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Abstract

Background: Combination of fasting with chemotherapy has been drawn an increasing attention because
of the encouraging efficacy. SLC7A11 is frequently over-expressed in most of cancer cells, and elevated
expression of SLC7A11 renders cancer cells more susceptible to glucose starvation owing to SLC7A11-
mediated redox collapse. Selenite is a representative inorganic form of selenium, and is preferentially
accumulated in tumors. This selenophilic peculiarity of cancer cells is closely associated with the
elevated expression of SLC7A11. Given the established the link among glucose deprivation, SLC7A11,
oxidative stress and selenite, we hypothesized that glucose starvation could specifically sensitize cancer
cells to selenite-mediated cytotoxic effect.

Methods: The cytotoxic effect of combining selenite with glucose starvation on cancer cell was assessed
by crystal violet staining and Annexin V/PI staining. Flow cytometry were employed to assess
intracellular ROS levels, labile iron pool and lipid peroxidation. Xenograft models were used to test its in
vivo antitumor activity. Commercial assay kit, LC-MS, RNA interference and western blot were applied to
investigate the mechanism underlying synergistic effect.

Results: It showed that cytotoxic effect of selenite on cancer cells, but not on normal cells, was
significantly enhanced in response to the combination of selenite and glucose limitation. Furthermore, in
vivo therapeutic efficacy of combining selenite with fasting was dramatically improved in xenograft
models of lung and colon cancer. Mechanistically, we found that SLC7A11 expression in cancer cells was
up-regulated by selenite both in vitro and in vivo. The elevated SLC7A11 led to accumulation of cystine,
depletion of NADPH, and inhibition of cystine to cysteine conversion, which in turn boosted selenite-
mediated reactive oxygen species (ROS), followed by enhancement of selenite-mediated cytotoxic effect.

Conclusion: The findings of the present study provide an effective and practical approach for increasing
the therapeutic window of selenite, and imply that combination of selenite with fasting holds promising
potential to be developed a clinically useful regimen for treating certain types of cancer.

Background

Combination of intermittent fasting (IF)/fasting-mimicking diet (FMD) with chemotherapy has been
drawn an increasing attention. Accumulating evidence indicates that this combination treatment can not
only increase cancer therapeutic effect, but also reduce detrimental effects of chemotherapy on normal
cells[1-4]. Therefore, IF/FMD is proposed as a promising strategy to improve therapeutic efficacy and
prevent side effects. This differential effect on cancer and normal cells is attributed to the different
adaptability of cancer and normal cells to the starvation condition[5]. Cancer cells are more vulnerable to
the starvation condition partially due to its aberrant metabolic attributes. For example, the Warburg effect
is a key feature of cancer cell metabolism. Shortage in the availability of glucose by fasting forces a shift
from aerobic glycolysis (Warburg effect) to mitochondrial oxidative phosphorylation in cancer cells to
meet the requirement for cancer cell growth[1, 6]. The increased oxidative phosphorylation results in
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elevated ROS generation, which in turn renders cancer cells susceptible to the chemotherapy[7, 8]. A
recent study by Liu et al[9] revealed the involvement of SLC7A11 in vulnerability of cancer cells to glucose
starvation. SLC7A11, a cystine/glutamate antiporter, is responsible for uptake of extracellular cysteine to
maintain cellular redox balance. SLC7A11 is overexpressed in many types of cancers including lung
cancer and triple-negative breast cancer[10, 11]. Overexpression of SLC7A11 promotes tumor
development via suppressing oxidative stress-induced ferroptosis and non-ferroptotic cell death[12, 13].
On the other hand, overexpression of SLC7A11 leads to increase of cystine uptake, accompanied by
augmentation of glutamate export and NADPH consumption (due to NADPH-dependent reduction of
cystine to cysteine), which forces cancer cells to be highly dependent on pentose phosphate pathway
(PPP)[9]. Such metabolic feature confers the cancer cells with elevated expression of SLC7A11 more
sensitive to glucose deprivation owing to cystine accumulation-mediated NADPH depletion and
impairment of cellular redox homeostasis.

