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ABSTRACT 

The approximate solutions of Schrodinger equation for the Hua plus modified Eckart (HPME) 

potential is obtained via the Formula method. The vibrational partition function and other 

thermodynamic properties were investigated. Using the Hellmann-Feynman theorem, the 

expectation values of r -2, T and p2 and their numerical values are also presented.  Some cases of 

this potential are also studied. The results of our study are consistent with those in literature. 

Keywords: Schrodinger equation; Formula method; Hua plus modified Eckart potential; 

Expectation values; Thermodynamic properties 
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1. Introduction 

For many decades, the Schrodinger equation under various interactions, has been a subject of study 

owing to its applications in physical systems.  A major task in such studies is to obtain exact 

solutions.  As there are many systems which do not have exact solutions, approximate solutions, 

despite their drawbacks, are very essential. The approximate solutions of Schrodinger equation 

with different potentials have been reported [1-6]. One of such potentials is the Hua plus modified 

Eckart (HPME) potential [2, 3]. This potential is given as  
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where qVVVV ,,,,, 3210  are parameters. The HPME potential reduces to Eckart potential when V0 

= V1 = 0 and q = 1, Hua potential for V0 = V2 = V3 = 0, and Poschl-Teller potential if V0 = V1=V3 

= 0 and q = -1. It is seen that the HPME potential incorporates Eckart potential, Hua potential and 

Poschl-Teller potential as special cases. Interesting reports on the special cases are also known [7-

10], and clearly highlights their applications in various areas of physics [11-13]. Consequently, 

one can describe the HPME potential as an important realistic model in physics.  Some authors 

have investigated this potential using different methods under Dirac, Schrodinger and Klein-

Gordon equations [2,3, 14-15]. 

Recently, many researchers have studied thermodynamic properties [16-26] and expectation 

values [27-30] for different systems.  

The objectives of this study are as follows: First, to solve the radial Schrodinger equation for the 

HPME potential via the formula approach [31]. Secondly, we study the thermodynamic properties 

of the HPME potential. Then, finally we obtain the expectation values of the HPME potential using 

the Hellmann-Feynman theorem [32, 33]. This has not been reported in previous studies. 

     We prepare the work as follows: Section 2 contains a brief review of Formular method. The 

energy levels and eigenfunction are calculated in sec. 3. Sec. 4 gives the partition function and 

thermodynamic properties. In sect. 5, we evaluate the expectation values.  Discussion of results 

appears in sec. 6. Finally, conclusion is presented in sec. 7. 

2. Formula Method 

Given the following second order hypergeometric ordinary differential equation of the form [34] 
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where 321 ,,  are constants. A method of solving such equation was proposed by Falaye et al. 

[31]. To derive the energy expression, the following condition is given  
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where, 
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To obtain the wave function in terms of the generalized hypergeometric fucntions, we use 
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where nN  is a normalization constant. 

For the case where 1321 === ccc , Onate et al. [35], put forward a simplified energy equation from 

eq. (3)  
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3.  Schrodinger equation for HPME potential 

The Schrodinger equation in spherical coordinates is given in eq. (7) as [36] 
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,,E  and   are the energy, reduced Planck constant, reduced mass and wave function, 

respectively. If we set ),(
)(

),,( 
nl

r

rR
r =  into eq. (7), the equation reduces to a radial form 

given as 
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where n and l are the radial and orbital angular momentum quantum numbers, respectively. 

If we incorporate eq. (1) into (8), we obtain 
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An exact solution to eq. (9) is not feasible due to 
2

1

r
. Therefore, to solve (9), an approximation 

must be adopted for the centrifugal term [37] 
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Using eq. (10) in (9) and making the transformation 
r

qes
2−= , (9) becomes 
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where 
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Using the procedure outlined in section 2 above, the constants, 1321 === ccc . Thus, we derive 

the constants in (4) as  
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Using the simplified energy expression in eq. (6), the energy expression of the HPME potential is 

given as 
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The corresponding wave function is                                                               
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4. Thermodynamic properties of the HPME potential 

Setting l = 0, the pure vibrational energy of the HPME potential is given as 
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where,                            
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The partition function for the pure vibrational energy is gotten from the following expression 
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where 
B

k and β are the Boltzmann constant and temperature parameter, respectively. T is the 

temperature and  is the upper bound quantum number, realised from 0=
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n
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Using eq. (18), eq. (20) becomes 
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For classical thermodynamics, we set  += n , the partition function becomes 
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Evaluating eq. (23), the partition function becomes 
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Other thermodynamic properties of the HPME are obtained as: 

