational research. Front Neurosci. 2019;13:1–16.
13. Chiot A, Lobsiger CS, Boillée S. New insights on the disease contribution of neuroinflammation in amyotrophic lateral sclerosis. Curr Opin Neurol [Internet]. 2019;32:764–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31306211
14. Thonhoff JR, Simpson EP, Appel SH. Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr Opin Neurol [Internet]. 2018;31:635–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30048339
15. Dibaj P, Steffens H, Zschüntzsch J, Nadrigny F, Schomburg ED, Kirchhoff F, et al. In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS. PLoS One [Internet]. 2011;6:e17910. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21437247
16. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M, et al. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A. 2009;106:20960–5.
17. Deng B, Lv W, Duan W, Liu Y, Li Z, Ma Y, et al. Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Cell Physiol Biochem [Internet]. 2018;46:2358–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29742495
18. Van Dyke JM, Smit-Oistad IM, Macrander C, Krakora D, Meyer MG, Suzuki M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Exp Neurol [Internet]. 2016;277:275–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26775178
19. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury [Internet]. J. Neuroinflammation. 2011 [cited 2019 Sep 17]. p. 110. Available from: http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-8-110
20. Sass FA, Fuchs M, Pumberger M, Geissler S, Duda GN, Perka C, et al. Immunology Guides Skeletal Muscle Regeneration. Int J Mol Sci [Internet]. 2018;19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29534011
21. Schreiber S, Schreiber F, Garz C, Debska-Vielhaber G, Assmann A, Perosa V, et al. Toward in vivo determination of peripheral nervous system immune activity in amyotrophic lateral sclerosis. Muscle Nerve [Internet]. 2019;59:567–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30734322
22. Lyon MS, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle and Nerve [Internet]. John Wiley & Sons, Ltd; 2019;59:10–22. Available from: http://doi.wiley.com/10.1002/mus.26289
23. Wosiski-Kuhn M, Lyon MS, Caress J, Milligan C. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve [Internet]. 2019 [cited 2019 Sep 19];59:23–33. Available from: http://doi.wiley.com/10.1002/mus.26288
24. Marino M, Papa S, Crippa V, Nardo G, Peviani M, Cheroni C, et al. Differences in protein quality control correlate with phenotype variability in 2 mouse models of familial amyotrophic lateral sclerosis. Neurobiol Aging [Internet]. 2015;36:492–504. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458014004655
25. Nardo G, Trolese MCMC, Tortarolo M, Vallarola A, Freschi M, Pasetto L, et al. New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathol [Internet]. 2016;26:237–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26780365
26. Nardo G, Trolese MC, de Vito G, Cecchi R, Riva N, Dina G, et al. Immune response in peripheral axons delays disease progression in SOD1G93A mice. J Neuroinflammation [Internet]. 2016;13:261. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27717377
27. Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, et al. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J Neuroinflammation [Internet]. 2018;15:65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29495962
28. Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, et al. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain [Internet]. 2013;136:3305–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24065725
29. Shireman PK, Contreras-Shannon V, Ochoa O, Karia BP, Michalek JE, McManus LM. MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukoc Biol. 2007;81:775–85.