Selenium is an essential micronutrient with multiple biological functions. Among them, the anticancer
activity has been extensively investigated and yield controversial outcomes. It is generally believed that
the anticancer activity of selenium is associated with dose levels, forms and nutrient status of the
body[14]. Selenite, a representative inorganic form of selenium, is preferentially accumulated in
tumors|[15, 16]. Preclinical and clinical studies have shown that selenite alone or in combination with
chemotherapy or radiotherapy is effective against a variety of cancer types[17-21]. Mechanistically,
induction of reactive oxygen species and activation of p53 play critical role in its cytotoxic and
sensitization effect[22]. Recent studies revealed that selenium enrichment in tumor is closely associated
with the elevated expression of SLC7A11, supporting an important role of SLC7A11 in the selenophilic
feature of cancer cells[10, 11].

As discussed above, elevated expression of SLC7A11 renders cancer cell more susceptible to glucose
limitation due to redox imbalance. We hypothesized that SLC7A11 might be up-regulated in response to
selenite challenge, and therefore combining selenite with glucose starvation could achieve synergistic
induction of oxidative stress and cytotoxic effect on cancer cells. This hypothesis was tested in the
present study using both in vitro and in vivo models.

Materials And Methods

Chemicals and reagents

Sodium selenite (Se), methylseleninic acid (MSeA) dihydroethidium (DHE), 2',7-
dichlorodihydrofluorescein diacetate (DCFH-DA), glutamine (GIn), glucose and manganese(lll) tetrakis(1-
methyl-4-pyridyl)porphyrin (MnTMPyP) were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.).
BAY-876, deferoxamine mesylate (DFO) and ferrostatin-1 (Fer-1) were purchased from MedChem Express
(Monmouth Junction, NJ, U.S.A.). Monosodium glutamate (MSG), salicylazosulfapyridine (SAS) and 2-
deoxy-D-glcose (2-DG) were purchased from Aladdin (Shanghai, China). NADPH were purchased from
solarbio (Beijing, China). FerroOrange and Liperfluo were purchased from DOJINDO (Kyushu,
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Japan). Antibodies specific for SLC7A11 (12691), SLC7A11 (98051) and B-actin (3700) were purchased
from Cell Signaling Technology (Beverly, MA, U.S.A.). The secondary antibodies: Horseradish peroxidase-
linked Goat Anti-Rabbit IgG and Horseradish peroxidase-linked Goat Anti-Mouse IgG were obtained from
MBL International Corporation (Beijing, China). SLC7A11 small interfering RNA (siRNA) and nontargeting
siRNA were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture and treatments

HCT116 human colon cancer cells, LLC lung cancer cells, HepG2 liver cancer cells, MCF-7 and MDA-MB-
231 breast cancer cells, HK2 normal kidney cells and MRC-5 normal lung cells were grown in Dulbecco’
modified Eagle’'s medium (DMEM) supplemented with 10% fetal bovine serum and 2 mM L-glutamine
unless otherwise indicated. A549 lung cancer cells, DU145 prostate cancer cells were grown in RPMI
medium supplemented with 10% fetal bovine serum and 2 mM L-glutamine unless otherwise indicated.
For starvation experiments, cells were washed three times with PBS pH 7.2 and then incubated in the
indicated starvation conditions. All cultures were maintained in a humidified tissue culture incubator at
37°C in 5% CO,.

Crystal violet staining

After treatment with agents, the culture medium was aspirated and replaced with 1% glutaraldehyde
solution for 15 min. Then, the cells were stained with a 0.02% crystal violet solution for 30 min. After that,
the solution was replaced by 70% ethanol for solubilization. The OD value at 570 nm was measured by
microplate reader.

Cell death evaluation

Collected cells were incubated with a fluorescein isothiocyanate-labeled annexin V (FITC) and propidium
iodide (PI) for flow cytometry analyses. An Annexin V/PI staining kit (MBL International Corporation) was
used.

