
Preliminary Study of Ai-assisted Diagnosis Using
FDG-PET/CT for Axillary Lymph Node Metastasis in
Patients With Breast Cancer
Zongyao Li 

Hokkaido University
Kazuhiro Kitajima 

Hyogo College of Medicine
Kenji Hirata  (  khirata@med.hokudai.ac.jp )

Department of Diagnostic Imaging, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido
060-8638, Japan. https://orcid.org/0000-0003-0036-8975
Ren Togo 

Hokkaido University
Junki Takenaka 

Hokkaido University
Yasuo Miyoshi 

Hyogo College of Medicine
Kohsuke Kudo 

Hokkaido University
Takahiro Ogawa 

Hokkaido University
Miki Haseyama 

Hokkaido University

Original research

Keywords: breast cancer, axillary lymph node, FDG-PET/CT, AI-assisted diagnosis, deep convolutional
neural network

Posted Date: October 21st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-93286/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-93286/v1
mailto:khirata@med.hokudai.ac.jp
https://orcid.org/0000-0003-0036-8975
https://doi.org/10.21203/rs.3.rs-93286/v1
https://creativecommons.org/licenses/by/4.0/


Version of Record: A version of this preprint was published on January 25th, 2021. See the published
version at https://doi.org/10.1186/s13550-021-00751-4.

https://doi.org/10.1186/s13550-021-00751-4


1 

Original Research Article 

 

Preliminary study of AI-assisted diagnosis using FDG-PET/CT for 

axillary lymph node metastasis in patients with breast cancer 

 

Authors: 

Zongyao Li,1 Kazuhiro Kitajima,2 Kenji Hirata,3 Ren Togo,4 Junki Takenaka,3 Yasuo 

Miyoshi,5 Kohsuke Kudo,3,6 Takahiro Ogawa,7 Miki Haseyama7 

 

Affiliations: 

1Graduate School of Information Science and Technology, Hokkaido University, N-14, W-

9, Kita-ku, Sapporo 060-0814, Japan 

2Department of Radiology, Division of Nuclear Medicine and PET Center, Hyogo College 

of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan 

3Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, 

N-15, W-7, Kita-ku, Sapporo 060-8638, Japan 

4Education and Research Center for Mathematical and Data Science, Hokkaido University, 

N-12, W-7, Kita-ku, Sapporo 060-0812, Japan 

5Department of Breast and Endocrine Surgery, Hyogo College of Medicine, 1-1 

Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan 

6Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido 

University, N-14, W-9, Kita-ku, Sapporo, 060-0814, Japan 



2 

7Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-

ku, Sapporo, 060-0814, Japan 

 

*Corresponding author: Dr. Kenji Hirata, Department of Diagnostic Imaging, Hokkaido 

University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan. 

Tel.: +81-11-706-7779. Email: khirata@med.hokudai.ac.jp 

 1 

  2 



3 

ABSTRACT 3 

Background: To improve the diagnostic accuracy of axillary lymph node (LN) metastasis 4 

in breast cancer patients using FDG-PET/CT, we constructed an artificial intelligence (AI)-5 

assisted diagnosis system that uses deep-learning technologies. 6 

Materials and Methods: Two clinicians and the new AI system retrospectively analyzed 7 

and diagnosed 414 axillae of 407 patients with biopsy-proven breast cancer who had 8 

undergone FDG-PET/CT before a mastectomy or breast-conserving surgery with a sentinel 9 

lymph node (LN) biopsy and/or axillary LN dissection. We designed and trained a deep 3D 10 

convolutional neural network (CNN) as the AI model. The diagnoses from the clinicians 11 

were blended with the diagnoses from the AI model to improve the diagnostic accuracy. 12 

Results: Although the AI model did not outperform the clinicians, the diagnostic accuracies 13 

of the clinicians were considerably improved by collaborating with the AI model: the two 14 

clinicians' sensitivities of 59.8% and 57.4% increased to 68.6% and 64.2%, respectively, 15 

whereas the clinicians' specificities of 99.0% and 99.5% remained unchanged. 16 

Conclusions: It is expected that AI using deep-learning technologies will be useful in 17 

diagnosing axillary LN metastasis using FDG-PET/CT. Even if the diagnostic performance 18 

of AI is not better than that of clinicians, taking AI diagnoses into consideration may 19 

positively impact the overall diagnostic accuracy. 20 

 21 

Keywords: breast cancer, axillary lymph node, FDG-PET/CT, AI-assisted diagnosis, deep 22 

convolutional neural network 23 

 24 
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Background 27 

Breast cancer has been reported as the most prevalent cancer among women in 28 

western countries, and it causes the second greatest number of cancer-related deaths among 29 

females [1]. The treatments and prognoses of breast cancer depend on several factors 30 

including the size and grade of the tumor, the patient's endocrine (hormonal) receptor (ER) 31 

status and human epidermal growth factor receptor 2 (HER2) status, axillary lymph node 32 

(LN) involvement, and metastatic spread. Among these factors, the extent of axillary LN 33 

metastasis is regarded as the most reliable predictor of survival in breast cancer [2]. A 34 

determination of the patient's axillary nodal status before treatment can contribute to 35 

management decisions and is thus significant. 36 

The 'gold standard' for diagnosing axillary LN involvement is a pathological 37 

examination of aspiration cytology, a sentinel LN biopsy (SLNB), and an axillary LN 38 

dissection (ALND); however, these are invasive methods. In contrast, the utility of 39 

noninvasive 18F-fluorodeoxyglucose positron emission tomography/computed tomography 40 