Vibrational Internal Energy 
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Vibrational Specific Heat Capacity 
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5. Expectation values of the HPME potential 

The expectation values of the HPME potential are obtained using the Hellmann-Feynman theorem 

[32, 33]. The theorem states that the derivative of the energy of a system with respect to a 

parameter, υ, is equal to the expectation value for the Hamiltonian with respect to the same 

parameter. The basic equation governing the Hellmann-Feynman theorem is given by 

nlnl
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The effective Hamiltonian for the HPME potential is 
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By setting q to be l and µ , the expectation values for r -2 and T, respectively are obtained. The 

expectation value p2 is obtained using the formula 
2

2
p

T = .  

( )
( )

( )

( )
( ) 
































++













 +++++






 +












++







+++






 +


+

++
=−






3

2

11
1

1
1

2

1
1

4

3
2

2

1
1

2

1
11

2

8

222

22

32

2

2

nnq
l

qn

l

nnq

n
l

qn

l

nqn

qnq

qn
r


    (32) 

( )
( )

( )
( )

( ) ( ) ( )

)33(

12
2

1

2

322
3

4

9
211614

32
2

112

2

1

31
1

123)1(5

1
124

1

31
2

1
1

2

121

2

2

2
222

22

2

222

3

2























































































++






 +


−







+++






 ++−++++



































++






 +−+








++


+


+

+





 ++++



















++++






 +++















++









++






 +


+++

++

−
=

nn
q

l
llnnnnqnq

nll
nnqn

l

qqnqn

q
nn

l
llqllq

q

l
lll

n

l
qn

l

nnqqnqnq

qnq

qn
T









 



8 

 

( )
( )

( )
( )

( ) ( ) ( )

)34(,

12
2

1

2

322
3

4

9
211614

32
2

112

2

1

31
1

123)1(5

1
124

1

31
2

1
1

2

121

2

2

2

2
222

22

2

222

3

2

2























































































++






 +


−







+++






 ++−++++



































++






 +−+








++


+


+

+





 ++++



















++++






 +++















++









++






 +


+++

++

−
=

nn
q

l
llnnnnqnq

nll
nnqn

l

qqnqn

q
nn

l
llqllq

q

l
lll

n

l
qn

l

nnqqnqnq

qnq

qn
p










where, 

( )

( ) ( ) ( )( )













=

+++−
+++=

=

q

qqqq
lqlq

nq








4

1412
14

2

22

2

2

2





    .                                                                 (35) 

6. Discussion of Results 

Table 1 gives numerical results of the energy of the HPME potential. The energy is observed to 

increase as quantum numbers n and l increase for α = 0.02. For α = 0.04 and α = 0.06, a similar 

trend is observed up to n = 4, for α = 0.04 and n = 3 for α = 0.06, when the energy is observed to 

decrease as n and l increase. In Tables 2 and 3, the energies of the Hua and modified Eckart 

potentials are observed to respectively increase as n and l increase. Table 4 gives the numerical 

results of the energy of the HPME potential for the exact case (l = 0). The results are seen to be in 

agreement with results presented in the literature [3]. The slight variation can be attributed to the 

approximation used in this study for the centrifugal term. This is a validation of the accuracy of 

our result. In table 5, the expectation values of r -2, T and p2. 2−r  is observed to increase with 

increasing values of n and l. On the other hand T and 2
p are observed to decrease as n and l 

increase. 
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Table 1 

 Energy eigenvalues of the HPME potential with V0 =0 .2; V1 =0 .3; V2 =0 .4; V3 =0 .5; q =0.6; 

µ=ℏ=1. 

n l α=0.02 α=0.04 α=0.06 
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1 
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-3.619049188                

-3.605661530                

-3.594410214                

-3.594158232                

-3.585197952                

-3.584995216                

-3.584593530                

-3.577934194                

-3.577778544                

-3.577470824                

-3.577018158                

-3.572534554                

-3.572423976                

-3.572206208                

-3.571887984                

-3.571479334 

-3.612007524                

-3.589503802                

-3.574976406                

-3.574452926                

-3.567749014                

-3.567570370                

-3.567262546                

-3.567232644                

-3.567371746                

-3.567694314                

-3.568287244                

-3.572912462           

-3.573345600                

-3.574251670                

-3.575708680                

-3.577829734 

-3.605479238                

-3.577840660                

-3.567002288                

-3.566810462                

-3.570970628                

-3.571806502                

-3.573682348                

-3.588114770                

-3.589869772                

-3.593553398                

-3.599497586                

-3.617090056                

-3.619674292                

-3.624990422                

-3.633320882                

-3.645059054 

 