Determination of cell ROS

Reactive oxygen species (ROS) measurement using DHE and DCFH-DA staining was performed

as described as follows: cells were trypsinized, washed with PBS, and then resuspended in the medium
without FBS and loaded with 10 yM DHE or 20 yM DCFH-DA for 30 min at 37°C, incubated in the dark.
Afterward, cells were washed with PBS and resuspended in the PBS used for fluorescence analysis by
flow cytometer. Fluorescence increase was estimated utilizing the wavelengths 535 nm (excitation) and
610 nm (emission) for DHE, and wavelengths 485 nm (excitation) and 535 nm (emission) for DCFH-DA.

GSH, NADP+, NADPH and cystetine measurement

Glutathione (GSH) in cell was measured using a commercial kit from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China) following the manufacturer's instruction. The intracellular levels of NADPH and
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total NADP (NADPH+NADP*) were measured according to the protocol of manufacturer from DOJINDO
(Kyushu, Japan). The quantification of cysteine was determined using Cysteine assay kit (Abcam,
Cambridge, United Kingdom).

Cystine measurement by LC-MS

Cells were seeded on 75 cm culture flasks at a density sufficient to ensure approximately 80% confluence
at the time of extraction. Cells were trypsinized, washed twice with ice cold PBS, extracted by adding 0.3
mL of an 50% methanol: 50% water mixture (v/v) at ice temperature and then disrupted by ultrasound.
Cell debris was pelleted by centrifugation at 12000 rpm for 10 min at 4°C and the supernatant was
transferred to a fresh tube. 20 pL cell extracts, 5 pL internal standard substance (canocinal amino acid
mix with 1.23 mM L-Cystine-'3C,-'°N; Cambridge Isotope Laboratories) and 40 pL isopropyl alcohol-
formic acidliv/v=99:1lwere mixtured and vortex oscillated for 2 min, then centrifugated at 12000 rpm for
10 min at 4°C. 10 pL supernatant were derivatized according to the protocol of AccQ Tag kit (Waters,
USA) and then analyzed by LC-MS. Analyte concentrations were quantified by comparison to standard
curves of cystine prepared by the same method. To determine intracellular concentrations, the
concentrations of cell protein in the same volume of cell resuspension were determined.

LC-MS analysis was performed as follows: the LC-MS system consists of a Waters UPLC I-Class system
and Waters XEVO TQ-XS quadrupole rods tandem mass spectrometer equipped with a ESI probe. Mass
data acquisition and remote control of the LC-MS system were done by Masslynx software.
Chromatography was performed with a waters UPLC HSS T3(150 x 2.1 mm, 1.8 ym particle size). The
mobile phase consisted of solvent A (0.1 % formic ,water) and solvent B (acetonitrile and water, v/v=95:5)
with a gradient elution (0-0.5 min, 96-96% A, 0.5-2.5 min, 96-90% A, 2.5-5 min, 90-72% A, 5-6 min, 72-5% A,
6-7 min, 5-5% A, 7- 7.1 min, 5-96% A, 7.1- 9 min, 96-96% A). The flow rate of the mobile phase was 0.5
mL/min. The column temperature was maintained at 50°C. The injection volume was 5 pL. The exactive
was operated in positive ionization mode with an electrospray ionizatio interface. The instrument
parameters were as follows: positive ESI source temperature, 50°C, capillary voltage, 1.5 kV, cone voltage,
20 V, cone gas flow, 150L/Hr, desolvation gas flow, 1000 L/Hr.

LPO, LIP measurement

The total cellular labile iron pool (LIP) and lipid peroxidation (LPO) measurement using FerroOrange and
Liperfluo were performed as described as follows: cells were trypsinized, washed with PBS, and then
resuspended in the PBS and loaded with 1 uM FerroOrange and or 1 uM Liperfluo for 30 min at 37°C,
incubated in the dark. Then the cells were analyzed for fluorescence by flow cytometer. Fluorescence
increase was estimated utilizing the wavelengths 561 nm (excitation) and 593 nm (emission)

for FerroOrange, and the wavelengths 488 nm (excitation) and 535 nm (emission) for Liperfluo.

RNA interference
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The cells were transfected with 40 nM SLC7A11 siRNA or nontargeting siRNA using the INTERFERIn
siRNA transfection reagent according to the manufacturer’s instructions (Polyplus-Transfection, Inc., New
York, NY, USA) and then were used for subsequent experiments.