(FDG-PET/CT) for the diagnosis of axillary LN metastasis in patients with breast cancer has 41 

been described by several research groups [3–9], one of which achieved a relatively low 42 

pooled sensitivity value of 60% and a quite high pooled specificity value of 97% [8]. 43 

To improve the accuracy of diagnoses of axillary LN metastasis by clinicians using 44 

FDG-PET/CT, recent artificial intelligence (AI) technologies are worthy of consideration. 45 

Deep learning technologies, which typically use deep convolutional neural networks 46 

(DCNNs), have been widely applied to the field of medical image analysis [10], including 47 

FDG-PET/CT [11]. Although AI models trained with mass data can be competitive with 48 

experienced clinicians in some applications, in most cases, AI cannot outperform clinicians. 49 

This is due in part to the lack of well-annotated data. However, suboptimal AI models trained 50 
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with a limited amount of data may not necessarily be useless. 51 

In this study, we examined the practicability of using deep-learning technologies to 52 

improve the diagnosis of axillary LN metastasis with FDG-PET/CT for breast cancer 53 

patients. We constructed an AI-assisted diagnosis system by developing a DCNN-based 54 

diagnosis method and a collaboration method blending AI and clinicians' diagnoses. The 55 

experimental results confirmed the effectiveness of the proposed AI-assisted diagnosis using 56 

deep-learning technologies. 57 

 58 

Materials and Methods 59 

Patients 60 

The appropriate review board at each institution approved this retrospective study, and the 61 

requirement for patient-informed consent was waived. We collected the data of 410 female 62 

patients with newly diagnosed invasive breast cancer who underwent pretreatment whole-63 

body FDG-PET/CT examinations before their surgery between September 2008 and 64 

September 2019. We excluded three patients with other existing diseases (malignant 65 

lymphoma, leukemia, and sarcoidosis). Seven patients had bilateral breast cancer, and thus 66 

a final total of 414 index breast cancers in 407 patients (28–90 years; mean±SD 59.2±14.0 67 

years) were included in the study. The patient and tumor characteristics are summarized in 68 

Table 1. One hundred twenty-five patients (30.7%) underwent neoadjuvant chemotherapy 69 

(NAC) and/or hormonal therapy before the surgery. For the NAC, anthracycline-containing 70 

regimens, anthracycline followed by taxanes, or taxane-based regimens were administered. 71 

Hormonal therapy was given to the patients with hormone receptor-positive breast cancer, 72 

and the patients with HER2-positive breast cancer were treated with a trastuzumab-based 73 

regimen. 74 



6 

The subtypes of the 414 tumors were luminal A (ER+/HER2−, Ki67 <20%) in 148 75 

tumors (14.3%), luminal B (ER+/HER2−, Ki67 ≥20%) in 120 (35.7%) tumors, luminal-76 

HER2 (ER+/HER2+) in 43 (10.4%) tumors, HER2-positive (non-luminal) in 43 (10.4%) 77 

tumors, and triple-negative in 60 (14.5%) tumors. Regarding the tumor-node-metastasis 78 

(TNM) stage, the tumors of 140 patients (33.8%) were stage I, those of 217 (52.4%) were 79 

stage II, and those of the other 57 (13.8%) were stage III. 80 

Among the 414 axillae, 204 (49.3%) were diagnosed pathologically as having axillary 81 

LN metastasis. The axillary node metastasis was confirmed by the overall assessment of 82 

aspiration cytology, SLNB, and ALND. Histopathologic characteristics were determined 83 

based on the samples obtained by core needle biopsy and surgical resection findings. 84 

 85 

FDG-PET/CT 86 

All FDG-PET/CT examinations were performed by using one of four PET/CT scanners: a 87 

Gemini GXL (Philips Medical Systems, Eindhoven, The Netherlands) (n=283), Gemini TF 88 

(Philips Medical Systems) (n=72), Ingenuity TF (Philips Medical Systems) (n=26), and 89 

Discovery IQ5 (GE Healthcare, Waukesha, WI, USA) (n=26). The clinical parameters are 90 

shown in Table 2. 91 

 92 

Human diagnosis 93 

All FDG-PET/CT images were retrospectively reviewed by one experienced reader (12 94 

years of experience with oncologic FDG-PET/CT; referred to as clinician A hereinafter) and 95 

one reader (2 years of experience with oncologic FDG-PET/CT; referred to as clinician B 96 

hereinafter), both of whom had no knowledge of the other imaging results or clinical and 97 

histopathologic data other than the presence of breast cancer. Because several groups have 98 
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reported that the diagnostic performances of qualitative and quantitative assessments were 99 

not significantly different [9,12,13], we used a qualitative assessment in this study. The 100 

diagnostic certainty of assessing axillary LN metastasis was visually graded as 1 (definitely 101 

absent), 2 (probably absent), 3 (indeterminate), 4 (probably present), and 5 (definitely 102 

present). An LN was graded as 4 or 5 if it showed 18F-FDG uptake greater than that of the 103 

reference background. A non-elevated PET signal or one considered compatible with 104 

physiological lymphatic uptake was rated as grade 1 or 2. 105 

 106 

AI diagnosis 107 

DCNNs, which have been the most popular AI model in recent years, have enabled 108 

tremendous achievements in various medical image analysis tasks [14]. However, the task 109 

in the present study is quite different from the previous tasks handled with DCNNs. In 110 

general-diagnosis tasks of medical images, DCNNs are usually trained to distinguish 111 

abnormality from normality by recognizing one specific type of lesion. In our present 112 

investigation, the objects of interest are patients diagnosed as having breast cancer, which 113 

requires the DCNN model to distinguish between breast cancer and axillary LN metastasis. 114 

