1. Sidhu, M. and D. van der Poorten, The gut microbiome. Aust Fam Physician, 2017. 46(4): p. 206-211.
2. Berg, G., et al., Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020. 8(1): p. 103.
3. Marchesi, J.R. and J. Ravel, The vocabulary of microbiome research: a proposal. Microbiome, 2015. 3(1): p. 31.
4. Ursell, L.K., et al., Defining the human microbiome. Nutrition reviews, 2012. 70 Suppl 1(Suppl 1): p. S38-S44.
5. Sender, R., S. Fuchs, and R. Milo, Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 2016. 164(3): p. 337-40.
6. Tierney, B.T., et al., The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host Microbe, 2019. 26(2): p. 283-295.e8.
7. Huttenhower, C., et al., Structure, function and diversity of the healthy human microbiome. Nature, 2012. 486(7402): p. 207-214.
8. Wang, B., et al., The Human Microbiota in Health and Disease. Engineering, 2017. 3(1): p. 71-82.
9. Gilbert, J.A., et al., Current understanding of the human microbiome. Nature Medicine, 2018. 24(4): p. 392-400.
10. Hehemann, J.H., et al., Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 2010. 464(7290): p. 908-12.
11. Turnbaugh, P.J. and J.I. Gordon, The core gut microbiome, energy balance and obesity. J Physiol, 2009. 587(Pt 17): p. 4153-8.
12. Sonnenburg, E.D., et al., Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016. 529(7585): p. 212-5.
13. McNeil, N.I., The contribution of the large intestine to energy supplies in man. Am J Clin Nutr, 1984. 39(2): p. 338-42.
14. Duncan, S.H., et al., Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol, 2007. 73(4): p. 1073-8.
15. Shafquat, A., et al., Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol, 2014. 22(5): p. 261-6.
16. Johnson, E.L., et al., Sphingolipid production by gut Bacteroidetes regulates glucose homeostasis. bioRxiv, 2019: p. 632877.
17. Quinn, R.A., et al., Chemical Impacts of the Microbiome Across Scales Reveal Novel Conjugated Bile Acids. 2019: p. 654756.
18. Ramirez-Perez, O., et al., The Role of the Gut Microbiota in Bile Acid Metabolism. Ann Hepatol, 2017. 16(Suppl. 1: s3-105.): p. s15-s20.
19. De Vadder, F., et al., Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 2014. 156(1-2): p. 84-96.
20. Sayin, S.I., et al., Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab, 2013. 17(2): p. 225-35.
21. Brestoff, J.R. and D. Artis, Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol, 2013. 14(7): p. 676-84.
22. Kamada, N., et al., Control of pathogens and pathobionts by the gut microbiota. Nat Immunol, 2013. 14(7): p. 685-90.
23. Abreu, M.T., Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Reviews Immunology, 2010. 10: p. 131.
24. Claus, S.P., H. Guillou, and S. Ellero-Simatos, The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ biofilms and microbiomes, 2016. 2: p. 16003-16003.
25. Sousa, T., et al., The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm, 2008. 363(1-2): p. 1-25.
26. Johnson, K.V. and K.R. Foster, Why does the microbiome affect behaviour? Nat Rev Microbiol, 2018. 16(10): p. 647-655.
27. Dinan, T.G. and J.F. Cryan, The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care, 2015. 18(6): p. 552-8.
28. Long-Smith, C., et al., Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020. 60(1): p. 477-502.
29. Hall, A.B., A.C. Tolonen, and R.J. Xavier, Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics, 2017. 18: p. 690.
30. Spor, A., O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol, 2011. 9(4): p. 279-90.
31. Yatsunenko, T., et al., Human gut microbiome viewed across age and geography. Nature, 2012. 486(7402): p. 222-7.
32. Zhang, C., et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. Isme j, 2010. 4(2): p. 232-41.
33. Landberg, R. and K. Hanhineva, Biomarkers of a Healthy Nordic Diet-From Dietary Exposure Biomarkers to Microbiota Signatures in the Metabolome. Nutrients, 2019. 12(1).
34. Clemente, J.C., et al., The impact of the gut microbiota on human health: an integrative view. Cell, 2012. 148(6): p. 1258-1270.
35. Holmes, E., et al., Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol, 2011. 19(7): p. 349-59.
36. Jeffery, I.B., D.B. Lynch, and P.W. O'Toole, Composition and temporal stability of the gut microbiota in older persons. Isme j, 2016. 10(1): p. 170-82.
37. Reimer, R.A., Establishing the role of diet in the microbiota–disease axis. Nature Reviews Gastroenterology & Hepatology, 2019. 16(2): p. 86-87.
38. Deschasaux, M., et al., Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med, 2018. 24(10): p. 1526-1531.
39. Zierer, J., et al., The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics, 2018. 50(6): p. 790-795.
40. Bohan, R., et al., Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. The Journal of Nutritional Biochemistry, 2019. 64: p. 206-217.