Western blotting

Western blotting was performed according to the method of Yan et al[23] with minor modifications. The
cell lysate was prepared in ice-cold radioimmunoprecipitation assay (RIPA) buffer. Cell lysates were
resolved by electrophoresis and transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore,
Billerica, MA, USA, IPVH00010). The blot was then probed with primary antibody followed by incubation
with the appropriate horseradish peroxidase-conjugated secondary antibodies. The signal was visualized
by enhanced chemiluminescence (Fisher/Pierce, Rockford, IL, USA, 32106) and recorded on an X-ray film
(Eastman Kodak Company, Rochester, NY, USA, XBT-1).

Xenograft tumor models

The animals were housed under specific pathogen-free conditions at 22 + 2°C with 55 + 10% relative
humidity and with 12 h day/light cycles. All experiments were performed in accordance with the
guidelines established in the Principles of China Agricultural University Institutional Animal Care and Use
Committee. For xenograft experiments, 6-8-week-old male C57 BL/6N mice from Charles River (Beijing,
China) were subcutaneously injected with 2x10° LLC cells resuspended in 100 pL of PBS, 5 week-old
male BALB/c nude mice from Charles River (Beijing, China) were subcutaneously injected into the dorsal
side with 3x10° HCT116 cells resuspended in 100 pL of PBS. When tumors were palpable (5 days after
inoculation), mice were randomly divided into different experimental groups. Mice were kept on the
feeding/fasting protocols performed as described as the reported[1]. In short, fasting cycles were
achieved by complete removal of food while allowing free access to water for 24 h from 6 pm to 6 pm of
the following day when food was re-supplied ad libitum. Selenite dissolved in water at the dose of 2
mg/kg body weight was administered every 48 h at 9 am (time in fasting cycle) via oral gavage. Body
weights were recorded every 2 days, and tumor volumes were measured every 2 days by a digital vernier
caliper according to the following equation: tumor volume (mm?) =(length x width?) x 0.5, where the
length and width were expressed in millimeters.

Statistical analysis

Data were presented as the meantSD. These data were analyzed by ANOVA with appropriate post hoc
comparisons among means. P<0.05 was considered statistically significant.

Results

Glucose limitation sensitizes cancer cells to selenite-mediated cytotoxic effect
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To investigate influences of glucose on the anticancer activity of selenite, HCT116 human colon cancer
cells were cultured in the medium with different levels of glucose and exposed to various concentrations
of selenite (0, 1, 2.5 and 5 uM) for 24 h, and the changes of cell viability were measured by crystal violet
staining. As shown in Fig. 1A, selenite-mediated cytotoxic effect was dramatically enhanced when the
concentration of glucose decreased to 2.5 mM. This enhancement was further validated by measurement
of cell death induction using Annexin V/PI staining, and results were shown in Fig. 1B. Consistent with
the cell viability changes, cell death induction by selenite in HCT116 cells was significantly increased in
the context of glucose deprivation (refers to 2.5 mM). Glucose is primarily taken up by cancer cells via
GLUT1, a member of glucose transporter family and commonly overexpressed in cancer cells. Inhibition
of GLUT1 by its inhibitor is supposed to cause intracellular glucose reduction. We next examined effect of
GLUT1 inhibitor BAY-876 on selenite-induced cytotoxicity of HCT116 cells, and results demonstrated that
an enhanced cytotoxicity was achieved by all the combinations of selenite and BAY-876, further
supporting the sensitization effect of glucose deprivation on selenite-induced cytotoxic effect against
HCT116 colon cancer cells (Fig. 1C). To determine whether the sensitization effect of glucose limitation
on selenite-induced cytotoxicity was specific for HCT116 colon cancer cells, LLC and A549 lung cancer
cells, HepG2 liver cancer cells, MCF-7 and MDA-MB-231 breast cancer cells, and DU145 prostate cancer
cells were tested. As shown in Fig. 1D, the sensitization effect was also found in all additional cancer cell
lines tested, indicating general applicability of the sensitization effect. To determine if the sensitization
effect was restricted to cancer cells, MRC-5 normal lung cells and HK-2 normal kidney cells were tested,
and results showed that the sensitization effect was not observed in these two normal cell lines,
suggesting that glucose starvation specifically potentiated cancer cells but not normal cells to selenite-
mediated cytotoxicity. The anticancer activity of selenium is closely associated with its forms. We asked
if the sensitization effect of glucose limitation on selenite can be also achieved with other forms of
selenium compounds. Influence of glucose limitation on the cytotoxicity of methylseleninic acid (MSeA),
a representative of organic selenium compounds, was assessed, and results showed that glucose
starvation failed to potentiate HCT116 colon cancer cells to MSeA-mediated cytotoxic effect (Fig. 1E),
suggesting that the sensitization effect of glucose deprivation on selenium compounds was form-
dependent.