DCNN models are faced with a dilemma in such a task since breast cancer and axillary LN 115 

metastasis have similar characteristics in terms of FDG uptake on PET images. In addition, 116 

in CT images, the anatomical structures of breast cancer and axillary LN metastasis are 117 

ambiguous to DCNN models without a human's technical knowledge. It is thus a challenging 118 

task for DCNN models to diagnose axillary LN metastasis with PET/CT images. 119 

To overcome this problem, we designed a deep 3D residual convolutional neural 120 

network (CNN) equipped with an attention mechanism. The residual network is one of the 121 

most significant CNN structures and has been considered to be generally effective [15]. A 122 
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3D CNN can analyze PET/CT images without a deficiency of spatial information, which 123 

occurs with a general 2D CNN. The attention mechanism also enables the network to pay 124 

closer attention to regions that are truly meaningful to diagnoses, i.e., the locations at which 125 

the breast cancer and axillary LN metastases appear [16]. 126 

We constructed the network to perform a three-class classification: (1) no breast 127 

cancer, (2) breast cancer but no axillary LN metastasis, and (3) axillary LN metastasis of 128 

breast cancer. The network receives only the chest regions of the PET/CT images as inputs 129 

rather than the whole-body PET/CT images. The PET image and the CT image are 130 

concatenated as different channels to be fed into the network. One side of each PET/CT 131 

image (left chest or right chest; separated by the central line) is regarded as one training 132 

sample, which eliminates the need for healthy control subjects, since a side with no breast 133 

cancer can be used as a healthy side. In this manner, a total of 814 samples were obtained 134 

from the 407 patients with breast cancer: 400 normal samples, 210 breast cancer samples 135 

with no axillary LN metastasis, and 204 axillary LN metastasis samples. The three-class 136 

classification network was trained with the 814 samples. 137 

Before the network was trained, the samples were normalized for more accurate and 138 

faster processing by the network. The PET images were clipped by using a maximum 139 

standardized uptake value (SUVmax) cutoff of 6, i.e., voxels with an SUV value >6 were 140 

assigned 6, and then normalized to [0, 1]. Similarly, the CT images were clipped by a low 141 

Hounsfield unit (HU) cutoff of −100 and a high HU cutoff of 200 and then normalized to [0, 142 

1]. The cutoff values for the PET images and the CT images were determined by joint 143 

empirical and experimental estimations. 144 

 145 

The AI-assisted diagnoses 146 



9 

To use the AI model as an assistant, we blended the diagnoses from the AI model with the 147 

clinicians' diagnoses. Since the AI model is not as reliable as the clinicians due to the limited 148 

amount of training data, the blending was biased towards the clinicians. Specifically, the 149 

graded clinicians' diagnoses were first converted into diagnostic probabilities of having 150 

axillary LN metastasis according to the diagnostic certainty: grade 1 corresponds to 0%, 151 

grade 2 to 25%, grade 3 to 50%, grade 4 to 75%, and grade 5 to 100%. The diagnostic 152 

probability from the clinicians (which we refer to as  ) was then blended with the 153 

diagnostic probability from the AI model (which we refer to as ) using a confidence 154 

weight 𝛼 =  (,1 − ) as the following equation: 155 

 =  ×  + (1 − ) × . 156 

Finally, the blend diagnostic probability was converted back into the graded diagnosis in the 157 

following manner: probabilities of 0%–20% are regarded as grade 1, 21%–40% as grade 2, 158 

41%–60% as grade 3, 61%–80% as grade 4, and 81%–100% as grade 5. 159 

Based on a generally valid assumption in the field of deep-learning that predictions 160 

with high confidence made by DCNN models tend to be more accurate than those with low 161 

confidence, we did not adopt diagnoses with relatively low confidence from the AI model 162 

for the AI-assisted diagnosis in this study. Here, 'confidence' denotes  (, 1 − ). 163 

To determine an appropriate confidence threshold, we studied the relationship between the 164 

threshold and the ratio of predictions with a confidence value larger than the threshold on 165 

the 414 samples with breast cancers. From Figure 1 illustrating the relationship, it can be 166 

seen that the ratio decreases slowly until the threshold increases to around 0.95, and then the 167 

ratio decreases much faster. We therefore chose 0.95 as the confidence threshold in this 168 

study. 169 

In the AI-assisted diagnosis system, we can quantify how the AI assistance impacts a 170 
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clinician's diagnoses as follows. For diagnoses of grade 1 and grade 5, the AI assistance has 171 

no effect since the confidence weight α is 1. For diagnoses of grade 2 and grade 4, the AI 172 

model can either agree with the clinician and enhance the diagnostic certainty, i.e., modify 173 

the grade to 1 or 5, or query the clinician's diagnosis and modify the grade to 3. For diagnoses 174 

of grade 3, the AI model can help the clinician to make to some extent definite diagnoses 175 

and modify the grade to 2 or 4. Note that these cases are limited to samples selected by the 176 

confidence threshold. The AI diagnoses screened out by the threshold are not taken into 177 

consideration, and thus the clinician's diagnoses are considered the final diagnoses for these 178 

