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Advanced optimal control -based design of a Gough -Stewart

platform

Minglei Zhu1 Shijie Song1 Dawei Gong1

Abstract:  Designing  a robot with the  best accuracy  is 

always the attractive research direction in robot community. 

In order to create a Gough-Stewart platform with guaranteed 

accuracy performance for a dedicated controller, this paper 

describes a novel  advanced optimal design methodology: 

control-based design methodology. This advanced optimal 

design method considers the controller positioning accuracy 

in the design  process  for  getting  the optimal geometric 

parameters of the robot. In this paper, three types of visual 

servoing controllers are applied to control the motions of 

the Gough-Stewart platform: leg-direction-based  visual

servoing, line-based visual  servoing and image moment 

visual servoing. Depend on these controllers, the positioning 

error models  considering the  camera observation  error

together with the controller singularities are analyzed. In the 

next step, the optimization problems are formulated in order 

to get the optimal geometric parameters of the robot and the 

placement of the camera for the Gough-Stewart platform for 

each type of controller. Then, we perform the co-simulations

on the three optimized Gough-Stewart platforms in order 

to test the positioning  accuracy and  the  robustness with

respect to the manufacturing errors. It turns out that the 

optimal  control-based  design methodology  helps  getting 

both the optimum design parameters of the robot and the 

performance of the controller {robot+dedicated controller}. 

Keywords: Parallel robot, Visual servoing, Optimal

design, Gough-Stewart platform, controller singularity,

hidden robot

1 Introduction

Parallel robots are becoming more and more attractive 

due to their better performances compared with classical se- 

rial robots in terms of the high speed and acceleration, pay- 

load, stiffness, accuracy [1].   Nevertheless, the traditional 

control of parallel robot is always troublesome because of 

the high non-linear input/output relations. 

It can be found in [2] that a large number of researches 

focused on the control of parallel robots. Generally, the only 
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way to ensure the high accuracy of a parallel robot is to get 

the robot model as detailed as possible for the model-based 

controller. However, in reality, due to several factors such 

as the errors from manufacturing and robot assembly, even 

detailed models still suffer from the problem of inaccuracy. 

Therefore, more and more researches focus on finding out 

alternative controller to sidestep the complex kinematic ar- 

chitecture of the robot and to reach a better positioning accu- 

racy performance compared with the classical model-based 

controllers.  Sensor-based controller is an efficient method 

which estimates the pose of the end-effector with external 

sensors [3, 4]. Visual servoing is a sensor-based controller 

which takes one or several cameras as external sensors and 

closes the control loop by the vision information obtained 

from the camera. A large number of researches focused on 

controlling parallel robots with visual servoing with the de- 

velopment of the image processing and image acquisition 

technology [4–8]. It has been proven that the end-effector 

pose can be estimated effectively throughout the direct obser- 

vation by vision [9,10] or the indirect observation [11,12]. In 

addition, the choices of image features applied in visual ser- 

voing of parallel robots are numerous, such as the image mo- 

ments [13,14] when the camera can observe the end-effector 

in direct or the observation of robot legs when observing di- 

rectly the end-effector is difficult to realize (such as the ma- 

chine tool) [6]. 

When vision-based controller is applied to control par- 

allel robots, the positioning accuracy is one of the most im- 

portant internal performance and the positioning accuracy 

comes from the error of observation of the image features 

[15].  The types and number of cameras that are used, to- 

gether with the kinds of image features all have influence on 

the observation error  [15]. In addition, the geometric param-

eters of robots and the camera position also affect the posi- 

tioning accuracy since they change the interaction models, 

which leads to effects on the positioning accuracy [16, 17]. 

One problem should be mentioned is that the mapping be- 

tween the image feature space and the Cartesian space is not 

free of singularities [18].  The existence of the singularity 

of the interaction model has a great influence on the accu- 

racy performance of the parallel robot [19].  In conclusion, 

in order to ensure the best accuracy performance for the pair 

frobot +controllerg throughout its workspace, the robot geo- 

metric parameters and camera position should be optimized 

pzhzhx@126.com
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The optimal design methodology of the robot aims at  

getting the optimal design geometric parameters of the robot  

that minimize a given objective under constraints. In [20],  

when visual servoing is applied to the control of parallel  

robots, the controller singularity  and the internal perfor-  

mance (especially the positioning accuracy) should be taken  

into account in advance. In addition, the visual servoing  

controller is never considered in the optimal design process  

before. Therefore, in this work, the “control-based design” 

methodology considering the controller performance is de-  

veloped and the positioning accuracy, together with the con-  

troller singularity of the corresponding controllers will be  

taken into account during the robot design process in order  

to get the optimal geometric parameters of a Gough-Stewart  

platform for a dedicated controller with the best performance  

of accuracy and avoid the instability issues appeared in the  

control process. In this case, three types of vision-based con-

trollers will be considered: 

• Leg-direction-based visual servoing (LegBVS) [14], 

• Line-based visual servoing (LineBVS) [21], 

• Image-moment-based visual servoing (IMVS) of a fea- 

ture mounted on the platform [13]. 

To the best of our knowledge, this is the first time that 

we design a spatial 6 DOF parallel robot with the optimal 

control-based design methodology. 

This paper is organized as follow:  Section 2 presents 

the robot architecture, design requirements and the specifi- 
cations of visual servoing controllers. The concept of visual 

servoing applied for controlling the Gough-Stewart platform 

are reviewed in Section 3. In Section 4, the controller accu- 

racy performance (the error model relating the error from the

camera observation to the positioning error of the robot ) and 

controller singularities which lead the instability of the robot

are discussed. Optimal design procedure based on the visual 

servoing controllers is introduced and solved in Section 5. 

Then, in Section 6, the co-simulation between Simulink and 

ADAMS with result analysis are described. Finally, some 

conclusions are drawn in Section 7. 

2 Robot Architecture and Specification
In this paper, we optimize the geometry of the Gough- 

Stewart platform with visual servoing in order to get the 

excellent performance of the pair frobot+controllerg.  The

Gough-Stewart platform, also called hexapod, is a parallel 

robot with 6 degrees of freedom (DOF): the moving platform

of the Gough-Stewart platform translates along the three axes 

of the space and rotates around the three axes of the space 

with respect to the fixed base [22]. The Gough-Stewart plat- 

form designed in this chapter is a 6-UPS robot (Fig. 1(a)). 