The sensitization effect of glucose limitation on selenite is attributed to elevated ROS generation

Generation of ROS, mainly superoxide, plays a critical role in selenite-mediated cytotoxic effect on
cancer cells[24-26]. We hypothesized that the enhanced cytotoxic effect by combination of selenite and
glucose deprivation might be associated with boosted ROS generation. The changes of selenite-induced
ROS in response to different concentrations of glucose were measured by flow cytometry following
staining with DHE or DCFH-DA. As shown in Fig. 2A, at concentration of 2.5 mM glucose, selenite-induced
ROS was significant higher than that found at concentrations of 10 and 25 mM glucose, indicating
glucose deprivation promoted ROS generation in response to selenite. To assess the role of elevated ROS
in the enhanced cytotoxicity by combining selenite with glucose deprivation, we evaluated effect of ROS
scavenger MnTMPyP on the enhanced cytotoxicity. As shown in Fig. 2B, the cytotoxicity induced by

combination of selenite and glucose deprivation was nearly abolished in the presence of MNTMPyYP. In
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agreement with the cytotoxicity inhibition, ROS induction by either selenite alone or in combination with
glucose deprivation was completely scavenged by the antioxidant (Fig. 2C). The results clearly suggested
that the boosted ROS generation by combination of selenite and glucose deprivation contributed to the
enhanced cytotoxicity.

Expression of SLC7A11 is up-regulated by selenite, accompanied by cystine accumulation, cysteine
reduction and NADPH depletion in the context of glucose deprivation

As mentioned above, SLC7A11-mediated uptake of extracellular cystine plays important role in regulating
cellular redox homeostasis. We next asked whether the elevated ROS generation by the combination of
selenite and glucose deprivation was associated with disruption of SLC7A11-regulated redox balance. We
first examined effect of selenite on SLC7A11 expression, and results showed that exposure to selenite led
to a concentration-dependent increase of SLC7A11 expression in HCT116 colon cancer cells. The up-
regulation of SLC7A11 by selenite was detected at all three levels of glucose, but stronger increase of
SLC7A11 by selenite was found at concentration of 2.5 mM glucose (Fig. 3A). In agreement with the
increased SLC7A11 expression, intracellular level of cystine was significantly elevated at all three
concentrations of glucose in response to selenite exposure (Fig. 3B). Accordingly, intracellular level of
cysteine was increased at concentrations of 25 and 10 mM glucose. In contrast, a dramatic reduction of
intracellular level of cysteine was induced by selenite in the context of glucose deprivation (Fig. 3C),
indicating the conversion of cystine to cysteine was inhibited under such condition. The conversion of
cystine to cysteine is a NADPH-dependent reaction, we therefore questioned whether shortage of NADPH
contributed to the accumulation of cystine and reduction of cysteine. As shown in Fig. 3D, glucose
deprivation alone did not cause NADPH depletion, but a significant increased NADP+/NADPH ratio was
detected with selenite exposure in the context of glucose deprivation, suggesting involvement of NADPH
depletion in this redox imbalance. Consistent with the reduction of cysteine, intracellular level of GSH, a
cysteine-based antioxidant, was significantly reduced by selenite under condition of glucose deprivation
(Fig. 3E). Together, these results indicated a well correlation between elevated SLC7A11 expression and
redox collapse in response to selenite exposure in the context of glucose deprivation. In addition, the
elevated expression of SLC7A11 was also observed in LLC and A549 lung cancer cells, HepG2 liver
cancer cells and MDA-MB-231 breast cancer cells (Fig. 3F). However, the up-regulation of SLC7A11 by
selenite was not found in HK-2 normal kidney cells, suggesting that up-regulation of SLC7A11 by selenite
is a specific event for cancer cells, which was consistent with the selective enhancement of selenite-
mediated cytotoxicity of cancer cells. We also analyzed effect of MSeA on SLC7A11 expression, and
results showed that MSeA failed to induce up-regulation of SLC7A11, which was in line with lack of
sensitization effect of glucose deprivation on MSeA.

