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ABSTRACT

The approximate solutions of Schrodinger equation for the Hua plus modified Eckart (HPME)
potential is obtained via the Formula method. The vibrational partition function and other
thermodynamic properties were investigated. Using the Hellmann-Feynman theorem, the
expectation values of r 2, T and p? and their numerical values are also presented. Some cases of
this potential are also studied. The results of our study are consistent with those in literature.
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1. Introduction

For many decades, the Schrodinger equation under various interactions, has been a subject of study
owing to its applications in physical systems. A major task in such studies is to obtain exact
solutions. As there are many systems which do not have exact solutions, approximate solutions,
despite their drawbacks, are very essential. The approximate solutions of Schrodinger equation
with different potentials have been reported [1-6]. One of such potentials is the Hua plus modified
Eckart (HPME) potential [2, 3]. This potential is given as
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where V,,V,,V,.V,,a, g are parameters. The HPME potential reduces to Eckart potential when Vo

= V;=0and g = 1, Hua potential for Vo= V>= V3= 0, and Poschl-Teller potential if Vo= V;=V;
=0 and g = -1. It is seen that the HPME potential incorporates Eckart potential, Hua potential and
Poschl-Teller potential as special cases. Interesting reports on the special cases are also known [7-
10], and clearly highlights their applications in various areas of physics [11-13]. Consequently,
one can describe the HPME potential as an important realistic model in physics. Some authors
have investigated this potential using different methods under Dirac, Schrodinger and Klein-
Gordon equations [2,3, 14-15].

Recently, many researchers have studied thermodynamic properties [16-26] and expectation
values [27-30] for different systems.

The objectives of this study are as follows: First, to solve the radial Schrodinger equation for the
HPME potential via the formula approach [31]. Secondly, we study the thermodynamic properties
of the HPME potential. Then, finally we obtain the expectation values of the HPME potential using
the Hellmann-Feynman theorem [32, 33]. This has not been reported in previous studies.

We prepare the work as follows: Section 2 contains a brief review of Formular method. The
energy levels and eigenfunction are calculated in sec. 3. Sec. 4 gives the partition function and
thermodynamic properties. In sect. 5, we evaluate the expectation values. Discussion of results
appears in sec. 6. Finally, conclusion is presented in sec. 7.

2. Formula Method

Given the following second order hypergeometric ordinary differential equation of the form [34]

d’y(s) L a6 dy(s) + S5’ + &5+ &
ds® s(l—cys) ds *(1-c,s)
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w(s)=0, 2)

where ¢,&,,&;are constants. A method of solving such equation was proposed by Falaye et al.

[31]. To derive the energy expression, the following condition is given
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To obtain the wave function in terms of the generalized hypergeometric fucntions, we use
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where N, is a normalization constant.

For the case where ¢, =c¢, =c; =1, Onate et al. [35], put forward a simplified energy equation from
eq. (3)
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3. Schrodinger equation for HPME potential

The Schrodinger equation in spherical coordinates is given in eq. (7) as [36]
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E.,h,u and ¥ are the energy, reduced Planck constant, reduced mass and wave function,
. R(r . . .
respectively. If we set ¥ (r,0,¢) = Ll//n 1(6.9) into eq. (7), the equation reduces to a radial form

r
given as

d*R_,(r) [2 1+1
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where n and [ are the radial and orbital angular momentum quantum numbers, respectively.

If we incorporate eq. (1) into (8), we obtain
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An exact solution to eq. (9) is not feasible due to —-. Therefore, to solve (9), an approximation
r

must be adopted for the centrifugal term [37]
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Using eq. (10) in (9) and making the transformation s = qe—2ar , (9) becomes
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Using the procedure outlined in section 2 above, the constants, ¢, =c¢, =c; =1. Thus, we derive
the constants in (4) as

c,=~—C
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Using the simplified energy expression in eq. (6), the energy expression of the HPME potential is
given as
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The corresponding wave function is
R,(s)=N s C(1-5) 2Fl(— nn+ 2(\/— C+ cs)zw/— C +1; s) (17)

4. Thermodynamic properties of the HPME potential

Setting [ = 0, the pure vibrational energy of the HPME potential is given as
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The partition function for the pure vibrational energy is gotten from the following expression
 -SE 1
ZP=e “B=— (20)
pra kBT

where kB and f are the Boltzmann constant and temperature parameter, respectively. T is the

=0.
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E
temperature and A is the upper bound quantum number, realised from Cil 2
n

A=+ o/ 1)
Using eq. (18), eq. (20) becomes
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For classical thermodynamics, we set p =n + o, the partition function becomes
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Evaluating eq. (23), the partition function becomes
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Other thermodynamic properties of the HPME are obtained as:

Vibrational Internal Energy

LAV
op

Vibrational Free Energy

up =

1

Vibrational Entropy

ol Z(p)

S(P)=kin Z(B)—kp op

(23)

(24)

(25)

(26)

27)

(28)



Vibrational Specific Heat Capacity

0’ In Z(f3)
op’
5. Expectation values of the HPME potential

C(p)=kp* (29)