The moving platform of the robot is linked to the fixed base 
by 6 individual chains BiPi (i = 1  6). The connection of 

the chains with the base is a U joint located at Bi (i = 1  6),
the chains are attached to the end-effector by a S joint located

at Pi (i = 1  6) and the prismatic actuator allows the change

of the lengths of the links BiPi (i = 1,  ,6)(Fig. 1(b)). 
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(a) CAD of the Gough-Stewart platform with its regular dexterous 
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(c) Gough-Stewart platform geometric design parameters 

Figure 1 Schematics of the Gough-Stewart platform 

The base and the moving platform of the considered 

Gough-Stewart platform are symmetric hexagons (Fig. 1(c)). 

The radius of the circumcircle of the base is rb , and the ra- 

dius of the circumcircle of the moving platform is ra . The

angle 121 2 BBB c ，the angle 221 2 PPP c

，and the angle 00  Px'Pc (Fig. 1(c)). 

The complete  workspace  of the  Gough-Stewart plat- 

form is a six-dimensional space.  We should consider both 

its 3D location and the orientation of the moving platform. 

In [23], a three-angle  orientation called  Tilt-and Torsion 
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(T&T) angles was proposed in order to represent the ori- 

entation workspace of the Gough-Stewart platform.  It was 

proven that the T&T angles take full advantage of a mecha- 

nism's symmetry. The orientation matrix of the T&T angles 

is defined as follows (see details in [23]): 




















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


csscs

ssccscsscccs

sccssccssccc

σθ ),,R（ (1)

cφ = cosφ, sφ = sinφ and φ = σ ϕ .  ϕ is called

azimuth, θ is tilt and σ is torsion in T&T angles. 

Based on the T&T angles, a novel 3D workspace subset 

named maximum tilt workspace was proposed in [24]. This 

workspace measure is defined as the set of positions that the 

center of the moving platform can attain with any direction of 

its z-axis making a tilt angle limited by a given value. There- 

fore. the orientation workspace of the Gough-Stewart plat- 

form can be kept to be symmetrical. Then, the configuration 
of the Gough-Stewart platform can be defined by the vector 

x = [xt ;yt ;zt ; ϕ; θ; σ] while [xt ;yt ;zt] represents the 3D loca- 

tion of the center of the moving platform and [ϕ ,θ,σ]
defines the T&T angles. The ranges of the azimuth, tilt and 

torsion are thus defined respectively as ϕ (  π; π], θ[0;

π/12] and σ[0; π/12] in this case. 

The requirements that must be achieved by the Gough- 

Stewart platform in this case are given in Tab. 1.   They 

have been fixed after discussion with some of our industrial 

partners. First of all, the maximum tilt workspace of the 

Gough-Stewart platform should cover a cube of side length 

l0 100 mm and the range of T&T angles being ϕ (  π;
π], θ[0; π/12] and σ[0; π/12].  In this workspace, 
several performances should be guaranteed. Thus this cube

will be called the regular dexterous workspace (RDW) of 

the robot. 

Additionally, considering the reality (gain of place), the 

footprint of the robot must be as small as possible. 

The Gough-Stewart platform optimized ought to  sat- 

isfy all the following geometric and kinematic constraints 

throughout the RDW: 

• The RDW should be free of singularity (both of the 

Gough-Stewart platform and the visual servoing con- 

trollers applied in this case), 

• The robot positioning error should be lower than 1 mm, 

• The robot orientation error should be lower than 

0:01 rad, 

• Some distances are constrained in order to avoid colli- 

sions or to have unpractical designs: the distance rb be- 

tween the origin of the base frame O and the U joint po-

sition Bi, the distance ra between the origin of the plat- 

form frame Pc and the S joint Pi, the radius of the pris- 

matic actuator's BiPi cross-section denoted as R’ and, fi- 
nally, the camera frame location (Fig. 1(b)). These con- 

straints will be further detailed in Section 5. 

In order to get the desired 1 mm of positioning accu- 

racy and 0.01 rad orientation accuracy specified in Tab. 1, we 

Table  1 Requirements of the Gough-Stewart platform 

Cube RDW size 

(side length of the cube) l0

≥100 mm

Tilt and Torsion angles ϕ (  π; π], θ[0; π/12], 
σ[0; π/12] 

Positioning accuracy in RDW ≤1 mm 

Orientation accuracy in RDW ≤0.01 rad 

No singularity in RDW of the controller

of the robot 

Constraints on geom. param. will be provided 

in Section 5 

propose to apply visual servoing approaches. A single cam- 

era is chosen to be the external sensor and mounted onto the 

ground in order to control the motions of the Gough-Stewart 

platform. The resolution of the camera is 1920  1200 pix- 

els and the focal length is 10 mm).  The best way is to ob- 

serve some image features attached on the moving platform 

directly with the camera. However, in some cases, it is dif- 

ficult to observe the end-effector, such as the milling oper- 

ations. Alternative features proposed in  [14] are the cylin- 

drical legs of the robot's prismatic actuators. Therefore, in 

this case, three types of classical visual servoing approaches 

(LegBVS [14], LineBVS [21] and IMVS [13]) will be tested. 

The two first controllers take the image features ex- 

tracted from the observation of robot legs, while the last one 

will be used to observe the platform directly. The optimal 

design parameters of the Gough-Stewart platform for each 

type of controller will be found and based on the analysis of 

the obtained results, the best pair {robot+controller} will

be determined. 

In addition, several comments should be illustrate here. 

First, the dynamic criterion is not mentioned in these specifi- 
cations. Actually, for the visual servoing, high-speed motion 

is not the purpose, except for a few specific scenarii [25,26]. 

Therefore, only the geometry and kinematics performance of 

the robot will be considered. Besides, a repeatability of 1 mm

and orientation accuracy of 0.01 rad could also be obtained 

by standard encoder-based controller. However, this paper 

does not aim to prove that visual servoing gets a better ac- 

curacy performance compared with standard encoder-based 

control. This paper aims to prove that in the condition of 

controlling a robot with visual servoing (or any other types 

of sensor-based controllers), in order to obtain the guaran- 

teed accuracy, it is essential to optimize the robot and the 

controller at the same time in the design process. 