30. Siebert H, Sachse A, Kuziel WA, Maeda N, Brück W. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. J Neuroimmunol [Internet]. 2000;110:177–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11024548
31. Han KH, Tangirala RK, Green SR, Quehenberger O. Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol [Internet]. 1998;18:1983–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9848893
32. Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, et al. Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol [Internet]. 2009;4:47–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19034671
33. He M, Dong H, Huang Y, Lu S, Zhang S, Qian Y, et al. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells. Cell Physiol Biochem [Internet]. 2016;38:859–70. Available from: https://www.karger.com/Article/FullText/443040
34. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A [Internet]. 1994;91:3652–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8170963
35. Frade JM, Mellado M, del Real G, Gutierrez-Ramos JC, Lind P, Martinez-A C. Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expression in B cells. J Immunol [Internet]. 1997;159:5576–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9548499
36. Allavena P, Bianchi G, Zhou D, van Damme J, Jílek P, Sozzani S, et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol [Internet]. 1994;24:3233–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7805752
37. Xu P, Zhang J, Wang H, Wang G, Wang C-Y, Zhang J. CCR2 dependent neutrophil activation and mobilization rely on TLR4-p38 axis during liver ischemia-reperfusion injury. Am J Transl Res [Internet]. 2017;9:2878–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28670376
38. Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab [Internet]. 2010;30:459–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19904283
39. Martínez HRR, Escamilla-Ocañas CEE, Camara-Lemarroy CRR, González-Garza MTT, Moreno-Cuevas J, García Sarreón MAA. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in patients with amyotrophic lateral sclerosis. Neurologia [Internet]. 2020;35:165–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S217358082030050X
40. Henkel JS, Beers DR, Siklós L, Appel SH. The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci [Internet]. 2006;31:427–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16337133
41. Dzenko KA, Song L, Ge S, Kuziel WA, Pachter JS. CCR2 expression by brain microvascular endothelial cells is critical for macrophage transendothelial migration in response to CCL2. Microvasc Res [Internet]. 2005;70:53–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15927208
42. Chintawar S, Cayrol R, Antel J, Pandolfo M, Prat A. Blood-brain barrier promotes differentiation of human fetal neural precursor cells. Stem Cells [Internet]. 2009;27:838–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19350685
43. Liu XS, Zhang ZG, Zhang RL, Gregg SR, Wang L, Yier T, et al. Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. J Neurosci Res [Internet]. 2007;85:2120–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17510981
44. Locatelli D, Terao M, Fratelli M, Zanetti A, Kurosaki M, Lupi M, et al. Human axonal Survival of Motor Neuron (a-SMN) protein stimulates axon growth, cell motility, C-C motif ligand 2 (CCL2),andinsulin-like growth factor-1 (IGF1) production. J Biol Chem [Internet]. 2012 [cited 2019 Sep 17];287:25782–94. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M112.362830
45. Papa S, Vismara I, Mariani A, Barilani M, Rimondo S, De Paola M, et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J Control Release [Internet]. 2018;278:49–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365918301731
46. Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, et al. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019;14:1335–42.
47. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. Springer Berlin Heidelberg; 2015;130:605–18.
48. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol [Internet]. Elsevier; 2019;173:102–21. Available from: https://doi.org/10.1016/j.pneurobio.2018.12.001
49. Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, et al. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol - Regul Integr Comp Physiol [Internet]. 2010;299:R832-42. Available from: https://www.physiology.org/doi/10.1152/ajpregu.00797.2009
50. Dort J, Fabre P, Molina T, Dumont NA. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int [Internet]. 2019;2019:1–20. Available from: https://www.hindawi.com/journals/sci/2019/4761427/
51. Zhang J, Xiao Z, Qu C, Cui W, Wang X, Du J. CD8 T Cells Are Involved in Skeletal Muscle Regeneration through Facilitating MCP-1 Secretion and Gr1 high Macrophage Infiltration. J Immunol [Internet]. 2014;193:5149–60. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1303486
52. Deyhle MR, Hyldahl RD. The Role of T Lymphocytes in Skeletal Muscle Repair From Traumatic and Contraction-Induced Injury. Front Physiol [Internet]. 2018;9:768. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29973887
53. Yang W, Hu P. Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl [Internet]. 2018;13:25–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214031X17300621
54. Kano O, Beers DR, Henkel JS, Appel SH. Peripheral nerve inflammation in ALS mice: cause or consequence. Neurology [Internet]. 2012;78:833–5. Available from: http://www.neurology.org/cgi/doi/10.1212/WNL.0b013e318249f776
55. Trias E, King PH, Si Y, Kwon Y, Varela V, Ibarburu S, et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight [Internet]. 2018;3. Available from: https://insight.jci.org/articles/view/123249
56. Gruntman AM, Bish LT, Mueller C, Sweeney HL, Flotte TR, Gao G. Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. Curr Protoc Microbiol [Internet]. 2013;Chapter 14:Unit 14D.3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23408131
57. Nardo G, Trolese MC, Verderio M, Mariani A, de Paola M, Riva N, et al. Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Mol Neurodegener [Internet]. 2018;13:42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30092791
58. Lauranzano E, Pozzi S, Pasetto L, Stucchi R, Massignan T, Paolella K, et al. Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Brain [Internet]. 2015;138:974–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25678563
59. Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci U S A [Internet]. 2009;106:13588–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19651609
60. Geuna S, Tos P, Guglielmone R, Battiston B, Giacobini-Robecchi MG. Methodological issues in size estimation of myelinated nerve fibers in peripheral nerves. Anat Embryol (Berl) [Internet]. 2001;204:1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11506429
61. Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, et al. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle [Internet]. 2018;8:25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30081940
62. Bendotti C, Baldessari S, Pende M, Southgate T, Guglielmetti F, Samanin R. Relationship between GAP-43 expression in the dentate gyrus and synaptic reorganization of hippocampal mossy fibres in rats treated with kainic acid. Eur J Neurosci [Internet]. 1997;9:93–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9042573
63. Thacker JS, Yeung DH, Staines WR, Mielke JG. Total protein or high-abundance protein: Which offers the best loading control for Western blotting? Anal Biochem [Internet]. 2016;496:76–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26706797
64. Ludolph AC, Bendotti C, Blaugrund E, Chio A, Greensmith L, Loeffler J-P, et al. Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotroph Lateral Scler [Internet]. 2010;11:38–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20184514
65. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther [Internet]. The American Society of Gene & Cell Therapy; 2013;21:282–90. Available from: http://dx.doi.org/10.1038/mt.2012.261
66. Hegedus J, Putman CT, Gordon T. Time course of preferential motor unit loss in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis [Internet]. 2007;28:154–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996107001416
67. Clark JA, Southam KA, Blizzard CA, King AE, Dickson TC. Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat [Internet]. 2016;76:35–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891061816300503
68. Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL. The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol. 2016;26:227–36.
69. Campanari M-L, García-Ayllón M-S, Ciura S, Sáez-Valero J, Kabashi E. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase. Front Mol Neurosci [Internet]. 2016;9:160. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28082868
70. Wier CG, Crum AE, Reynolds AB, Iyer CC, Chugh D, Palettas MS, et al. Muscle contractility dysfunction precedes loss of motor unit connectivity in SOD1(G93A) mice. Muscle Nerve [Internet]. 2019;59:254–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30370671
71. Bruijn LII, Becher MWW, Lee MKK, Anderson KLL, Jenkins NAA, Copeland NGG, et al. ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions. Neuron [Internet]. 1997;18:327–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9052802
72. Dobrowolny G, Lepore E, Martini M, Barberi L, Nunn A, Scicchitano BM, et al. Metabolic Changes Associated With Muscle Expression of SOD1G93A. Front Physiol [Internet]. 2018;9:831. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30042688
73. Dobrowolny G, Aucello M, Musarò A. Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle [Internet]. 2011;1:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21798081
74. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci [Internet]. 2000;20:2534–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10729333
75. Harrison JM, Rafuse VF. Muscle fiber-type specific terminal Schwann cell pathology leads to sprouting deficits following partial denervation in SOD1G93A mice. Neurobiol Dis [Internet]. 2020;145:105052. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32827689
76. Martineau É, Di Polo A, Vande Velde C, Robitaille R. Sex-Specific Differences in Motor-Unit Remodeling in a Mouse Model of ALS. eNeuro [Internet]. 2020;7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32033983
77. Gordon T, Hegedus J, Tam SL. Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol Res [Internet]. 2004;26:174–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15072637
78. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J [Internet]. 2011 [cited 2019 Sep 17];25:358–69. Available from: http://www.fasebj.org/doi/10.1096/fj.10-171579
79. Chazaud B. Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages! Trends Immunol [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32362490
80. Wang HA, Lee JD, Lee KM, Woodruff TM, Noakes PG. Complement C5a-C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Skelet Muscle [Internet]. Skeletal Muscle; 2017;7:10. Available from: http://skeletalmusclejournal.biomedcentral.com/articles/10.1186/s13395-017-0128-8
81. Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, et al. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Mol Ther [Internet]. 2015;23:1189–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25896247
82. Tonkin J, Villarroya F, Puri PL, Vinciguerra M. SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr Opin Pharmacol [Internet]. 2012;12:372–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22401932
83. Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, et al. Myeloid Deletion of SIRT1 Induces Inflammatory Signaling in Response to Environmental Stress. Mol Cell Biol [Internet]. 2010;30:4712–21. Available from: https://mcb.asm.org/content/30/19/4712
84. Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol [Internet]. 2001;2:102–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11175801
85. Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol [Internet]. 2017;17:165–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28163303
86. Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol [Internet]. 2018;30:511–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30165385
87. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS One [Internet]. 2015;10:e0128094. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26039259
88. Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J [Internet]. 2017;284:517–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27479876
89. Teixeira CFP, Zamunér SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, et al. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve [Internet]. 2003;28:449–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14506717
90. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc [Internet]. 1995;27:1022–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7564969
91. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med [Internet]. 2007;204:1057–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17485518
92. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Muñoz-Cánoves P. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm [Internet]. 2013;2013:491497. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23509419
93. Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31:384–96.
94. Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, et al. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol [Internet]. 2017;595:5815–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28714082
95. Mauro A. SATELLITE CELL OF SKELETAL MUSCLE FIBERS. J Biophys Biochem Cytol [Internet]. 1961;9:493–5. Available from: https://rupress.org/jcb/article/9/2/493/19539/SATELLITE-CELL-OF-SKELETAL-MUSCLE-FIBERS
96. Cornelison DD, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol [Internet]. 1997;191:270–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9398440
97. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development [Internet]. 2012;139:2845–56. Available from: http://dev.biologists.org/cgi/doi/10.1242/dev.069088
98. Forcina L, Miano C, Pelosi L, Musarò A. An Overview About the Biology of Skeletal Muscle Satellite Cells. Curr Genomics [Internet]. 2019;20:24–37. Available from: http://www.eurekaselect.com/169026/article
99. Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol [Internet]. 2013;4:363. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24376424
100. Hegedus J, Putman CT, Tyreman N, Gordon T. Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol [Internet]. 2008;586:3337–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18467368
101. Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Dirrig-Grosch S, Henriques A, et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med [Internet]. 2015;7:526–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25820275
102. Song X-Y, Zhou FH-H, Zhong J-H, Wu LLY, Zhou X-F. Knockout of p75(NTR) impairs re-myelination of injured sciatic nerve in mice. J Neurochem [Internet]. 2006;96:833–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16336221
103. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest [Internet]. 2012;122:3063–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22863620
104. Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport [Internet]. 2009;20:1450–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19752764
105. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: The Good, The Bad, and The Resting. J Neuroimmune Pharmacol [Internet]. 2009;4:389–98. Available from: http://link.springer.com/10.1007/s11481-009-9171-5
106. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain [Internet]. 2011;134:1293–314. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21596768
107. Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci [Internet]. 1997;152:s67–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022510X97002475
108. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science [Internet]. 1994;264:1772–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8209258
109. Bendotti C, Carrì MT. Lessons from models of SOD1-linked familial ALS [Internet]. Trends Mol. Med. 2004. p. 393–400. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1471491404001595
110. Schäfer S, Hermans E. Reassessment of motor-behavioural test analyses enables the detection of early disease-onset in a transgenic mouse model of amyotrophic lateral sclerosis. Behav Brain Res [Internet]. 2011;225:7–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166432811004827
111. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interf Cytokine Res [Internet]. 2009;29:313–26. Available from: http://www.liebertpub.com/doi/10.1089/jir.2008.0027
112. Conductier G, Blondeau N, Guyon A, Nahon J-L, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol [Internet]. 2010;224:93–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20681057
113. Sawyer AJ, Tian W, Saucier-Sawyer JK, Rizk PJ, Saltzman WM, Bellamkonda R V, et al. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials [Internet]. 2014;35:6698–706. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24881026
114. Semple BD, Frugier T, Morganti-Kossmann MC. CCL2 modulates cytokine production in cultured mouse astrocytes. J Neuroinflammation [Internet]. 2010;7:67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20942978
115. Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R. Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol [Internet]. 2003;144:139–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165572803003576
116. Baron P, Bussini S, Cardin V, Corbo M, Conti G, Galimberti D, et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve [Internet]. 2005;32:541–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15962273
117. Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res [Internet]. 2007;29:772–6. Available from: http://www.tandfonline.com/doi/full/10.1179/016164107X229795
118. Tofaris GK, Patterson PH, Jessen KR, Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci [Internet]. 2002;22:6696–703. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12151548
119. Kwon MJ, Shin HY, Cui Y, Kim H, Le Thi AH, Choi JY, et al. CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 2015;35:15934–47.