samples. 179 

 180 

Statistical analyses 181 

A five-fold cross-validation was conducted on the 407 patients. For the AI model, a receiver 182 

operating characteristic (ROC) curve and an area under curve (AUC) value of the ROC curve 183 

were calculated for evaluation since the diagnoses from the AI model are continuous 184 

probabilities. However, the diagnoses from the two clinicians are of five grades so that it is 185 

less meaningful to compare the ROC curves between the clinicians and the AI model. To 186 

compare the performances of the AI model and the clinicians and evaluate the performance 187 

of the AI-assisted diagnosis, we used sensitivity, specificity and accuracy as evaluation 188 

metrics. 189 

 190 

Results 191 

The evaluations were performed mainly on the 414 samples of the half-chests with breast 192 

cancers. The performances of the human (clinicians') diagnoses, AI diagnoses and AI-193 

assisted diagnoses are presented as follows. Some supplementary results are also provided 194 
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for further analysis. 195 

 196 

Human diagnoses 197 

In general, LNs graded as 4 and 5 are considered positive, and on the 414 samples, the side-198 

based sensitivity, specificity, and accuracy values of clinician A's reading for diagnosing 199 

axillary LN metastasis were 59.8% (122/204), 99.0% (208/210) and 79.7% (330/414), 200 

respectively. When including LNs of grade 3 as positive, the side-based sensitivity, 201 

specificity and accuracy of clinician A's reading were 74.0% (151/204), 96.7% (203/210) 202 

and 85.5% (354/414), respectively. 203 

For clinician B, on the 414 samples, the side-based sensitivity, specificity, and 204 

accuracy when grade 4 and 5 were considered positive were slightly lower than the results 205 

of clinician A, at 57.4% (117/204), 99.5% (209/210), and 78.7% (326/414), respectively. 206 

The side-based sensitivity, specificity, and accuracy when grades 3, 4, and 5 were considered 207 

positive were 68.6% (140/204), 99.0% (208/210), and 84.1% (348/414), respectively. 208 

 209 

AI diagnosis 210 

For the 414 samples, the side-based AUC of the AI diagnosis for axillary LN metastasis was 211 

0.868. The ROC curve is shown in Figure 2. The maximum Youden's index (J = sensitivity 212 

+ specificity − 1) is marked on the curve. The side-based sensitivity, specificity, and 213 

accuracy values at the maximum Youden's index were 73.5% (150/204), 89.0% (187/204), 214 

and 81.4% (337/414), respectively. 215 

 216 

AI-assisted diagnosis 217 

Table 3 compares the performances of the human diagnoses and AI-assisted diagnoses for 218 
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axillary LN metastasis on the 414 samples. The AI-assisted diagnosis results were obtained 219 

by the aforementioned blending method in which the diagnoses of grades 2, 3, and 4 from 220 

the clinicians may be modified by the AI model. The side-based values of sensitivity, 221 

specificity, and accuracy of the two clinicians with and without AI assistance under different 222 

positive standards are listed in the Table to demonstrate the effect of AI assistance. 223 

As shown in Table 3, when considering grades 4 and 5 as positive, the AI assistance 224 

brought significant improvements in sensitivity and accuracy while keeping the extremely 225 

high specificity value unchanged. The two clinicians' sensitivities were increased by 8.8% 226 

and 6.8% and the accuracies were increased by 4.4% and 3.4%, respectively. These 227 

improvements indicate that the AI assistance helped the clinicians make relatively accurate 228 

diagnoses for the ambiguous samples graded as 3 by the clinicians. When considering only 229 

grade 5 as positive, the diagnoses of the clinicians were also improved considerably by the 230 

AI assistance in sensitivity (increased by 17.6% and 20.6% respectively) and accuracy 231 

(increased by 8.4% and 10.1% respectively). The improvements were gained by enhancing 232 

the diagnostic certainty with the AI assistance. However, when considering grades 3, 4, and 233 

5 as positive, the AI assistance hardly affected the clinicians' performances. This result 234 

implies that the AI model cannot accurately diagnose the positive samples graded as 2 by 235 

the clinicians and cannot recognize more negative samples than the clinicians. As a whole, 236 

according to Table 3, the effects of the AI assistance on the two clinicians were substantially 237 

consistent. 238 

Table 4 and Table 5 elaborate the effect of AI assistance on the diagnoses made by 239 

the two clinicians, i.e., which grades the samples were considered by the clinicians and 240 

reconsidered with AI assistance. Samples graded as 1 and 5 by the clinicians were not 241 

included in the tables since grades of these samples were unaffected. In the tables, a number 242 
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marked by the asterisk '*' denotes diagnoses corrected by the AI assistance including (1) 243 

false-positive and false-negative samples reconsidered as grade 3, and (2) samples of grade 244 

3 reconsidered correctly as grade 2 or grade 4. In contrast, a number marked '**' denotes 245 

mistakenly reconsidered diagnoses including (1) true-positive and true-negative samples 246 

reconsidered as grade 3, and (2) grade 3 samples reconsidered mistakenly as grade 2 or grade 247 

4. It is clear in Tables 4 and 5 that the major contribution of the AI assistance came from 248 

helping the clinicians diagnose the ambiguous grade 3 samples. 249 

 250 

Supplementary results 251 

For a further evaluation the AI diagnoses and the AI-assisted diagnoses, some 252 

supplementary results are provided as follows. First, we observed an effect of the various 253 

PET/CT scanners on the diagnostic accuracy of the AI model. We divided the four PET/CT 254 

scanners used in this study into two groups based on the imaging quality that they provide. 255 