                          Table 2 

                       Energy eigenvalues of the Hua Potential with V1 = 0.3, q = 0.6, µ=ℏ=1. 
n l α=0.02 a = 0.04 α=0.06 
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-0.7809716160              

-0.5841478244              

-0.4258086732              

-0.4077766632              

-0.2969653902              

-0.2822075860              

-0.2541791478              

-0.1911327284              

-0.1789535734              

-0.1557905398              

-0.1237610570              

-0.1035365656              

-0.0934184652              

-0.0741544756              

-0.0474726272              

-0.0155109256 

-0.6713865654              

-0.3544360644              

-0.1427734612              

-0.1008333914              

0.0030111898                   

0.0322931780                   

0.0811508340                   

0.1052391708                   

0.1258871810                   

0.1603519429                   

0.1994277045                   

0.1773211871                   

0.1918341819                   

0.2159346321                   

0.2428997367                   

0.2672122693 

-0.5706923194              

-0.1837755158              

0.0346777498       

0.0900595578       

0.1631793406       

0.1959006104       

0.2402541104       

0.2385139512       

0.2570112626       

0.2806519423       

0.2966774614       

0.2797772796       

0.2886963321       

0.2979437493       

0.2991872456       

0.2885176998 

             

                     Table 3 

       Energy eigenvalues of the modified Eckart with V2 = 0.4, V3 = 0.5, q = 0.6. 

n l α =0.02 α =0.04 α=0.06 
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0 
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0 

1 
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4 

-5.266622496                

-5.231021126                

-5.198529476                

-5.197749730                

-5.168993044                

-5.168285848                

-5.166877596                

-5.142268178                

-5.141630044                

-5.140359588                

-5.138468368                

-5.118221184                

-5.117648868                

-5.116509728                

-5.114814720                

-5.112580096 

-5.248221248                

-5.183233712                

-5.129781682                

-5.127375336                

-5.086793584                

-5.084888414                

-5.081158460                

-5.053338510                

-5.051890962                

-5.049068068                

-5.045011236                

-5.028604624                

-5.027576624                

-5.025585608                

-5.022758826                

-5.019280634 

-5.230507222                

-5.141885066                

-5.077401056                

-5.073422772                

-5.033904078                

-5.031398536                

-5.026720226                

-5.008824958                

-5.007618236                

-5.005489420                

-5.002982046                

-5.000052112                

-5.000000648                

-5.000141662                

-5.000941248                

-5.003047726 

 

 Table 4 

Energy eigenvalues of the HPME potential with V0 =2.5; V1 =0 .3; V2 =-0 .05; V3 =0 .4; q =0.09;  

µ=0.5; ℏ=1; l=0 

n Present study Hassanabadi et al. [3] 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2.932998240         

2.954999940         

2.975979327         

2.995947646         

3.014915950         

3.032895106         

3.049895796         

3.065928522         

3.081003609         

3.095131210 

3.1024 

3.1152 

3.1270 

3.13792 

3.1478 

3.15695 

3.1651 

3.1724 

3.1788 

3.1843 
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 Table 5 

 Numerical results of the expectation values of the HPME potential with V0 = 0.2,  

              V1 = 0 .3, V2 =0.4; V3 =0 .5, q =0.6, α = 0.01, µ=ℏ=1 

n l 








 −
−

2

2
o
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5 

0 

0 

0 

1 

0 

1 

2 

0 

1 

2 

3 

0 

1 

2 

3 

4 

0.0001659961078             

0.0001667639368             

0.0001675315157             

0.0001675315893             

0.0001682988499             

0.0001682988954             

0.0001682989866             

0.0001690659447             

0.0001690659622             

0.0001690659977             

0.0001690660505             

0.0001698328054             

0.0001698327951       

0.0001698327748             

0.0001698327440             

0.0001698327030 

-0.005517931840          

-0.01660535193            

-0.02779459478            

-0.02796308568            

-0.03908561192            

-0.03925525346            

-0.03959453656            

-0.05047835625            

-0.05064914790            

-0.05099073100            

-0.05150310565            

-0.06197278205            

-0.06214472325            

-0.06248860560            

-0.06300442850            

-0.06369219075 

-0.01103586368            

-0.03321070386            

-0.05558918957            

-0.05592617137            

-0.07817122384            

-0.07851050692            

-0.07918907312            

-0.1009567125              

-0.1012982957              

-0.1019814620              

-0.1030062113              

-0.1239455640              

-0.1242894466              

-0.1249772111              

-0.1260088569              

-0.1273843815 

 

In figs. 1(a-f), the energy of the HPME potential is plotted against various potential parameters for 

various values of n and l = 1. In figs. 1a & b, the energy is observed to decrease as the screening 

parameter, α and deformation parameter, q, increase, respectively. In figs. 1c & d, the energy is 

seen to increase in a monotonic manner as V0 and V1 increase, respectively. In fig.1e, the energy 

decreases as V2 increases, while, in fig. 1f, energy increases as V3 increases. 