In the next section, some brief recalls on visual servoing 

will be given in front of presenting the optimization problem

formulation. 



cylinder axis (Fig. 3). Then the function relating the time

3 Recalls on Visual Servoing

In this section, a simple review on visual servoing is pre-

sented. Then, we provide some recalls on three considered 

approaches in particular [13, 14, 21]. 

3.1 Basics of visual servoing

Visual servoing takes the camera as the external sensor 

and applies the computer vision data to the servo loop to con-

trol the robot [3]. With the help of the so-called interaction 

matrix L [4], the mapping from the time derivative of im- 

age features s to the spatial relative camera-object kinematics 

screw t can be obtained through this relationship: 

x)τL(s,s  (2)

The components of the interaction matrix L are highly 

nonlinear and are function of both the visual features s and 

the robot end-effector configuration x which is also a func- 

tion of s, i.e.  x = x(s), x(s) being also a highly nonlinear 

function. We should mention that, in simulation, the value 

of x can be obtained directly by creating a virtual sensor 

measuring the simulated robot configuration. In practice, the
vector x must be rebuilt from the measurement s. Several 

strategies for dealing with this problem are detailed in [3, 4]. 

The same as other control methods, we define an error 

e(t) and minimize this error in vision-based controller [4] 

e(t) = s(m(t), a) s (3) 

where the vector m(t) is a set of image measurements 

(based on the choice of different types of visual servoing con-

troller).  The image features s are obtained from the image 

measurements, a represents the set of additional parameters 

of the system, such as the intrinsic parameters of the camera 

used or the models of the objects observed. The vector s is 

the desired value of the image features. 

Combining equations (3) and (2), the relationship be- 

tween the  relative  camera-object velocity  and  the  time 

derivative of the error can be obtained by 

x)τL(s,e  (4)

We apply an exponential decoupled decrease of the error 

such as e˙ =  le, then we can get a classical controller: 

s*)x)(s(s,λLτ c (5)

where  is a positive gain, τ could be related to the

motor velocities by qJτ  , q being the robot motor

velocities. 

From (2), a simple visual servoing error model can be 

developed: 

x)Δ)L(s,Δs  (6) 

where s  being a small error in the observation of the fea-

tures s and x  being an error in the configuration of the ro-
bot end-effector. As we present above, the components of 

the interaction matrix L are high nonlinear functions of both 

s and x.  The controller singularity appears when the 

interaction matrix is rank deficient [27–29], a small error of 
observation s  leads to a large positioning error of robot 

x . The controller singularity affects a lot in the stability of 

the control process which should be avoid.  Positioning error 

models based on (6) and the controller singularities of the 

visual servoing   [13, 14, 21] will be further detailed in 

Section 4. Now, we make some recalls about the features 

observed in the three different types of controllers [13, 14, 

21]. 

3.2 Visual servoing image features

In this section, three different types of image features 

observed in the three different types of visual servoing con- 

trollers  [13, 14, 21] are presented. We do not repeat the 

detailed computation of interaction matrix here. Interested

readers can go to [3, 4, 13, 14, 21] for the information. 

3.2.1 Leg-direction-based and line-based visual servo-

ing

The legs of parallel robots are mostly designed with slim 

and cylindrical rods. For the Gough-Stewart platform, the 

camera observes the cylindrical links PiBi of the prismatic 

actuators (Fig 2). From Fig. 3, it is observed that the projec- 
tion of the robot leg PiBi in the image plane are two lines

1
il and 2

il , which are defined as the intersections of the 

image plane and the planes S and S  with normal (cn  ,    

c n ) lying on the camera frame origin C and the observed

cylinder. In what follows, the superscript “c” denotes the

camera frame (equivalent to the world frame in our paper). 

For each cyliinder, the normal vector cn
k) 

(k = 1, 2) can be

extracted from the camera observation [6]. Therefore, when 

we observing n cylinders, the vector s of the image features 

is defined as: TT
n

cT
n

cTcTc
],,,,[

)1()1()1()1(

11
nnnns  . 

For leg-direction-based visual servoing [14], the vectors 
cn

k)
are used to rebuild cui which is the direction of the 

cylinder axis (Fig.3). Then the function relating the time 

derivation of cui and the spatial relative camera-object kine- 

matics screw τc can be established [6, 14]:

c
c

i

c T
ui

τMu  (7) 

where Mu
T

i is the interaction matrix of the robot line i for 

leg-direction-based visual  servoing.    It has  been  proved 
in [30, 31] that, in order to fully control the motion of the 
Gough-Stewart platform, a minimum of three independent 

line directions ui must be known. The interaction matrix Mu
T

can be obtained by stacking the matrices of Mu
T

i of k legs 

(k = 3, , 6). 

For line-based visual servoing [21], the vectors cn
k)

are used in order to rebuild the Pl cker coordinates 

), i
c

i

c
hu（iL of the axis of the cylinder for the link PiBi

(Fig. 3), 
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Figure 3       Projection of a cylinder in the single camera model 

where  cui is the unit  vector of its  direction, and chi the 

moment of cui with respect to the camera frame origin C. 

Based on the definition of the Pl cker coordinates, we have 

hi = D ui where D is the position of any point on the line 

passing through the center of the cylindrical leg [8].

For the case of the Gough-Stewart platform, the U joints 

Bi (i = 1; 2  6) (Fig. 2) are all fixed on the base

platform, then we obtain the time derivation of the vector c 

hi by: 

i
ci

c
i

ci
c

i
ci

c
i

c
uBuBuBh  

(8)

With the help of equation (7), the equation (8) can be written 

in the matrix form 

τMτMB
c

[h
cT

hi
cT

ui
ii

c  ] (9) 

  is the antisymmetric matrix associated to the 

cross product [32], Mhi is the interaction matrix related to hi

. 

