1 Fahy, S., Louie, S. G. & Cohen, M. L. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys. Rev. B 35, 7623-7626 (1987).
2 Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015-4018 (1995).
3 Khaliullin, R. Z., Eshet, H., Kuhne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693-697 (2011).
4 Németh, P. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126-1131 (2020).
5 Nemeth, P. et al. Diamond-graphene composite nanostructures. Nano Lett. 20, 3611-3619 (2020).
6 Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made diamonds. Nature 176, 51-55 (1955).
7 Bundy, F. P. Direct conversion of graphite to diamond in static pressure apparatus. Science 137, 1057-1058 (1962).
8 Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599-600 (2003).
9 Decarli, P. S. & Jamieson, J. C. Formation of diamond by explosive shock. Science 133, 1821-1822 (1961).
10 Dong, J. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 124, 065701 (2020).
11 Zhu, S.-c., Yan, X.-z., Liu, J., Oganov, A. R. & Zhu, Q. A revisited mechanism of the graphite-to-diamond transition at high temperature. Matter 3, 864-878 (2020).
12 Bundy, F. P. & Kasper, J. S. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437-3446 (1967).
13 Britun, V. F., Kurdyumov, A. V. & Petrusha, I. A. Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression. Powder Metall. Met. Ceram. 43, 87-93 (2004).
14 Xie, Y. P., Zhang, X. J. & Liu, Z. P. Graphite to diamond: Origin for kinetics selectivity. J. Am. Chem. Soc. 139, 2545-2548 (2017).
15 Xie, H., Yin, F., Yu, T., Wang, J. T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).
16 Salzmann, C. G., Murray, B. J. & Shephard, J. J. Extent of stacking disorder in diamond. Diam. Relat. Mater. 59, 69-72 (2015).
17 Murri, M. et al. Quantifying hexagonal stacking in diamond. Sci. Rep. 9, 10334 (2019).
18 Alvarez-Murga, M. et al. "Compressed graphite" formed during C60 to diamond transformation as revealed by scattering computed tomography. Phys. Rev. Lett. 109, 025502 (2012).
19 Hu, M. et al. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017).
20 Irifune, T. et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys. Earth Planet. Inter. 143-144, 593-600 (2004).
21 Niwase, K. et al. Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500°C. J. Appl. Phys. 123, 161577 (2018).
22 Yang, X. et al. Diamond-graphite nanocomposite synthesized from multi-walled carbon nanotubes fibers. Carbon 172, 138-143 (2021).
23 Nemeth, P. et al. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447 (2014).
24 Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141-153 (1996).
25 Garvie, L. A. J., Nemeth, P. & Buseck, P. R. Transformation of graphite to diamond via a topotactic mechanism. Am. Mineral. 99, 531-538 (2014).
26 Yue, Y. H. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 582, 370-374 (2020).
27 Dong, X. et al. An ab initio study on the transition paths from graphite to diamond under pressure. J. Phys. Condens. Matter. 25, 145402 (2013).
28 Qian, G.-R. et al. Variable cell nudged elastic band method for studying solid–solid structural phase transitions. Comput. Phys. Commun. 184, 2111-2118 (2013).
29 Glass, C. W., Oganov, A. R. & Hansen, N. Uspex—evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713-720 (2006).
30 Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 184, 1172-1182 (2013).