In fig. 2a, the vibrational partition function, Z, is observed to increase as the parameter, β, 

increases, i.e., as temperature decreases. The implication of this is that as the temperature drops, 

the probability that the system occupies a given microstate also decreases. In fig. 2b, Z is seen to 

first increase slowly, then sharply as the upper bound vibrational quantum number, λ, increases. In 

figs. 3a & b, respectively, the vibrational internal energy, U, increases sharply as β and λ increase, 

but cuts off at a point for all values of λ and β. In fig. 4a, the vibrational free energy, F, of the 

system is observed to increase as β increases up to about  β = 0.01, then begins to approach to a 

constant value. In fig. 4b, F is observed to decrease as λ increases. In figs. 5a & b, the vibrational 

entropy, S, of the system first increases slowly, then sharply rises as both β and λ respectively 

increase. For the vibrational specific heat capacity, C, as can be seen in figs. 6a & b, there is an 

increase in C with respective increase in β and λ. 
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(a)      (b) 

 

(c)      (d) 

 

(e)      (f) 

Fig. 1. Variation of Energy of the HPME potential with various potential parameters with V0 = 1, V1=2, 

V2=3, V3=4, l=1, q =0.6 and α = 0.01 
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(a)     (b) 

Fig. 2. Variation of vibrational partition function of the HPME potential with β and λ with V0=1, V1=2, 

V2=3, V3=4, l=1, q=0.6 and α=0.2 

 

(a)     (b) 

Fig. 3. Variation of vibrational internal energy of the HPME potential with β and λ with V0 = 1, V1 = 2,  

V2 = 3, V3  = 4, l = 1, q = 0.6 and α = 0.2 
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(a)     (b) 

Fig. 4. Variation of vibrational free energy of the HPME potential with β and λ with V0=1, V1=2, V2=3, 

V3=4, l=1, q =0.6 and α=0.2 

 

 

(a)     (b) 

Fig. 5. Variation of vibrational entropy of the HPME potential with β and λ with V0=1, V1=2, V2=3, V3=4, 

l=1, q=0.6 and α=0.2 
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(a)     (b) 

Fig. 6. Variation of vibrational specific heat capacity of the HPME potential with β and λ with V0=1, 

V1=2, V2 = 3, V3 = 4, l= 1, q =0.6 and α =0.2 

 

6.1 Special cases 

Case 1: Modified Eckart Potential 

If we make V0=V1=0, q=1, the HPME potential reduces to the modified Eckart potential 






















−−

−+
+

−−

−
=

rqe

re
V

rqe

re
VrV









21

21

321

24

2
)( .                     (36) 

Thus, (16) reduces to 
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Case 2: Hua Potential 

If we set V0=V2=V3=0, the HPME potential reduces to the Hua potential 
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Consequently, (16) becomes  
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If we set ( )eh rrbr −=  and using the approximation 
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, the energy in eq. (39) will become exactly the same as eq. (14) in ref. [17]. 

Case 4: Poschl-Teller Potential 

Adjusting V0=V1=V3=0,, q=-1, the HPME potential reduces to the Poschl-Teller potential 
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Hence, (16) reduces to  
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If we set V2= -V1, eq. (41) will be similar to eq. (20) in Ref. [38]. Also, if we set q =1 and l = 0, 

the energy (16) becomes very identical to eq. (32) in ref. [3]. 

7. Conclusions 

In this paper, we solved the Schrodinger equation for the HPME potential via the Formula method. 

In addition, we obtain the partition function and other thermodynamic properties of the HPME 

potential. Furthermore, the expectation values of the HPME potential were determined using the 

powerful Hellmann-Feynman theorem. Numerical values of the energies and the expectation 

values are presented. The results of the study are in good agreement with literature.  