Therefore, for a line Li, we have 

τMτ
M

M

h

u
c

c
cT

uhi
c

T
hi

T
ui

i

i 























 

(10)

Where Muhi is the interaction matrix related to the Pl cker 

coordinates of Li. Similarly, we can prove that Muhi is

of rank 2, thus, in order to fully control the 6 DOFs of

the Gough-Stewart platform, observing a minimum of three 

independent legs is necessary. Then the interaction matrix M

u
T

h is got by stacking the matrices Mu
T

hi of k legs (k = 3,

…,6).  Since the location of Bi (i = 1,2,…,6) are fixed, the  
components of matrices  [B i]×  are constant.   By  

studying(9), we seee the velocities of i
c h  and the velocities 

of i

c
u  are linearly dependent. This would mean that for the 

Gough-Stewart platform, LegBVS and LineBVS may lead to 

the same controller performance, at least in terms of 

controller singularity (will be proven in Section 4). 

        For LebBVS and LineBVS, in the interaction matrix re- 

lating the configuration of the robot platform to the image 

features s, the radii R’ of the observed cylinders (Fig. 3) is 

involved, together with the camera pose and the robot ge- 

ometric parameters (see [6, 14]).  All these parameters will 

be optimized later during the design optimization process in 

o r d e r t o g e t  a g o o d c o n t r o l  p e r f o r m a n c e . 

3.2.2 Image moment visual servoing

IMVS is an approach based on the observation of a tar- 

get T mounted on the moving platform of the robot (Fig. 

2). The image moments can be extracted from the image 

plane through the observation of the camera [13].  The

target T can be a dense object defined by a set of closed 

contours or a discrete set of m image points [33].  The 

definition of the image moments, as well as the interaction

matrix associated with any moment is provided in [13]. 

For a Gough-Stewart platform with six DOFs, a set of six

independent moments should be selected as the image

features. In this work, T is set to be a discrete model 

composed of three points (A1 , A2 , A3) (Fig. 4). The six

independent moments are: the coordinates xg , yg of the

center of gravity of the discrete model, the area a of the 

triangle A1A2A3 in image plane, α the orientation of the

discrete model in the image, c1 , c2 two combinations of 

moments invariant to scale (see definitions in [33]). Then
we have:

τLm m                             (11)

Where τ is the  twist  of the  moving  platform of

the Gough-Stewart platform,
T

gg ccayx ],,α,,,[ 21
m are the

time  derivatives  of  six  image features observed. Lm = 

[LxgLygLaLαLc1 Lc2 ]
T is the interaction matrix related to 

the set of image moments [13] [33]. 

In the model for estimating the robot platform config- 
uration based on the imagefeatures

T
gg ccayx ]α[ 21m , 

the coordinates of the three points (A1 , A2 , A3) (Fig. 4) are 
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Figure 4 Discrete model composed of three points for image moment 

visual servoing 

involved, as well as the camera pose. The value of these pa- 

rameters will be optimized later during the design optimiza- 

tion process. 

It should be noticed that, despite the fact that there is 

no explicit appearance of the robot geometric parameters in 

the interaction model of image moment visual servoing con- 

troller, they still have influence on its performance: the loca- 

tion of the robot workspace is defined by the robot geomet- 
ric parameters.  If the distance between the workspace and 

camera location is long, the accuracy performance will be 

worse than if the workspace is closer to the camera location. 

Accordingly, we still need to optimize the robot geometric 

parameters in order to optimize the overall robot accuracy. 

In the next section, we deal with the computation of 

some performance indices of the visual servoing controller. 

4 Controller Performance

Concerning the requirements of positioning accuracy for 

the robot design, two types of controller performance will be

defined and considered: 

• the presence (or even proximity) controller singularities, 

the singularities of the interaction matrices impact both 

the positioning accuracy and the controller stability [3]. 

• the positioning error comes from the camera observation 

error and the interaction model of the corresponding vi- 

sual servoing controller. 

Then, in this section, singularities of the corresponding con- 

trollers and the positioning error models are described. 

4.1 Controller singularities

It was defined in [27] that the rank deficiency of the in- 

teraction matrix L leads to the visual servoing controller sin- 

gularity. In this section, based on the study of the controllers 

defined in Section 3, we show the conditions of rank defi- 
ciency of the corresponding interaction matrices. 

4.1.1 Leg-based visual servoing singularities

The singularity problem of the mapping between the 

space  of the  observed image features  and the Cartesian 

Figure 5 Example of a Type 2 singularity for a 3-U PS robot: the 

platform gets an uncontrollable rotation around P1P2 [31] 

space has great influence on the accuracy of visual servoing. 
Thanks to the work of [28], a tool named “Hidden robot” 

was developed in order to simplify the study of the controller 

singularity problem when visual servoing is applied on the 

control of the parallel robot. It reduces the study of the 

complex singularities of the interaction matrix to the study of 

the singularities of the virtual parallel robot hidden in the 

controller. 

In [31], the problem of LegBVS controller singularities 

for the control of the Gough-Stewart platform has been de- 

tailed studied.  The Gough-Stewart platform consists of six 

UPS legs.The corresponding hidden robot of the UPS leg is 

made of  UPS legs. Since UPS legs have 2 degree of 

actuation, only three legs to be observed are enough to fully 

control the Gough-Stewart platform when using leg direction 

observation [28]. 

The singular configurations of 3-UPS-like robots have 

been deeply studied in [34] and [35].  Type 2 singularities 

appear when the planes P1, P2, P3  (whose normal directions  

are defined by the vectors 1u , 2u , 3u and the plane P4 

(passing through the points P1 ,P2, P3 in Fig. 5) intersect  in 

one point (that can be at infinity) (Fig. 5). 
Singularities of LineBVS applied to the control of the 

Gough-Stewart platform have never been studied before. The 

concept of the hidden robot is to find what kind of virtual ac- 
tuators correspond to the features of observation applied in 

visual servoing.For LineBVS, we take the Plücker coordi- 

nates of a line Li  as the image feature to be observed and it 

can be defined from the fact that a 3D point and a 3D 
orientation define a unique 3D line [36].Therefore, we should 
find the virtual actuators corresponding to the 3D line Li . 

As we see from Fig. 6, Bi is the 3D point and iu  the 

unit vector, Li  (i = 1,2,…,6) is the 3D line they define. The 

active U joint in space is the virtual actuator that makes the 

vector iu  move. In general, the actuated PPP chain should 

be added on the preceding leg links so that the point Bi can 

move in space. Therefore, for a UPS leg, its corresponding 

hidden robot when using line-based visual servoing is a 

PPPUPS leg (Fig. 6). However, in the case of a Gough-

Stewart platform, all the U joints are fixed on the base which 
means that the points Bi are fixed in space. Then the actuated 
PPP chain is no longer needed and the 3D lines Li passing 

through the robot links can be defined only by the vector iu . 