The Gemini GXL scanner (which has imaging quality inferior to the other scanners) 256 

comprised one group, and the other three scanners comprised the other group. The side-257 

based ROC curves of AI diagnosis for the two groups are shown in Figure 3. The AUC 258 

values of the two ROC curves were 0.887 for the Gemini GXL and 0.826 for the other 259 

scanners. Our unexpected finding that the diagnoses obtained with the inferior scanner were 260 

more accurate may be explained by the biased data. Since 283 examinations of the total 407 261 

FDG-PET/CT examinations were performed using the Gemini GXL scanner, the training of 262 

the AI model was biased toward the samples of the dominant scanner so that it 263 

underperformed on the other samples. 264 

Considering the different environments of the two sides of the chest, especially in 265 

PET images, we also evaluated the AI diagnosis on each side. Figure 4 shows the side-based 266 
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ROC curves of which the AUC values were 0.891 (left side) and 0.852 (right side). The 267 

results seemed again unexpected because the performance on the left side (in which the 268 

uptake values in the heart region may produce a disturbance) were expected to be not better 269 

than that on the right side. We do not have a plausible explanation for this result; moreover, 270 

the results of 414 samples were not statistically meaningful enough. 271 

The effect of AI assistance on the diagnostic performance depended on the 272 

performance of AI diagnosis on samples graded as 2, 3, and 4 by the clinicians. The side-273 

based AUCs of the AI diagnoses on samples correctly graded as 2 or 4 by clinician A and 274 

samples graded as 3 by clinician A were 0.923 and 0.903, respectively, which were clearly 275 

better than the side-based AUCs for all 414 samples. These results explained why the AI 276 

assistance improved the diagnostic performance. 277 

Finally, we provide some results of 814 samples including both sides of the 407 278 

patients in Table 6. With the introduction of the 400 negative samples without breast cancer, 279 

the AI assistance showed a further contribution to specificity compared to the results 280 

obtained with 414 samples. 281 

 282 

Discussion 283 

FDG-PET/CT can be a noninvasive means for diagnosing LN metastasis. It imposes less 284 

burden on patients than invasive means such as SLNB and ALND. However, despite the 285 

very high specificities (99.0% and 99.5%) of FDG-PET/CT observed in this study, the 286 

sensitivities of the human diagnosis with FDG-PET/CT for axillary LN metastasis were 287 

quite poor (59.8% and 57.4%). Similar results have been reported by other groups [3–9]. To 288 

improve the sensitivity, we constructed an AI-assisted diagnosis system. In the system, an 289 

AI model was trained to diagnose axillary LN metastasis with PET/CT images. The AI 290 
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model underperformed the two clinicians, whereas with a collaboration method, the AI 291 

model helped the clinicians as an assistant to improve the diagnostic accuracy. Such 292 

assistance may be promising in clinical applications of AI [17]. 293 

Our present findings demonstrated that the proposed AI-assisted diagnosis system 294 

contributed mainly to diagnoses for ambiguous cases graded as 3 by the clinicians. As shown 295 

in Tables 4 and 5, 24/34 and 15/24 samples of grade 3 were diagnosed correctly with the AI 296 

assistance, whereas there were relatively small numbers of incorrect diagnoses at 3/34 and 297 

4/24. For the grade 2 and grade 4 samples, the AI assistance could query the human 298 

diagnoses, but it failed to improve the diagnostic accuracy. 299 

On the other hand, the AI assistance also helped the clinicians enhance the diagnostic 300 

certainty of their diagnoses of grades 2 and 4, which was confirmed by the results, but such 301 

assistance may not truly affect the clinical diagnostic accuracy. For the grade 1 and grade 5 302 

samples, we did not use the AI diagnosis because we observed that doing so reduced the 303 

diagnostic accuracy. In short, our present results indicate that samples that the clinicians 304 

mistakenly diagnosed were also difficult for the AI model — especially the numerous false 305 

negatives. 306 

Nevertheless, there were still some false-negative diagnoses that were made by the 307 

clinicians and queried by the AI model. Figure 5 shows a false-negative sample diagnosed 308 

by clinician A. The clinician gave grade 2, whereas the AI model gave a positive diagnosis. 309 

As a result, the diagnosis was modified to grade 3 by the AI-assisted diagnosis system. The 310 

patient whose case is illustrated in Figure 5 was a 67-year-old woman with a Luminal B 311 

(HER2-negative)-type invasive ductal carcinoma (solid ductal cancer, ER 100%, PR 90%, 312 

HER2 1+, Ki-67 20%, grade 1, T2N1M0, stage IIB) and ipsilateral axillary LN metastasis 313 

diagnosed by aspiration cytology. After neoadjuvant chemotherapy, she received breast-314 
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conserving surgery including an SLNB and ALND. 315 

In light of the limited number of patients used to train the AI model in this study, a 316 

larger contribution of AI assistance may be promising if a greater number of patients is made 317 

available for training AI models. This is also implied by the results on the two scanner groups 318 

shown in Figure 3. The performance of the AI diagnosis was much better for the group 319 

examined with the Gemini GXL compared to the group examined by the Gemini TF, 320 