The expectation values of the HPME potential are obtained using the Hellmann-Feynman theorem
[32, 33]. The theorem states that the derivative of the energy of a system with respect to a
parameter, v, is equal to the expectation value for the Hamiltonian with respect to the same
parameter. The basic equation governing the Hellmann-Feynman theorem is given by
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The effective Hamiltonian for the HPME potential is

2

L (8 - 20" 4o~ 207 L4207

e A e A et FATA [t N}
26 42 o 1-ge (1—qe_2"”)2 1= ge= 207

—ge
By setting g to be [ and u, the expectation values for r 2 and T, respectively are obtained. The
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expectation value p? is obtained using the formula <T> = <2—> .
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6. Discussion of Results

Table 1 gives numerical results of the energy of the HPME potential. The energy is observed to
increase as quantum numbers n and [ increase for o = 0.02. For a = 0.04 and a = 0.06, a similar
trend is observed up to n = 4, for a = 0.04 and n = 3 for a = 0.06, when the energy is observed to
decrease as n and [ increase. In Tables 2 and 3, the energies of the Hua and modified Eckart
potentials are observed to respectively increase as n and [ increase. Table 4 gives the numerical
results of the energy of the HPME potential for the exact case (I = 0). The results are seen to be in
agreement with results presented in the literature [3]. The slight variation can be attributed to the
approximation used in this study for the centrifugal term. This is a validation of the accuracy of

our result. In table 5, the expectation values of r 2, T and p°. <r’2> is observed to increase with

increasing values of n and /. On the other hand <T > and < p2> are observed to decrease as n and [

increase.
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Table 1

Energy eigenvalues of the HPME potential with Vy =0 .2; V; =0 .3; V> =0 .4; V3 =0 .5; g =0.6;

p=h=1.

n l a=0.02 a=0.04 a=0.06
0 0 -3.619049188 -3.612007524 -3.605479238
1 0 -3.605661530 -3.589503802 -3.577840660
2 0 -3.594410214 -3.574976406 -3.567002288
1 -3.594158232 -3.574452926 -3.566810462
3 0 -3.585197952 -3.567749014 -3.570970628
1 -3.584995216 -3.567570370 -3.571806502
2 -3.584593530 -3.567262546 -3.573682348
4 0 -3.577934194 -3.567232644 -3.588114770
1 -3.577778544 -3.567371746 -3.589869772
2 -3.577470824 -3.567694314 -3.593553398
3 -3.577018158 -3.568287244 -3.599497586
5 0 -3.572534554 -3.572912462 -3.617090056
1 -3.572423976 -3.573345600 -3.619674292
2 -3.572206208 -3.574251670 -3.624990422
3 -3.571887984 -3.575708680 -3.633320882
4 -3.571479334 -3.577829734 -3.645059054
Table 2
Energy eigenvalues of the Hua Potential with V; = 0.3, ¢ = 0.6, u=h=1.
n l a=0.02 a=0.04 a=0.06
0 0 -0.7809716160  -0.6713865654 -0.5706923194
1 0 -0.5841478244 -0.3544360644 -0.1837755158
2 0 -0.4258086732  -0.1427734612 0.0346777498
1 -0.4077766632  -0.1008333914 0.0900595578
3 0 -0.2969653902 0.0030111898 0.1631793406
1 -0.2822075860  0.0322931780 0.1959006104
2 -0.2541791478  0.0811508340 0.2402541104
4 0 -0.1911327284 0.1052391708 0.2385139512
1 -0.1789535734 0.1258871810 0.2570112626
2 -0.1557905398  0.1603519429 0.2806519423
3 -0.1237610570  0.1994277045 0.2966774614
5 0 -0.1035365656 0.1773211871 0.2797772796
1 -0.0934184652  0.1918341819 0.2886963321
2 -0.0741544756  0.2159346321 0.2979437493
3 -0.0474726272 0.2428997367 0.2991872456
4 -0.0155109256  0.2672122693 0.2885176998
Table 3

Energy eigenvalues of the modified Eckart with V>=0.4, V3=0.5, g = 0.6.

n

l

a=0.02

a =0.04

a=0.06




0 0 -5.266622496 -5.248221248 -5.230507222
1 0 -5.231021126 -5.183233712 -5.141885066
2 0 -5.198529476 -5.129781682 -5.077401056
1 -5.197749730 -5.127375336 -5.073422772
3 0 -5.168993044 -5.086793584 -5.033904078
1 -5.168285848 -5.084888414 -5.031398536
2 -5.166877596 -5.081158460 -5.026720226
4 0 -5.142268178 -5.053338510 -5.008824958
1 -5.141630044 -5.051890962 -5.007618236
2 -5.140359588 -5.049068068 -5.005489420
3 -5.138468368 -5.045011236 -5.002982046
5 0 -5.118221184 -5.028604624 -5.000052112
1 -5.117648868 -5.027576624 -5.000000648
2 -5.116509728 -5.025585608 -5.000141662
3 -5.114814720 -5.022758826 -5.000941248
4 -5.112580096 -5.019280634 -5.003047726