Therefore, the corresponding hidden robot of Gough-Stewart 

platform 

O’

y’

P1

A1

x’



then pixellized (Fig. 7). We suppose that the error of estima-

Active U joint

Active PPP

chain 

Figure 6      Corresponding hidden robot leg when the line Li in space is

observed 

is the same as the hidden robot when applying leg-direction- 

based visual servoing, the 3 UPS robot, which means that 

these two visual servoing controllers share the same condi- 

tions of controller singularities. Then, we suppose that in 

terms of controller performances, LegBVS and LineBVS are 

the same (which will be proven in the following Section). 

4.1.2 Image moment visual servoing singularities

For IMVS, the controller singularity appears when the 

matrix Lm is rank deficient. The expression of the matrix Lm

is rather complex and it is difficult to find the condition of 

rank deficient analytically.  We should define a criterion of 

“proximity” to controller singularities. A list of indices that 

could be adapted in the analysis of robot singularity were 

presented in   [37].  In this case, we take the inverse condi- 

tioning of the interaction matrix as the index of the controller 

singularity to estimate the numerical stability of the interac- 

tion matrix Lm .

4.2 Positioning accuracy model

We propose to use the model (6) to describe the con- 

troller repeatability, as it was done in [38]. 

4.2.1 Observation errors in the leg-based visual servo-

ing

The positioning error models when observing the robot 

links in the Leg-based visual servoing approaches have been 

detailed presented in [15, 17]. The positioning error comes 

from the camera observation error of image features (For 

LegBVS, the features are the leg directions, for LineBVS, 

the features are the leg Pl cker coordinates). When we use 

the camera to observe the robot links, the link edges are pro- 

jected into the image plane into lines
k
ijl (Fig. 3), which are 

tion of the lines k
il is due to a random shift of ±0.5 pix

in the pixels corresponding to the intersections of the 
k
il with the image plane boundary (points Pi

)
and Pi

) 
in 

Fig. 7) in this case. 

As we presented in Section 3.2.1, the image features that 

Figure 7 Error for the observation of a line 

we use in the leg-based visual servoing are the vectors cn
k) 

(characterizing the line li).  Thus we can find the mapping 

relating the time derivatives of the vectors cn
k)

to the deriva-

tive of p
) 
, p

)
with respect to time: 
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Then we get the error model 
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 respectively, Based on the 

controllers presented in Section 3.2.1, for the image features  

TT
n

cT
n

cTcTc ][ )1()1()2(

1

)1(

1 nnnns  , we have 

Δs = JnΔp                                 (14) 

where Δs stands for the small variations of the image features

s, Δp contains all errors ）（1
ikp and ）（2

ikp .

In this case, the camera observation noise is set to be 

± 0 . 5 pixel, which is a typical noise for cameras.  Thus 

every component of vector ）（1
ikp and ）（2

ikp can take the

values +0.5 or  0.5. With the help of equation (6) and (14), 

we can get the observation error model for LegBVS and

LineBVS written under the generic form:

Δx = LPΔp (15)

where LP = L+Jn .

4.2.2 Observation errors in the image moment visual

servoing

Image moments are calculated from the coordinates of 

the points belonging to the projection on the image plane of 
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Passive P joint

Passive
S joint
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Figure  8 Error on the three points discrete model 

the object observed.  We set (x1p，y1p), (x2p，y2p), (x3p

，y3p) to be the coordinates of the projection of the three

points A1 ,  A2 ,  A3 (Fig. 8) in pixel. Then we have 

ttt 











 Q

S
Q

Q

mm
                 (16) 

where Q = [x1p x2p x3p y1p y2p y3p]T , S is the matrix which

transforms the time derivatives of the set of image moments 

m to the time derivatives of the coordinates of the points pro-

jected to the pixel plane. 

Thus, the equation (11) can be written as the form 

QSLmLτ m
   m (17) 

We estimate that the error of estimation of each compo- 

nent of Q to be ±0.5 pix (see Fig. 8) for the location of each 

point projected in the image plane. Then the error model of 

the image moment visual servoing controller can be written 

in the form: 

QSLx  
m (18) 

4.2.3 Positioning accuracy

For  the positioning  accuracy  of the Gough-Stewart

platform,   we have Δx =  [ΔtxΔtyΔtzΔwxΔwyΔwz] with 

[ΔtxΔtyΔtz] being the translation errors along the three axes 

and [Δwx Δwy Δwz] being the rotation errors around the three 

axes. Then the positioning error is defined as 

222
zyx tttE t                    (19)

and the orientation error is defined as 

5 Optimal design Procedure

In this section, the design procedure developed in or- 

der to obtain the optimal parameters of the Gough-Stewart 

platform together with the parameters of the controllers are 

described 

5.1 Design variables

Robot design parameters: As we presented in Section 2, 

the Gough-Stewart platform can be defined by the follow- 

ing geometric parameters: ra , rb , α0, α1 , α2 (Fig. 1(c)) 

(ra= iPO' , rb= iOB , α0= 0' PPx c , α1= 21
2

1
BBB c , 

α2= 21
2

1
PPP c ).All these parameters have an effect on the 

size of the robot performance, as well as on the controller 

performance. In addition, when  LegBVS and LineBVS are 

applied, the radius of the cylindrical distal links of the 

Gough-Stewart platform also has influence in the positioning
accuracy [15], thus the radius of the cylindrical distal links 

PiBi (i = 1 ,2 ,…,6), denoted as R (see Fig. 3), is a 

decision variable of the optimization process. When image 

moment visual servoing is applied, the coordinates of the 

discrete three points model [x1y1x2y2x3y3] (in moving plat-

form frame x’O’y’) defining the configuration of the model 

(Fig. 4) affects the controller interaction model. They must 

be optimized when dealing with image moment visual 

servoing.

Controller design parameters:  The configuration of the 
camera is normally parameterized by six independent param- 

eters and it affect the controller interaction model. In order to 

observe the robot (both the robot legs and the end-effector) 

in a symmetrical way,: 

• The camera frame orientation is set to be parallel to the 

robot fixed frame, 

• The camera origin is imposed to stay on a vertical line 

passing though O ((xc , yc) of the camera frame origin set 

at (0, 0)). 