Ingenuity TF or Discovery IQ5 due to the biased distribution of examination scanners. In 321 

cases of well-distributed examination scanners, we speculate that the performance of the AI 322 

diagnosis on the group of three scanners would not be worse than that for the Gemini GXL 323 

since the former scanners have better imaging quality than the Gemini GXL. 324 

Due to limited performances and some other issues [18], AI cannot replace human 325 

clinicians completely in most clinical diagnoses. However, AI assistance can be useful in 326 

saving clinicians' time and/or improving diagnostic performance [19]. In the present study, 327 

the AI model which underperformed the clinicians showed an ability to diagnose cases that 328 

the clinicians considered indeterminate, with an AUC value of 0.903. This performance was 329 

even better than that on all of the samples, which indicates that the AI model has a different 330 

perspective from clinicians for diagnoses or can perceive some minute details. Such AI 331 

assistance may be desirable despite the difficulty in comprehensively interpreting how AI 332 

models make diagnoses. 333 

Our study has several limitations, including its retrospective design, which may limit 334 

the generalization of the derived conclusions and may have caused statistical errors. 335 

Moreover, although a node-by-node-based analysis is ideal, it was difficult to correlate any 336 

given LN depicted by imaging with the same node in a dissection specimen. Therefore, the 337 

correlation between imaging results and pathological findings based on a side may be more 338 
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reasonable for this type of study. In addition, as mentioned above, it was difficult to interpret 339 

the inference process of the AI model, which may hinder the AI model from gaining more 340 

trust. Although some approaches have been proposed to locate the regions that have the 341 

greatest impacts on AI's decisions [20,21], we observed herein that the localization can 342 

hardly be precise and thus gave poor hints. The best collaboration method between AI and 343 

clinicians merits further consideration and should be validated on a larger dataset. 344 

 345 

Conclusion 346 

Although the AI model trained in this study cannot outperform clinicians, the proposed AI-347 

assisted diagnosis system can improve the diagnostic accuracy of human diagnosis mainly 348 

by assisting in the diagnoses of indeterminate patients. However, for hard false negatives, 349 

the AI model provides poor assistance. Future studies with more sufficient and well-350 

distributed data may be informative and further improve the diagnostic performance. 351 

 352 

Abbreviations 353 

ALND: axillary lymph node dissection 354 

AUC: area under curve 355 

DCNN: deep convolutional neural network 356 

ER: endocrine receptor 357 

FDG-PET/CT: 18F-fluorodeoxyglucose positron emission tomography/computed 358 

tomography 359 

HER2: human epidermal growth factor receptor 2 360 

HU: Hounsfield unit 361 

LN: lymph node 362 



18 

NAC: neoadjuvant chemotherapy 363 

ROC: receiver operating characteristic 364 

SLNB: sentinel lymph node biopsy 365 

SUVmax: maximum standard uptake value 366 

TNM: tumor-node-metastasis 367 

 368 

Ethics approval and consent to participate: The ethics committees of the institutions 369 

from which the patient population was drawn each provide approval for this study. The 370 

requirement for patients' informed consent was waived in light of the retrospective nature 371 

of the study. 372 

 373 

Consent for publication: The requirement for patients' consent for publication was 374 

waived in light of the retrospective nature of the study. 375 

 376 

Availability of data and material: The corresponding author can be contacted for 377 

requests regarding the data and material. 378 

 379 

Competing interests:  The authors declare that they have no competing interests. 380 

 381 

Funding: This study was supported in part by the JSPS KAKENHI under grants 382 

JP17H01744, JP20K19857, and JP20K08015. 383 

 384 

Authors' contributions 385 

ZL was involved in the design of the study, designed and trained the AI model, analyzed the 386 



19 

results, and was a main contributor to the manuscript. K. Kitajima was involved in the design 387 

of the study, collected and analyzed data, and was a main contributor to the manuscript. KH 388 

and RT were involved in the design of the study, helped with the analyses, and critically 389 

contributed to the manuscript. JT contributed to the data analysis. YM, K. Kudo, TO and 390 

MH critically contributed to the manuscript and coordinated the study. All authors read and 391 

approved the final manuscript. 392 

 393 

Acknowledgements 394 

None 395 

 

References 

1. Siegel, RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-

34. doi: 10.3322/caac.21551. 

2. Arriagada R, Le NG, Dunant A, Tubiana M, Contesso G. Twenty‐five years of follow‐up 

in patients with operable breast carcinoma: Correlation between clinicopathologic factors 

and the risk of death in each 5‐year period. Cancer 2006;106:743-750. doi: 

10.1002/cncr.21659. 

3. Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME et al. 

Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast 

cancer patients. Eur J Nucl Med Mol Imaging 2009;36:1543-50. doi: 10.1007/s00259-

009-1145-6. 

4. Riegger C, Koeninger A, Hartung V, Otterbach F, Kimmig R, Forsting M et al. 

Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the 



20 

detection of lymph node metastases in breast cancer patients. Acta Radiologica 

2012;53:1092-1098. doi: 10.1258/ar.2012.110635. 

5. Liang X, Yu J, Wen B, Xie J, Cai Q, Yang Q. MRI and FDG-PET/CT based assessment 

of axillary lymph node metastasis in early breast cancer: A meta-analysis. Clin Radiol 

2017;72:295-301. doi: 10.1016/j.crad.2016.12.001. 

6. Song, Bong-Il, Hae Won Kim, and Kyoung Sook Won. Predictive value of 18 F-FDG 

PET/CT for axillary lymph node metastasis in invasive ductal breast cancer. Ann Surg 

Oncol 2017;24:2174-81. doi: 10.1245/s10434-017-5860-0. 