Table 4

Energy eigenvalues of the HPME potential with Vp =2.5; V; =0 .3; V> =-0 .05; V3 =0 4; ¢ =0.09;
u=0.5; h=1; I=0

n Present study Hassanabadi et al. [3]
0 2.932998240 3.1024
1 2.954999940 3.1152
2 2.975979327 3.1270
3 2.995947646 3.13792
4 3.014915950 3.1478
5 3.032895106 3.15695
6 3.049895796 3.1651
7 3.065928522 3.1724
8 3.081003609 3.1788
9 3.095131210 3.1843
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Table 5
Numerical results of the expectation values of the HPME potential with Vy = 0.2,
Vi=0.3,V>=04;V;=0.5¢=0.6,a=0.01, u=h=1

n l <r2>(;l ZJ <T>(eV) <p2>(€V/C)2
0 0 0.0001659961078 -0.005517931840  -0.01103586368
1 0 0.0001667639368 -0.01660535193 -0.03321070386
2 0 0.0001675315157 -0.02779459478 -0.05558918957
1 0.0001675315893 -0.02796308568 -0.05592617137
3 0 0.0001682988499 -0.03908561192 -0.07817122384
1 0.0001682988954 -0.03925525346 -0.07851050692
2 0.0001682989866 -0.03959453656 -0.07918907312
4 0 0.0001690659447 -0.05047835625 -0.1009567125
1 0.0001690659622 -0.05064914790 -0.1012982957
2 0.0001690659977 -0.05099073100 -0.1019814620
3 0.0001690660505 -0.05150310565 -0.1030062113
5 0 0.0001698328054 -0.06197278205 -0.1239455640
1 0.0001698327951 -0.06214472325 -0.1242894466
2 0.0001698327748 -0.06248860560 -0.1249772111
3 0.0001698327440 -0.06300442850 -0.1260088569
4 0.0001698327030 -0.06369219075 -0.1273843815

In figs. 1(a-f), the energy of the HPME potential is plotted against various potential parameters for
various values of n and [ = 1. In figs. 1a & b, the energy is observed to decrease as the screening
parameter, a and deformation parameter, g, increase, respectively. In figs. 1c & d, the energy is
seen to increase in a monotonic manner as Vp and V; increase, respectively. In fig.1e, the energy
decreases as V> increases, while, in fig. 1f, energy increases as V3 increases.

In fig. 2a, the vibrational partition function, Z, is observed to increase as the parameter, £,
increases, i.e., as temperature decreases. The implication of this is that as the temperature drops,
the probability that the system occupies a given microstate also decreases. In fig. 2b, Z is seen to
first increase slowly, then sharply as the upper bound vibrational quantum number, 4, increases. In
figs. 3a & b, respectively, the vibrational internal energy, U, increases sharply as f and 4 increase,
but cuts off at a point for all values of A and f. In fig. 4a, the vibrational free energy, F, of the
system is observed to increase as f increases up to about £ = (.01, then begins to approach to a
constant value. In fig. 4b, F is observed to decrease as 4 increases. In figs. 5a & b, the vibrational
entropy, S, of the system first increases slowly, then sharply rises as both f and 1 respectively
increase. For the vibrational specific heat capacity, C, as can be seen in figs. 6a & b, there is an
increase in C with respective increase in £ and 4.
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Fig. 1. Variation of Energy of the HPME potential with various potential parameters with Vo= 1, V;=2,
V=3, V3=4, I=1, ¢ =0.6 and o = 0.01
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6.1 Special cases
Case 1: Modified Eckart Potential

If we make Vp=V;=0, g=1, the HPME potential reduces to the modified Eckart potential

- 2ar - 2ar
4 1
V(r):V2 L +V3 L . (36)
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Case 2: Hua Potential

If we set Vo=V>=V3=0, the HPME potential reduces to the Hua potential
—2ar 2
_yl e T 38)
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Consequently, (16) becomes
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Case 4: Poschl-Teller Potential

Adjusting Vo=V ;=V3=0, q=-1, the HPME potential reduces to the Poschl-Teller potential

—2ar
Vi =V (—48 J - (40)
1

2 Lo 2ar

Hence, (16) reduces to

2
— v, 1 1 8,UV
22 a2hZ+2+n(n+1)—l(l+1)—(n+2)\/1—4l(l+1)+ a2h§
. o (41)
u HYy
1+2n— [1-41(1 +1
+2n \/ (+ )+ a2h2

If we set V2= -V, eq. (41) will be similar to eq. (20) in Ref. [38]. Also, if we set ¢ =1 and [ =0,
the energy (16) becomes very identical to eq. (32) in ref. [3].

7. Conclusions

In this paper, we solved the Schrodinger equation for the HPME potential via the Formula method.
In addition, we obtain the partition function and other thermodynamic properties of the HPME
potential. Furthermore, the expectation values of the HPME potential were determined using the
powerful Hellmann-Feynman theorem. Numerical values of the energies and the expectation
values are presented. The results of the study are in good agreement with literature.
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