SLC7A11-mediated cystine accumulation and NADPH depletion contribute to the elevated ROS
generation and enhanced cytotoxicity induction by combination of selenite and glucose deprivation

To critically determine the functional role of selenite-mediated up-regulation of SLC7A11, we evaluated
effect of SLC7A11 inhibition by its chemical inhibitor or knocking-down of SLC7A11 on selenite/glucose
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deprivation-induced cytotoxicity. SAS, a known SLC7A11 inhibitor, was used to inactivate its function.
Under such condition, the changes of cell viability were measured by crystal violet staining. As shown in
Fig. 4A-E, SLC7A11 inhibition by its inhibitor led to nearly abolishment of the cell viability reduction by the
combination. Accordingly, ROS generation and cystine accumulation were blocked, and the dysregulated
NADP+/NADPH ratio and reduced GSH were recovered when SLC7A11 was inhibited by SAS. Similar
results were also observed with another SLC7A11 inhibitor MSG (Fig. 4F-H). Furthermore, the functional
role of SLC7A11 was validated by siRNA approach, and results showed that knocking-down of SLC7A11
mitigated the reduction of cell viability induced by selenite/glucose deprivation (Fig. 41). In addition, we
found that supplementation of NADPH or 2-deoxy-glucose (2-DG, activating a product of pentose
phosphate pathway to generate NADPH from NADP+) offered a significant protection on selenite/glucose
deprivation-induced cytotoxicity (Fig. 4J-K). Taken together, these results indicated that up-regulation of
SLC7A11 by selenite played a pivotal role in the sensitization effect of glucose deprivation on selenite-
induced cytotoxicity of cancer cells, which is attributed to SLC7A11-mediated cystine accumulation,
NADPH depletion, GSH reduction and ROS generation.

Selenite/glucose deprivation-induced cytotoxicity is independent of ferroptosis

Cysteine deprivation is one of common means to induce cell ferroptosis[27-29]. The above data showed
that the cysteine level was dramatically reduced by selenite/glucose deprivation. We assumed that
ferroptosis was involved in cytotoxicity induction by selenite/glucose deprivation. It has been shown that
glutamine metabolism, known as glutaminolysis (conversion of glutamine to alpha-ketoglutarate), is
required for cysteine deprivation-induced ferroptosis[30, 31]. We first tested the effects of glutaminolysis
inhibition by glutamine deprivation from medium on the cytotoxicity induction by selenite/glucose
deprivation. As expected, glutamine deprivation reversed the cytotoxicity of selenite/low-glucose
combination and reduced ROS level (Fig. 5A-B). However, DFO or Fer-1, two ferroptosis inhibitors, failed to
offer such protection (Fig. 5C-D). Furthermore, no significant increase of LPO or LIP level (two biomarkers
for ferroptosis) was detected in response to selenite/glucose deprivation. These results suggested that
ferroptosis was not involved in selenite/glucose deprivation-induced cytotoxic effect (Fig. 5E-F).