7. Peare R, Staff RT, Heys SD. The use of FDG-PET in assessing axillary lymph node status 

in breast cancer: A systematic review and meta-analysis of the literature. Breast Cancer 

Res Treat 2010;123:281-290. doi: 10.1007/s10549-010-0771-9. 

8. Robertson IJ, Hand F, Kell MR. FDG-PET/CT in the staging of local/regional metastases 

in breast cancer. The Breast 2011;20:491-4. doi: 10.1016/j.breast.2011.07.002. 

9. Kitajima K, Fukushima K, Miyoshi Y, Katsuura T, Igarashi Y, Kawanaka Y et al. 

Diagnostic and prognostic value of 18 F-FDG PET/CT for axillary lymph node staging 

in patients with breast cancer. Jpn J Radiol 2016;34:220-8. 10.1007/s11604-015-0515-1. 

10. Litjens G, Kooi T, Bejnord BE, Setio AAA, Ciompi F, Ghafoorian M et al. A survey on 

deep learning in medical image analysis. Med Image Anal 2017;4:60-88. doi: 

10.1016/j.media.2017.07.005. 

11. Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W et al. Comparison of machine learning 

methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer 



21 

from 18 F-FDG PET/CT images. EJNMMI Res 2017;7:11. doi: 10.1186/s13550-017-

0260-9. 

12. Wahl RL, Siegel BA, Coleman RE, Gatsonis CG. Prospective multicenter study of 

axillary nodal staging by positron emission tomography in breast cancer: a report of the 

staging breast cancer with PET Study Group. J Clin Oncol 2004;22:277-85. 

13. Ueda S, Tsuda H, Asakawa H, Omata J, Fukatsu K, Kondo N et al. Utility of 18F-fluoro-

deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG 

PET/CT) in combination with ultrasonography for axillary staging in primary breast 

cancer. BMC Cancer 2007;8:165. doi: 10.1186/1471-2407-8-165. 

14. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed 

Eng 2017;19:221-48. doi: 10.1146/annurev-bioeng-071516-044442. 

15. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). doi: 

10.1109/CVPR.2016.90. 

16. Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H. Attention branch network: Learning 

of attention mechanism for visual explanation. 2019 Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. 2019. arXiv: 1812.10025. 

17. Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: 

Focus on clinicians. J Med Internet Res 22.6 (2020): e15154. doi: 10.2196/15154. 

18. Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health 

care. JAMA 321.1 (2019): 31-32. doi: 10.1001/jama.2018.18932 



22 

19. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al. Artificial intelligence in healthcare: 

Past, present and future. Stroke Vasc Neurol  2.4 (2017): 230-243. doi: 10.1136/svn-

2017-000101. 

20. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for 

discriminative localization. 2016 Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition. 2016. arXiv:1512.04150. 

21. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: 

Visual explanations from deep networks via gradient-based localization. Int J Comput 

Vis 2020:128;336-59. doi: 10.1007/s11263-019-01228-7. 

 

Table 1. Patient and tumor characteristics 

 n % 

Total patients 407  

Age mean (range) 59.2 (28–90)  

Tumor location, right/left/bilateral 228/172/7 56.0%/42.3%/1.7% 

NAC, yes/no 125/282 30.7%/69.3% 

Total breast cancers 414  

Type of surgery   

  Breast-conserving surgery 164 39.6% 

  Modified radical mastectomy 250 61.4% 

Histology   

  IDC 373 90.1% 

  Others 

  (Myxoid/ILC/apocrine/metaplastic) 
15/14/11/1 0.9% 

Molecular phenotype   
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Luminal A (ER+/HER2−, Ki67 <20%) 148 35.7% 

Luminal B (ER+/HER2−, Ki67 ≥20%) 120 29.0% 

  Luminal-HER2 (ER+/HER2+) 43 10.4% 

  HER2-positive (non-luminal) 43 10.4% 

  Triple-negative 60 14.5% 

Axillary lymph node metastasis   

  Present 204 49.3% 

  Absent 210 50.7% 

Diagnostic tool of axillary node   

  SLNB 197 47.6% 

  ALND 12 2.9% 

  SLNB and ALND 59 14.3% 

  Aspiration cytology and ALND 60 14.5% 

  Aspiration cytology and SLNB 19 4.6% 

  Aspiration cytology, SLNB, and ALND 67 16.2% 

TNM Stage (Ⅰ/Ⅱ/Ⅲ) 140/217/57 33.8%/52.4%/13.8% 

ALND: axillary lymph node dissection, ER: endocrine receptor, HER: human epidermal growth 

factor receptor, IDC: invasive ductal cancer, ILC: invasive lobular cancer, NAC: neoadjuvant 

chemotherapy, SLNB: sentinel lymph node biopsy, TNM: tumor-node-metastasis. 
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Table 2. Clinical parameters of PET/CT scanners 

Scanner Gemini GXL Gemini TF64 IQ5 Ingenuity TF 

Vendor Philips Philips GE Philips 

CT scanning     

Tube voltage 120 kV 120 kV 120 kV 120 kV 

Effective tube 

current auto-

mA up to 120 

mA 

100 mA 

12~390 mA     

(Smart mA: 

Noise Index 25) 

100 mA        

(variable by 

Dose Right) 

Detector 

configuration 
16×1.5 mm 64×0.625 mm 16×1.25 mm 64×0.625 mm 

Slice thickness, mm 2 2 3.75 2 

Transverse FOV, mm 600 600 700 600 

PET scanning     

FDG injection dose, 

MBq/kg 
4 3 3.7 3.7 

Scan time for each 

bed, mm 
90 90 180 90 

TOF no yes no yes 

PET reconstruction     

Reconstruction LOR-RAMLA 3D-OSEM 

3D-

OSEM+PSF+ 

Q-clear 

3D-OSEM 

Iterations 2 3 4 3 

Subsets n/a 33 12 33 

Smoothing n/a n/a Gaussian n/a 

FWHM of filter, mm   5  

Matrix 144×144 144×144 192×192 144×144 

Pixel size, mm 4×4×4  4×4×4  
3.125×3.125×3.