41. Wahlström, A., et al., Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 2016. 24(1): p. 41-50.
42. Neumann, S., et al., The Influence of Microbial Metabolites in the Gastrointestinal Microenvironment on Anticancer Immunity, in Understanding Tumour Microenvironments. 2019, IntechOpen.
43. Wikoff, W.R., et al., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(10): p. 3698-3703.
44. Vernocchi, P., F. Del Chierico, and L. Putignani, Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Frontiers in microbiology, 2016. 7: p. 1144-1144.
45. Marcobal, A., et al., A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. Isme j, 2013. 7(10): p. 1933-43.
46. al-Waiz, M., et al., The exogenous origin of trimethylamine in the mouse. Metabolism, 1992. 41(2): p. 135-6.
47. Pekkinen, J., et al., Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice. Nutrition & metabolism, 2014. 11(1): p. 1-1.
48. Hanhineva, K., et al., The Postprandial Plasma Rye Fingerprint Includes Benzoxazinoid-Derived Phenylacetamide Sulfates. The Journal of Nutrition, 2014. 144(7): p. 1016-1022.
49. Pekkinen, J., et al., Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach. Mol Nutr Food Res, 2013. 57(11): p. 1959-68.
50. Tsugawa, H., et al., MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature methods, 2015. 12(6): p. 523-526.
51. Pang, Z., et al., MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites, 2020. 10(5): p. 186.
52. Sankaranarayanan, R., et al., Aspirin metabolites 2,3‑DHBA and 2,5‑DHBA inhibit cancer cell growth: Implications in colorectal cancer prevention. Molecular medicine reports, 2020. 21(1): p. 20-34.
53. Wang, X., et al., Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 2020. 69(12): p. 2131-2142.
54. Visconti, A., et al., Interplay between the human gut microbiome and host metabolism. Nature Communications, 2019. 10(1): p. 4505.
55. Portune, K.J., et al., Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends in Food Science & Technology, 2016. 57: p. 213-232.
56. Whitt, D.D. and R.D. Demoss, Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl Microbiol, 1975. 30(4): p. 609-15.
57. Davila, A.M., et al., Re-print of "Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host". Pharmacol Res, 2013. 69(1): p. 114-26.
58. Diether, N.E. and B.P. Willing, Microbial Fermentation of Dietary Protein: An Important Factor in Diet⁻Microbe⁻Host Interaction. Microorganisms, 2019. 7(1): p. 19.
59. Gao, J., et al., Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. 2018. 8(13).
60. Mardinoglu, A., et al., The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular systems biology, 2015. 11(10): p. 834-834.
61. Bergen, W.G. and G.J.T.J.o.n. Wu, Intestinal nitrogen recycling and utilization in health and disease. 2009. 139(5): p. 821-825.
62. Roager, H.M. and T.R. Licht, Microbial tryptophan catabolites in health and disease. Nature Communications, 2018. 9(1): p. 3294.
63. Gutiérrez-Vázquez, C. and F.J. Quintana, Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity, 2018. 48(1): p. 19-33.
64. Noerman, S., et al., Associations of the serum metabolite profile with a healthy Nordic diet and risk of coronary artery disease. Clin Nutr, 2020.
65. Tuomainen, M., et al., Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes, 2018. 8(1): p. 35.
66. de Mello, V.D., et al., Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep, 2017. 7: p. 46337.
67. Yalçin, A., G. Şarkici, and U.K. Kolaç, PKR inhibitors suppress endoplasmic reticulum stress and subdue glucolipotoxicity-mediated impairment of insulin secretion in pancreatic beta cells. Turkish journal of biology = Turk biyoloji dergisi, 2020. 44(2): p. 93-102.
68. Riggio, O., et al., Peripheral and splanchnic indole and oxindole levels in cirrhotic patients: a study on the pathophysiology of hepatic encephalopathy. Am J Gastroenterol, 2010. 105(6): p. 1374-81.
69. Ström, K., et al., Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and environmental microbiology, 2002. 68(9): p. 4322-4327.
70. Sivsammye, G. and H.V. Sims, Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid. J Clin Microbiol, 1990. 28(8): p. 1851-3.
71. Curtius, H.C., M. Mettler, and L. Ettlinger, Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. J Chromatogr, 1976. 126: p. 569-80.
72. Saito, Y., et al., Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS microbiology ecology, 2018. 94(9): p. fiy125.
73. Ramakrishna, B.S., et al., Estimation of phenolic conjugation by colonic mucosa. J Clin Pathol, 1989. 42(6): p. 620-3.
74. Schepers, E., G. Glorieux, and R. Vanholder, The gut: the forgotten organ in uremia? Blood Purif, 2010. 29(2): p. 130-6.