120. Stratton JA, Eaton S, Rosin NL, Jawad S, Holmes A, Yoon G, et al. Macrophages and Associated Ligands in the Aged Injured Nerve: A Defective Dynamic That Contributes to Reduced Axonal Regrowth. Front Aging Neurosci [Internet]. 2020;12. Available from: https://www.frontiersin.org/article/10.3389/fnagi.2020.00174/full
121. Shiraishi W, Yamasaki R, Hashimoto Y, Ko S, Kobayakawa Y, Isobe N, et al. Clearance of peripheral nerve misfolded mutant protein by infiltrated macrophages correlates with motor neuron disease progression. Sci Rep [Internet]. 2021;11:16438. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34385589
122. Lu H, Huang D, Ransohoff RM, Zhou L. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J [Internet]. 2011;25:3344–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21697550
123. Lincecum JM, Vieira FG, Wang MZ, Thompson K, De Zutter GS, Kidd J, et al. From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet [Internet]. 2010;42:392–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20348957
124. Graber DJ, Hickey WF, Harris BT. Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. J Neuroinflammation [Internet]. 2010;7:8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20109233
125. Vasco C, Canazza A, Rizzo A, Mossa A, Corsini E, Silvani A, et al. Circulating T regulatory cells migration and phenotype in glioblastoma patients: an in vitro study. J Neurooncol [Internet]. 2013;115:353–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24005771
126. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, et al. A special population of regulatory T cells potentiates muscle repair. Cell [Internet]. 2013;155:1282–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24315098
127. Villalta SA, Rosenthal W, Martinez L, Kaur A, Sparwasser T, Tidball JG, et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med [Internet]. 2014;6:258ra142-258ra142. Available from: https://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.3009925
128. Arecco N, Clarke CJ, Jones FK, Simpson DM, Mason D, Beynon RJ, et al. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation. Sci Rep [Internet]. 2016;6:24708. Available from: http://www.nature.com/articles/srep24708
129. Tidball JG, Dorshkind K, Wehling-Henricks M. Shared signaling systems in myeloid cell-mediated muscle regeneration. Dev [Internet]. 2014;141:1184–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24595286
130. Howard EE, Pasiakos SM, Blesso CN, Fussell MA, Rodriguez NR. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury. Front Physiol [Internet]. 2020;11:87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32116792
131. White P, Liebhaber SA, Cooke NE. 129X1/SvJ Mouse Strain Has a Novel Defect in Inflammatory Cell Recruitment. J Immunol [Internet]. 2002;168:869–74. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.168.2.869
132. Hoover-Plow JL, Gong Y, Shchurin A, Busuttil SJ, Schneeman TA, Hart E. Strain and model dependent differences in inflammatory cell recruitment in mice. Inflamm Res [Internet]. 2008;57:457–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18827970
133. Rizzo G, Di Maggio R, Benedetti A, Morroni J, Bouche M, Lozanoska-Ochser B. Splenic Ly6Chi monocytes are critical players in dystrophic muscle injury and repair. JCI insight [Internet]. 2020;5. Available from: https://insight.jci.org/articles/view/130807
134. Niemi JP, DeFrancesco-Lisowitz A, Cregg JM, Howarth M, Zigmond RE. Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent mechanism. Exp Neurol [Internet]. 2016;275 Pt 1:25–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26431741
135. Kunis G, Baruch K, Miller O, Schwartz M. Immunization with a Myelin-Derived Antigen Activates the Brain’s Choroid Plexus for Recruitment of Immunoregulatory Cells to the CNS and Attenuates Disease Progression in a Mouse Model of ALS. J Neurosci [Internet]. 2015;35:6381–93. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3644-14.2015
136. Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, et al. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33077946
137. Gois AM, Mendonça DMF, Freire MAM, Santos JR. IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW. Brain Res Bull [Internet]. 2020;159:32–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32247802
138. Liguori F, Amadio S, Volonté C. Where and Why Modeling Amyotrophic Lateral Sclerosis. Int J Mol Sci [Internet]. 2021;22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33921446
139. Liu Z, Cheng X, Zhong S, Zhang X, Liu C, Liu F, et al. Peripheral and Central Nervous System Immune Response Crosstalk in Amyotrophic Lateral Sclerosis. Front Neurosci [Internet]. 2020;14:575. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32612503
140. Béland L-C, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, et al. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun [Internet]. 2020;2. Available from: https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcaa124/5892251
141. McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med [Internet]. 2011;11:246–54. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1566-5240&volume=11&issue=3&spage=246
142. Riva N, Clarelli F, Domi T, Cerri F, Gallia F, Trimarco A, et al. Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: Insights into pathogenesis. Sci Rep. 2016;6:1–15.