125 
4×4×4  

FDG: fluorodeoxyglucose, FWHM: full-width at half maximum, LOR-RAMLA: line-of-

response row-action maximum likelihood algorithm, OSEM: ordered-subset expectation 

maximization, PSF: point spread function, TOF: time of flight. 
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Table 3. The side-based sensitivity, specificity, and accuracy values of the human 

(clinicians') diagnoses and AI-assisted diagnoses on the 414 samples 

Graded 

as 

positive 

Clinicians 

with/without AI 

assistance 

Sensitivity Specificity Accuracy 

3, 4, 5 

Clinician A w/o AI 74.0% 96.7% 85.5% 

Clinician A w/ AI 76.5% 94.3% 85.5% 

Clinician B w/o AI 68.6% 99.0% 84.1% 

Clinician B w/ AI 68.6% 99.0% 84.1% 

4, 5 

Clinician A w/o AI 59.8% 99.0% 79.7% 

Clinician A w/ AI 68.6% 99.0% 84.1% 

Clinician B w/o AI 57.4% 99.5% 78.7% 

Clinician B w/ AI 64.2% 99.5% 82.1% 

5 

Clinician A w/o AI 37.3% 100% 69.1% 

Clinician A w/ AI 54.9% 99.5% 77.5% 

Clinician B w/o AI 33.8% 100% 67.4% 

Clinician B w/ AI 54.4% 100% 77.5% 
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Table 4. Details of how the AI assistance affected the diagnoses made by clinician A 

Regraded 

with AI 

assistance 

Grade by clinician A 

Grade 2 

127 

Grade 3 

34 

Grade 4 

48 

Positive 

34 

Negative 

93 

Positive 

29 

Negative 

5 

Positive 

46 

Negative 

2 

Grade 1 19 63     

Grade 2 7 22 3** 3*   

Grade 3 8* 8** 5 2 3**  

Grade 4   21*  7 1 

Grade 5     36 1 
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Table 5. Details of how the AI assistance affected the diagnoses made by clinician B 

Regraded 

with AI 

assistance 

Grade by clinician B 

Grade 2 

12 

Grade 3 

24 

Grade 4 

49 

Positive 

8 

Negative 

4 

Positive 

23 

Negative 

1 

Positive 

48 

Negative 

1 

Grade 1 2 2     

Grade 2 3 2 3**    

Grade 3 3*  5  1** 1* 

Grade 4   15* 1** 5  

Grade 5     42  
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Table 6. The side-based sensitivities, specificities and accuracies of human diagnosis 

and AI-assisted diagnosis on the 814 samples 

Graded 

as 

positive 

Clinicians 

with/without AI 

assistance 

Sensitivity Specificity Accuracy 

3, 4, 5 

Clinician A w/o AI 74.0% 96.9% 91.2% 

Clinician A w/ AI 76.5% 97.0% 91.9% 

4, 5 

Clinician A w/o AI 59.8% 99.2% 89.3% 

Clinician A w/ AI 68.6% 99.3% 91.6% 
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Figure legends 

 

Fig. 1. The relationship between the threshold and the ratio of predictions with a 

confidence value larger than the threshold on the 414 samples with breast cancers. 

 

Fig. 2. The side-based ROC curve of the AI diagnosis for axillary LN metastasis 

on the 414 samples. 

 

Fig. 3. The side-based ROC curves of AI diagnosis on samples of the two scanner 

groups. 

 

Fig. 4. The side-based ROC curves of the AI diagnosis on two sides of the chest. 

 

Fig. 5. A positive sample that clinician A graded as 2 (probably negative) and the AI model 

diagnosed as positive. (a) Maximum intensity projection (MIP) from FDG-PET. (b) Fused 

axial FDG-PET/CT showing moderate FDG uptake in the left breast tumor measuring 23 

mm (arrow). (c) Axial FDG-PET. (d) Axial CT. (e) Fused FDG-PET/CT showing no 

abnormal FDG uptake in a left tiny (4-mm) axillary LN (arrow). 
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Figures

Figure 1

The relationship between the threshold and the ratio of predictions with a con�dence value larger than
the threshold on the 414 samples with breast cancers.



Figure 2

The side-based ROC curve of the AI diagnosis for axillary LN metastasis on the 414 samples.



Figure 3

The side-based ROC curves of AI diagnosis on samples of the two scanner groups.



Figure 4

The side-based ROC curves of the AI diagnosis on two sides of the chest.



Figure 5

A positive sample that clinician A graded as 2 (probably negative) and the AI model diagnosed as
positive. (a) Maximum intensity projection (MIP) from FDG-PET. (b) Fused axial FDG-PET/CT showing
moderate FDG uptake in the left breast tumor measuring 23 mm (arrow). (c) Axial FDG-PET. (d) Axial CT.
(e) Fused FDG-PET/CT showing no abnormal FDG uptake in a left tiny (4-mm) axillary LN (arrow).