75. Oliphant, K. and E. Allen-Vercoe, Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome, 2019. 7(1): p. 91.
76. Koistinen, V.M., et al., Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019. 7(1): p. 103-103.
77. Matsumoto, M., et al., Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep, 2012. 2: p. 233.
78. Tofalo, R., S. Cocchi, and G. Suzzi, Polyamines and Gut Microbiota. 2019. 6(16).
79. Saheki, T., et al., Comparison of the urea cycle in conventional and germ-free mice. J Biochem, 1980. 88(5): p. 1563-6.
80. Qi, H., et al., Lactobacillus maintains healthy gut mucosa by producing L-Ornithine. Communications Biology, 2019. 2(1): p. 171.
81. Vissers, S., C. Legrain, and J.M. Wiame, Control of a futile urea cycle by arginine feedback inhibition of ornithine carbamoyltransferase in Agrobacterium tumefaciens and Rhizobia. Eur J Biochem, 1986. 159(3): p. 507-11.
82. Hobley, L., et al., Norspermidine is not a self-produced trigger for biofilm disassembly. Cell, 2014. 156(4): p. 844-854.
83. Heiss, C.N. and L.E. Olofsson, Gut Microbiota-Dependent Modulation of Energy Metabolism. Journal of innate immunity, 2018. 10(3): p. 163-171.
84. Morrison, D.J. and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes, 2016. 7(3): p. 189-200.
85. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15718-23.
86. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A, 2007. 104(3): p. 979-84.
87. Rabot, S., et al., Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. Faseb j, 2010. 24(12): p. 4948-59.
88. Staley, C., et al., Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol, 2017. 101(1): p. 47-64.
89. Thomas, C., et al., TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab, 2009. 10(3): p. 167-77.
90. Baier, V., et al., A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC Type 2 Patients. Frontiers in Physiology, 2019. 10(1192).
91. Mistry, R.H., H.J. Verkade, and U.J. Tietge, Reverse Cholesterol Transport Is Increased in Germ-Free Mice-Brief Report. Arterioscler Thromb Vasc Biol, 2017. 37(3): p. 419-422.
92. Gonzalez, F.J., et al., Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity. J Hepatol, 2015. 62(6): p. 1234-6.
93. Gonzalez, F.J., C. Jiang, and A.D. Patterson, An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 2016. 151(5): p. 845-859.
94. Schooneman, M.G., et al., Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes, 2013. 62(1): p. 1-8.
95. Yan, Z.X., et al., Fecal Microbiota Transplantation in Experimental Ulcerative Colitis Reveals Associated Gut Microbial and Host Metabolic Reprogramming. Appl Environ Microbiol, 2018. 84(14).
96. Wu, W.-K., et al., Identification of TMAO-producer phenotype and host–diet–gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut, 2019. 68(8): p. 1439-1449.
97. Bremer, J., Carnitine--metabolism and functions. Physiol Rev, 1983. 63(4): p. 1420-80.
98. Manach, C., et al., Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr, 2005. 81(1 Suppl): p. 230s-242s.
99. Wang, J., et al., Gut microbial transformation, a potential improving factor in the therapeutic activities of four groups of natural compounds isolated from herbal medicines. Fitoterapia, 2019. 138: p. 104293.
100. Gaya, P., Á. Peirotén, and J.M. Landete, Transformation of plant isoflavones into bioactive isoflavones by lactic acid bacteria and bifidobacteria. Journal of Functional Foods, 2017. 39: p. 198-205.
101. Rawat, S., et al., Recent updates on daidzein against oxidative stress and cancer. EXCLI journal, 2019. 18: p. 950.
102. Crespillo, A., et al., Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity. British journal of pharmacology, 2011. 164(7): p. 1899-1915.
103. Hasyima Omar, M., et al., In vitro catabolism of 3′,4′-dihydroxycinnamic acid by human colonic microbiota. International Journal of Food Sciences and Nutrition, 2020: p. 1-7.
104. Chen, J.R., et al., 3‐(3‐Hydroxyphenyl)‐Propionic Acid (PPA) Suppresses Osteoblastic Cell Senescence to Promote Bone Accretion in Mice. JBMR plus, 2019. 3(9): p. e10201.
105. Rowland, I., et al., Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr, 2018. 57(1): p. 1-24.
106. Santana-Gálvez, J., et al., Anticancer potential of dihydrocaffeic acid: a chlorogenic acid metabolite. CyTA-Journal of Food, 2020. 18(1): p. 245-248.
107. Pekkinen, J., et al., Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice. Nutr Metab (Lond), 2014. 11(1): p. 1.
108. Nguyen, T.L.A., et al., How informative is the mouse for human gut microbiota research? Disease models & mechanisms, 2015. 8(1): p. 1-16.