Additionally, some other variables that we used in the 

optimal design process need to be defined: L is the length of 

the prismatic actuator BiPi  (L= iiPB , i = 1,2,…,6). l0  is the 

dimensions of the side length of the cube RDW (see Tab.1)

[1].  Design variables: Based on the explanations above, 

two different sets of design variables (grouped in a vector

y), depending of the types of controllers are defined: 

• For the leg-based controllers, 

y = [ra , rb,  a0 , a1 ,a2 ,zc ,R]T

• For the moment-based controllers,

y = [ra , rb, a0 , a1, a2 , zc , x1 , x2 , x3 , y1 , y2 , y3]T

222
zyx wwwE w (20)

In the next section, the optimal design problem for the 

Gough-Stewart platform will be formulated. 

5.2 Objective function

As mentioned in Section 2, the robot should be as 

compact as possible. The footprint of the Gough-Stewart 

platform is evaluated by the radius rb of its base. Therefore, 

the optimization problem is formulated in order to minimize 

the value of rb . 

possible erros

of observation

of the points



5.3 Constraints

The constraints provided in Section 2 are reviewed here.

Throughout the RDW, following geometric and kinematic 

constraints must be satisfied: 

• The RDW should be free of singularity (both of the robot 

and the controller): Singularities of the controllers are 

detailed presented in Section 4.1. In this case, we used 

the inverse condition number of the interaction matrix 

L, denoted as қ 1(L). In the RDW, we want to have 

қ 1(L) > 10 3 (21) 

The “mechanics” singularity of the Gough-Stewart plat- 

form is different, this problem is really complex and has 

been studied decades ago [1, 39–42]. In [43] and [44], a 

kinetostatic approach taking account of the force trans- 

mission was proposed to determine the singularity-free 

zones of a parallel robot. When the pressure angle is 

close to 90 deg, the parallel robot is close to a singu- 

lar configuration. Therefore, we calculated the pressure 

angles β = [β1, …, β6]
T for all the six robot legs of the

Gough-Stewart platform  [43,44]. In the RDW, we want 

to have 

βi > 80° i = 1, …,6                      (22) 

• The value of the robot positioning accuracy ought to be 

lower than 1 mm and the orientation accuracy should 

be lower than 0.02 rad. The positioning error model is 

defined in Section 4.2.  The models (6) and (15) being 

linear in terms of the observation error, the maximal po- 

sitioning error Etmax = max tE and the maximal

orientation  error Ewmax = max wE of the robot

will be found at one the corners of the hyper-

polyhedron defining the observation errors [45].  The 

repeatability constraint can be formulated as: 

Etmax  1 mm 

Ewmax  0.02 rad 

• The discrete three points A1, A2, A3 should be within

the moving platform of the Gough-Stewart platform. 

• Several distances or angles are constrained in order to 

avoid collisions or to have unpractical designs. The val- 

ues of  these constraints are given here: 
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The aforementioned RDW throughout which all the con- 

straints (21) to (24) must be satisfied should cover a cube 

of side length l0  100 mm and the range of T&T angles 

being ϕ (  π; π], θ[0; π/12] and σ[0; π/12].  The
algorithm of calculating the size of the Largest Regular

Dexterous Workspace (LRDW) is detailed presented in [46]

and  is adapted in this case for getting the cubic LRDW 

among the RDW of the manipulator for a given decision

variable vector y.

We denote lLRDW the side length of the cubid LRDW 

whose T&T angles range are ϕ (  π; π], θ[0; π/12] and
σ[0; π/12]. We make sure that all constraints (21) to (24) 

are obligatory true throughout the LRDW, then only one to 

replace all the other ones, which is defined by: 

lLRDW l0                                            (25) 

5.4 Problem formulation and optimization results

For designing a compact Gough-Stewart platform with 

the detailed spcifications given in Tab. 1, the following opti- 

mization problem is formulated: 

minimize 

over 

subject to

rb

lLRDW > 100 mm
(26)

As introduced in Sec. 3, observing three legs is enough to

fully control the Gough-Stewart platform when leg-based 

visual servoing controllers are applied. In this case, as a mat-

ter of comparison, we will optimize the geometric param- 

eters of the Gough-Stewart platform when observing only 

three legs ([Case1]: observing robot links B1P1 , B3P3 , B5P5)

and observing all the six legs ([Case 2]:  observing robot 

links B1P1 , B2P2 , B3P3 , B4P4 , B5P5 , B6P6) for leg-based vi- 

sual servoing. 

The optimization algorithm presented above is then ap- 

plied to the design of the Gough-Stewart platform, for each 

of the three controllers defined in Section 3. These optimiza- 

tion problem have been solved by means of the 'active-set' 

(23)

y



Figure 9    Gough-Stewart platform optimized using LineBVS [Case 1]
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Figure 10 Gough-Stewart platform optimized using LineBVS [Case 2]

algorithm implemented in the MATLAB fmincon function. 

A multistart algorithm, combined with random initial points 

initialized by a Genetic Algorithm, was also used in order to 

increase the chances to reach the global minima. The optimal 

design results are given in Tab. 2. 

As we see from the results of optimization, in terms of 

the footprint of the robot, the Gough-Stewart platform de- 

signed based on the LegBVS, LineBVS and IMVS are close 

from each other and the differences are almost negligible. 

Especially, for robots designed for leg-based visual servo- 

ing controllers, the geometric parameters of the robot are 

the same under the same observing condition (Case1 and 

Case2). This result proves our suppose proposed in Sec- 

tion 4. 1. 1. From the equation (8), we see that the coordinates 

of points Bi are constant, then the time derivative of hi and 

ui are linearly dependent, which means that the LegBVS and 

LineBVS share the same controller performance. 