References 

[1] C.P. Onyenegecha, C.A. Onate,O.K. Echendu, A.A. Ibe, H. Hassanabadi, Solutions of 

Schrodinger equation for the modified Mobius square plus Kratzer potential, Eur. Phys. J. Plus 

135(2020)289. 

[2] C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. 

Ugochukwu, S.A. Okolie, I.J. Njoku, Approximate solutions of Schrödinger equation for the Hua 

plus modified Eckart potential with the centrifugal term. Eur. Phys. J. Plus 135 (2020) 571. 



17 

 

[3] H. Hassanabadi, B.H. Yazarloo, A.N. Ikot, N. Salehi, S. Zarrinkamar, Exact analytical versus 

numerical solutions of Schrodinger equation for Hua plus modified Eckart potential, Ind. J Phys. 

87 (2013) 1219. 

[4] R. Rani, S.B. Bhardwaj, F. Chand, Bound state solutions to the Schrödinger equation for some 

diatomic molecules, Pram. J. Phys. 91 (2018) 46.  

[5] O. Bayrak, I. Boztosun, Bound state solutions of the Hulthén potential by using the asymptotic 

iteration method, Phys. Scr. 76 (2007) 92. 

[6] O. Bayrak, M. Karakoc, I. Boztosun, R. Sever, Analytical Solution of the Schrödinger equation 

for Makarov potential with any  L Angular Momentum, Int. J. Theor. Phys. 47 (2008) 3005. 

[7] F. Taskin, G. Kocak, Approximate solutions of Schrodinger equation for Eckart potential with 

centrifugal term, Chin. Phys. B 19 (2010) 090314. 

[8] M. Hamzavi, A.A. Rajabi H. Hassanabadi, The rotation–vibration spectrum of diatomic 

molecules with the Tietz–Hua rotating oscillator and approximation scheme to the centrifugal 

term, Mol. Phys. 110, (2012) 389. 

 

[9] Y. Xu, S.He, C. S. Jia, Approximate analytical solutions of the Dirac equation with the Pöschl–
Teller potential includingthe spin-orbit coupling term, J. Phys. A: Math. Gen.41 (2008) 255302. 

 

[10] G.F. Wei, S.H. Dong, A novel algebraic approach to spin symmetry for Dirac equation with 

scalar and vector second Pöschl-Teller potentials, Eur. Phys. J. A43 (2010) 185. 

[11] M. Eshghi, S. M. Ikhdair, Dirac particle in generalized Pöschl–Teller field including a 

Coulomb-like tensor coupling: super-symmetric solution, Math. Meth. Appl. Sci. 37 (2014) 2829. 

[12] F. cooper, A. Kahare, U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251 

(1995) 267. 

[13] W. Hua, Four-parameter exactly solvable potential for diatomic molecules Phys. Rev. A 24 

(1990) 2524. 

[14] H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, Exact Solution of Klein–Gordon Equation 

for Hua Plus Modified Eckart Potentials, Few-Body Syst. 54 (2013) 2017. 

[15] A.N. Ikot, E. Maghsoodi, A.D. Antia, H. Hassanabadi, S. Zarrinkamar. Approximate 

Solutions of the Dirac Equation for the Hua Plus Modified Eckart Potential. Arab. J Sci. Eng. 40 

(2015) 2063.  

[16] U.S. Okorie, A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, P.O. Amadi, M.J. Sithole, G.J. 

Rampho. Energies Spectra and Thermodynamic Properties of Hyperbolic Pöschl–Teller Potential 

(HPTP) model, Int. J. Thermophys. 41 (2020) 91.  

 

[17] I.J. Njoku, C.P. Onyenegecha, C.J. Okereke, A.I. Opara, U.M. Ukewuihe, F.U. Nwaneho, 

Approximate solutions of Schrodinger equation and thermodynamic properties with Hua potential. 

Res. Phys. 24 (2021) 104208.    

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Eshghi%2C+Mahdi
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ikhdair%2C+Sameer+M
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.2524


18 

 

 

[18] H. Louis, B.I. Ita, N.I. Nzeata, Approximate solution of the Schrodinger equation with 

Manning-Rosen plus Hellmann potential and its thermodynamic properties using the proper 

quantization rule, Eur. Phys. J. Plus 134 (2019) 315. 

 

[19] U.S. Okorie, A.N. Ikot, E.O. Chukwuocha, G.J. Rampho, Thermodynamic properties of 

improved deformed exponential-type potential (IDEP) for some diatomic molecules, Res. Phys. 

17 (2020) 103078.  