In the next section, we will perform co-simulations with 

ADAMS and Simulink to test the robot accuracy perfor- 

mance. 
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Figure  11    Gough-Stewart platform optimized using image moment visual

servoing 

Table  2 Design parameters and value of the objective function for the

chosen controller 

LegBVS LineBVS LegBVS LineBVS IMVS 

ra[m] 0.2054 0.2054 0.1402 0.1402 0.1600 

rb[m] 0.3000 0.3000 0.3000 0.3000 0.3000 

α0 [rad] -0.4256 -0.4256 -0.4243 -0.4243 0.2668 

α1 [rad] 0.2318 0.2318 0.2298 0.2298 0.1986 

α2 [rad] 0.1424 0.1424 0.6927 0.6927 0.2406 

zc[m] -0.0523 -0.0523 -0.0551 -0.0551 0.1204 

R[m] 0.0197 0.0197 0.0199 0.0199 N/A 

x1 [m] N/A N/A N/A N/A -0.1311 

x2 [m] N/A N/A N/A N/A 0.1303 

x3 [m] N/A N/A N/A N/A -0.1044 

y1 [m] N/A N/A N/A N/A -0.0870 

y2 [m] N/A N/A N/A N/A -0.0839 

y3 [m] N/A N/A N/A N/A 0.0976 

rb[m] 0.3000 0.3000 0.3000 0.3000 0.3000 

6 Results Cross-validations through Simulations

6.1 Simulation method

In order to validate the optimization results and test 

the robot accuracy performance, the co-simulations are per- 

formed within a connected ADAMS-Simulink environment 

(Fig. 13). Five Gough-Stewart platform models with the op- 

timal geometric parameters obtained from the optimal design 

process (one model per controller) are created in the software 

ADAMS. 

Real-time   data   (block “Data   acquisition”)   of the

ADAMS simulator are extracted : 

• For LegBVS and LineBVS, we extract the coordinates 
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Figure 12    Test points in the LRDW 

Table 3 Coordinates of the test points parameterized with respect to the 

center of the LRDW 

Point Coordinate [m] Point Coordinate [m] Point Coordinate [m] 

T1 (0,0,0) T4 (-0.05,-0.05,0.05) T7 (0.05,0.05,-0.05) 

T2 (0.05,0.05,0.05) T5 (-0.05,0.05,0.05) T8 (0.05,-0.05,-0.05) 

T3 (0.05,-0.05,0.05) T6 (-0.05,0.05,-0.05) T9 (-0.05,-0.05,-0.05) 

Figure 13 Co-simulation control scheme of Gough-Stewart platform 

of the points Pi and Bi (Fig. 1(b)),

• For IMVS, the coordinates of the three pointsA1 , A2 and 

A3 (Fig. 4) are extracted. 

These real-time data are used to rebuild the image seen 

by the pinhole camera (“Simulation camera”). Then the ran- 

dom noise related to the observation errors presented in Sec- 

tion. 4 are added. Then we extract the image features s de- 

pending on the controller type and use them in order to con- 

trol the robot based on the controller defined in (5). 

The RDW of the Gough-Stewart platform  is a  cube 

whose side length is 100 mm, and the orientation workspace 

is set based on the T&T angles ϕ (  π; π], θ[0; π/12] 
and σ[0; π/12].  A home position T1 and nine desired

posi- tions (including T1) within the LRDW are defined in 

Tab. 3 with respect to  the center  of  the LRDW.  For

each position,  three orientation pose  are  defined  with
respect to [ϕθσ]T :  Pose 1 [0; 0; 0]T , Pose 2 [π/2, π/12, 
π/12]T , Pose 3 [-π/2, π/12, π/12]T (Fig. 12).  Therefor, for 

each robot, a total of twenty seven desired poses are 

selected in the co- simulations. 

Then, each robot is driven from their home pose to the 

desired poses with the dedicated controller. All their posi- 

tioning accuracies and orientation accuracies are recorded 

during the co-simulation. 

Additionally, in order to test the robustness of the accu- 

racy of model with geometry errors, the same co-simulations 

were operated with the error added in model. The models we 

added errors on joints are defined as blow: we add a random 

error on the location of the joint Bi on the base of the robot, 

the distance between the accurate joint Bi and the joint with 

error B’i, denoted as lBiB’i
, (lBiB’i

= 0.1 rb) (see red parts of 

In the next step, The designed robot prototypes were 

controlled with another controller,  different from the one 

dedicated during the design process, for verifying the origi- 

nal purpose of performing control-based design. In what fol-

lows, for brevity, only the result of LineBVS applied to the 

robot designed for the image-based moments will be given 

here. 

Results are shown and analyzed in the next subsection. 

6.2 Simulation results

In this section, we denote as: 

•  [Case A]: the Gough-Stewart platform optimized for 

LineBVS ([Model 1]) in ([Case 1]) and the error-added 

robot mechanical model  ([Model 2]) controlled with 

their dedicated controller, robot links BiPi (i = 1, 3, 5) 

are observed, 

• [Case B]: the Gough-Stewart platform optimized for 

LineBVS ([Model 3]) in ([Case 2]) and the error-added 

robot mechanical model  ([Model 4]) controlled with 

their dedicated controller, all six robot links BiPi (i = 

1, 2, 3, 4, 5, 6) are observed, 

• [Case C]: the Gough-Stewart platform optimized for 

IMVS ([Model 5]) and the error-added robot mechani- 

cal model ([Model 6]) controlled with its dedicated con- 

troller, 

• [Case D]: the Gough-Stewart platform optimized for 

IMVS ([Model 5]) controlled with the LineBVS, all six 

links BiPi (i = 1, 2, 3, 4, 5, 6) are observed. 

Since we have proved that the LegBVS and LineBVS 

have the same control performance for the Gough-Stewart 

platform and the geometric parameters of the robot designed 

for these two controllers are the same under the same obser- 

vation condition, we only perform the co-simulations for the 

robot controlled with LineBVS . We played each simulation 

during five seconds and recorded the positioning error. For 

the robot of Case A going to point T4, Pose 2, from the 

results, we found  that the robot is converging at around 0.5 

s, then the moving plat- form oscillates around the desired

pose due to the simulated observation noise. For all the 

simulation motions from home position to the desired poses 

in Case A to Case D, the maximal positioning error and

orientation error along the time are recorded: for point Tkj (k

for the position k = 1,…,9, j for the pose j = 1, 2, 3)

simulated in case α (α = A,B, C,D), this maximal positioning

error is denoted as kjap and the maximal orientation error 

is denoted as kjao . Then, all the results are summarized in 

Tab. 4: for each case and different model,max, min and

mean value of positioning error kjap and orientation error

kjao obtained for k = 1,…,9 and j = 1, 2, 3 are shown for 

a given value of α. 
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Table 4 Results of co-simulation in terms of end-effector accuracy: min, max, standard deviation and mean values for the error recorded on the 

tested 24 points 

Case max positioning 

error [mm] 

min positioning 

error [mm] 

mean positioning 

error [mm] 

max orientation 

error [rad] 

min orientation 

error [rad] 

mean positioning 

error [rad] 

A ([Model 1]) 1.24 0.94 1.03 4.5e-4 2.2e-4 3.1e-4 

A ([Model 2]) 1.23 0.96 1.05 4.5e-4 2.0e-4 3.5e-4 

B ([Model 3]) 1.12 0.91 0.99 4.0e-4 1.9e-4 2.8e-4 

B ([Model 4]) 1.24 0.99 1.01 4.0e-4 2.1e-4 3.0e-4 

C ([Model 5]) 0.63 0.28 0.38 4.3e-4 2.2e-4 2.8e-4 

C ([Model 6]) 0.66 0.29 0.42 4.6e-4 2.6e-4 3.0e-4 

D ([Model 5]) 1.56 1.37 1.44 5.0e-4 3.3e-4 4.4e-4 

Studying the results, we see that the robot Model 5 in 

Case C leads to the minimal positioning error and orien- 

tation error. For robots in Case A and Case B, the mean 

value is very close to the requested value of 1 mm. How- 

ever, there are some points in the workspace for which the 

error is slightly upper this limit (maximal error of 1.24 mm 

in both cases). Actually, the positioning accuracy model ap- 

plied during the optimal design process (Section 5) in order 

to estimate the controller performance was really simplistic. 

It was thus source of inaccuracies of positioning error esti- 

mation during the optimal design process. However, even 

with this simplistic model, the maximal robot positioning er- 

ror (1.24 mm) is only slightly upper the threshold of 1 mm 

while their mean values stay close to 1 mm. Additionally, for 

the measured orientation error obtained from all the cases, 

they are far lower than the requested 0:01 rad.  For the re- 

sults obtained from the models with geometry errors, they 

are similar to the results obtained from the accurate models, 

which proves that the robustness of the accuracy of models 

when applying the visual servoing controllers. 

Then we study the result of [Case D], which is the most 

important. For the Gough-Stewart platform optimized for 

IMVS but controlled with the LineBVS, the mean error is 

far bigger than the requested value of 1 mm, and the max- 

imal error even grows up to 1.56 mm.   This result con- 

firms that it is necessary to optimize a robot for a dedi- 

cated controller. In other words, control-based design of 

{robot+controller} helps ensuring the vision-based control 

accuracy performance. 

Another problem which is the most interesting is that the 

discrete three points model we obtained from the optimal de-

sign when using IMVS form a triangle (Triangle 1) which is 

not a regular triangle. Therefore, in order to study why it is 

such a configuration, we create a discrete three points whose 

configuration is a regular triangle (Triangle 2). The coordi- 

nates of the three points (with respect to the moving plat- 

form frame x’O’y’) A1r, A2r , A3r are (0, 0.222) m, (0.192, - 

0.111) m, (-0.192, 0.111) m. The same noise was added on 

the projection of the points in pixel to see the variation of 

the set of image moments m. For Triangle 1 and Triangle 2, 

in terms of the image moments [xg, yg , a], the variations are 

almost the same.  However, in terms of the image moments 

2 4 6             8 10 12 14 16 18 20 

time (s) 

Figure 14 Variation of the image moment α for the Triangle 1

Figure 15  Variation of the image moment α for the Triangle 2

[α, c1, c2], the differences are huge: for Triangle 1, the varia- 

tions of [α, c1 ,c2] are [0.01,0.08,0.08], while the variations of

the image moments [α, c1 ,c2] for Triangle 2 are [1.6,20,400] 

(the results of a are illustrated in Fig. 14 and Fig. 15).  In 

addition, we performed the same co-simulations as we did 

for Model 5 in Case C, but the target is changed to the new 

three discrete points model (Triangle 2) in IMVS. The simu- 

lation results show that the maximal positioning error comes 

to 1.6 mm and maximal orientation error comes to 6.0e-4 rad,

while the corresponding results are 0.63 mm and 4.3e-4 rad 

when observing the three discrete points model Triangle 1. 

The results prove that the configuration of the discrete points

model has an influence on the observation of image moments 
and affects the controller accuracy performance. As a result, 

it is necessary to perform topology optimization on the con- 

figuration of the shape of target observed during the design 

process. 

7 Conclusion

In the work presented above, a novel advanced optimal 

design methodology “control-based design” is performed in 

order to design a Gough-Stewart robot with the best accu- 

racy performance of the pair { robot+controller}.  We 

have 
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proven that the controller performance (accuracy, singular- 

ity) are affected by the robot geometric design parameters. 

Thus, in the design process of robot, it is necessary to find 
the optimized geometric parameters of the robot that will al- 

low the best performance of the pair {robot+controller}. 

Three different classical types of visual servoing con- 

trollers: LegBVS, LineBVS and IMVS were proposed to 

be applied on the Gough-Stewart platform.  Positioning er- 

ror models considering the camera observation error were 

developed based on the study of these three types of con- 

trollers.  In addition, in order to avoid the instability issues, 

the singularities of these controllers were analyzed for pur- 

pose of avoiding the controller singularities. In the next 

step, the design optimization problem for getting the opti- 

mal geometric parameters and the placement of the camera 

for the Gough-Stewart platform has been formulated for each

type of controller.  Then, co-simulations between ADAMS 

and Simulink for the Gough-Stewart platforms optimized for

the three controllers were performed.   The results showed 

that the robots designed for these three visual servoing con- 

trollers had the similar size (robots designed for LegBVS and 

LineBVS share the same size). The robot designed for IMVS 

had a better positioning accuracy compared with the other 

two robots optimized for LegBVS and LineBVS. Especially, 

the co-simulation results show that when one controller is 

applied on a robot designed for another one, the positioning 

error performance was no longer guaranteed, confirming the 

importance of the control-based design approach. 
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