 

[20] U.S. Okorie, A.N Ikot, M.C. Onyeaju, E. O. Chukwuocha. Bound state solutions of 

Schrödinger equation with modified Mobius square potential (MMSP) and its thermodynamic 

properties. J. Mol. Mod. 24 (2018) 289.  
 

[21] H. Hassanabadi,  S. Sargolzaeipor, B. H. Yazarloo, Thermodynamic Properties of the Three-

Dimensional Dirac Oscillator with Aharonov–Bohm Field and Magnetic Monopole Potential, 

Few-Body Syst. 56 (2015) 115. 

 

[22] E.S. Eyube, J.B. Yerima, A.D. Ahmed, J-state solutions and thermodynamic properties of the 

Tietz oscillator. Phys. Scr. 96 (2021) 055001 

 

[23] I.B. Okon, O.O. Popoola, E. Omugbe, A.D. Antia, C.N. Isonguyo, E.E. Ituen. Thermodynamic 

properties and bound state solutions of Schrodinger equation with Mobius square plus screened-

Kratzer potential using Nikiforov-Uvarov method, Comp. Theor. Chem. 1196 (2021) 113132.    

 

[24] K.J. Oyewumi, W.A. Yahya, Thermodynamic properties and approximate solutions of the l-

state Pӧschl-Teller-type potential J. Assoc. Arab Univers. Basic Appl. Scien., 21 (2015) 53. 
 

[25] K.J. Oyewumi, W.A. Yahya, Thermodynamic properties and approximate solutions of the l-

state Pӧschl-Teller-type potential J. Assoc. Arab Univers. Basic Appl. Sci. 21 (2015)53. 

 

[26] S. H. Dong, M. Cruz-Irisson, Energy spectrum for a modified Rosen-Morse potential solved 

by proper quantization rule and its thermodynamic properties, J. Math. Chem. 50 (2012) 881. 

 

[27] I. B. Okon, O. Popoola, C. N. Isonguyo, Approximate Solutions of Schrodinger Equation with 

Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method, Adv. High Energy Phys. 

2 (2017)1. 

 

[28] I.B. Okon, A. D. Antia, L.E. Akpabio,  B.U. Archibong, Expectation values of some diatomic 

molecules with Deng-fan potential using hellmann-feynman theorem, J. Appl. Sci. Intl. 10  

(2018) 247. 

 

[29] A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eigensolution, expectation values and 

thermodynamic properties of the screened Kratzer potential, Eur. Phys. J. Plus 134 (2019) 386 

 

[30] O.J. Oluwadare, K.J. Oyewumi, Energy spectra and the expectation values of diatomic 

molecules confined by the shifted Deng-Fan potential, Eur. Phys. J. Plus 133 (2018) 422. 



19 

 

 

[31] B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula method for bound state problems, Few-Body 

Syst. 56 (2014) 63. 

[32] R.P. Feynman, Forces in Molecules, Phys. Rev. 56 (1939) 340.  

[33] H. Hellmann, On the role of the kinetic electron energy in the interatomic forces, Zeit. Phys. 

85 (1933) 180.    

[34] C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation, Int. J. 

Theor. Phys. 48 (2009) 337. 

[35] Onate, C.A., Adebimpe, O., Lukman, A.F., Adama, I.J., Davids, E.O., Dopamu, K.O.: 

Approximate solutions of the Dirac equation with Coulomb-Hulthén-like tensor interaction. Res. 

Phys. 11, 1094 (2018). https://doi.org/10.1016/j.rinp.2018.10.052 

[36] L.D. Landau, E.M. Lifshitz, Quantum Mechanics-Non-Relativistic Theory, (Pergamon: 

Oxford), 1977. 

[37] R.L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential. Phys, 

Rev. A. 143 (1976) 2363. 

[38] A.D. Antia, I.B. Okon, A.O. Akankpo, J. B. Usanga, Non-Relativistic Bound state solutions 

of Modified Quadratic Yukawa plus q-Deformed Eckart Potential, J. App. Math. Phys. 8 (2020) 

660.  

Author contribution statement 

IJN: conceptualization of the manuscript and wrote the manuscript. CJO and CPO: performed the 

calculations and wrote the manuscript. EO and PN: prepared all the figures and took part in the 

investigation. FUN: prepared all the tables and edited the manuscript. All the authors reviewed 

the manuscript. 

 

Additional Information 

Competing Interest 

The authors declare no conflict of interest.  

 

https://www.sciencedirect.com/science/article/pii/S2211379718320345
https://doi.org/10.1016/j.rinp.2018.10.052