The above data demonstrated that glutamine was necessary for the enhanced cytotoxicity induced by
selenite/glucose deprivation. Intracellular glutamate generated from glutamine metabolism, and
glutamine deprivation is supposed to cause reduction of glutamate, which might reduce SLC7A11-
mediated uptake of cystine. We therefore speculated that the protection on the cytotoxicity offered by
glutamine deprivation was attributed to its ability to inhibit cystine-glutamate exchange, which was
similar to the condition of SLC7A11 inhibition by its inhibitor. To test this hypothesis, we measured the
changes of intracellular cystine, GSH levels and NADP+/NADPH ratio in response to glutamine
deprivation. Results showed that accumulated intracellular cystine and increased NADP+/NADPH ratio by
combination of selenite and glucose deprivation were abolished, while GSH level was partially recovered
under glutamine deprivation (Fig. 5G-I), which was consistent with the reduced ROS (Fig. 5B). These
results provided a mechanistic explanation for the protection offered by glutamine deprivation.
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Fasting improves therapeutic efficacy of selenite in vivo

Having found the sensitization effect of glucose deprivation on selenite-induced cytotoxicity of cancer
cells, we next asked whether the enhanced effect could be achieved in vivo. HCT116 and LLC xenograft
models were employed to evaluate the anticancer effect of selenite/fasting described in Materials and
Methods. As shown in Fig. 6A-B, intermittent fasting caused a significant inhibition of tumor growth and
reduction of tumor weight, whereas selenite alone did not. Selenite/fasting combination further
significantly delayed the tumor growth and reduced the tumor weight. Consistent with the in vitro
findings, selenite/fasting combination decreased GSH levels and increased NADP+/NADPH ratio, which
reflected the redox imbalance in selenite/fasting combination-treated tumors (Fig. 6C-D). Moreover,
SLC7A11 expression was significantly up-regulated in response to treatment with selenite alone or in
combination with fasting (Fig. 6E). The combination did not cause decrease of bodyweight in
comparison with fasting alone, indicating no increased toxicity by the combination (data not shown).
These results suggested that the fasting was able to improve efficacy of selenite against colon and lung
cancer in xenograft models, which was associated with up-regulation of SLC7A11 expression and
induction of oxidative stress.

Discussion

Dose-limiting toxicity of selenite is still a major concern for its clinical use even though the selenophilic
feature of cancer cells. Approaches that can potentiate cancer cells to selenite are clearly needed for
promoting selenite as a clinical useful anticancer agent. In the present study, we demonstrated that the
oxidative stress and cytotoxic effect induced by selenite were amplified in the context of glucose
limitation, mechanistically associated with SLC7A11-mediated cystine accumulation, NADPH depletion,
inhibition of cystine to cysteine conversion, and redox collapse. Moreover, this sensitization effect on
cancer cells was not observed on the normal cells. Accordingly, the in vivo efficacy was significantly
improved by the combination of selenite and fasting treatment without increased toxicity. The findings of
the present study provide an effective and practical approach for increasing the therapeutic window of
selenite and promoting the development of selenite as a clinically useful selective anticancer agent.

SLC7A11-mediated uptake of cysine plays an important role in maintaining redox homeostasis[32].
Conversion of cystine to cysteine is a critical step for cystine-mediated antioxidant function[33]. NADPH,
a product of pentose phosphate pathway, is required for the conversion of cystine to cysteine to
synthesize intracellular antioxidant glutathione (GSH)[34, 35]. In the present study, we found that
SLC7A11 expression was up-regulated by selenite in all cancer cell lines tested either in glucose replete or
starvation condition. Up-regulation of SLC7A11 is supposed to promote cystine uptake, which is rapidly
converted to cysteine, leading to elevated GSH levels in the context of glucose replete. Indeed, our data
showed that selenite-induced SLC7A11 resulted in increase of cysteine and GSH under glucose sufficient
condition. This SLC7A11-mediated increase of antioxidant capacity might compromise the oxidative
stress and cytotoxic effect induced by selenite in the context of sufficient glucose. In contrast, under the
condition of glucose limitation, the up-regulation of SLC7A11 by selenite was accompanied by increased
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cystine accumulation, decreased cysteine and GSH, followed by elevated ROS generation and cell death
induction. In other words, glucose deprivation disrupted SLC7A11-cystine-cysteine-GSH-mediated
antioxidant system, which in turn boosted selenite-induced oxidative stress and cytotoxic effect against
cancer. NADPH availability is supposed to be responsible for this paradoxical role of SLC7A11 in
regulating redox balance in different condition of glucose. Glucose is a major source for generating
NADPH, high NADPH consumption due to SLC7A11-mediated increase of cystine uptake may rapidly
cause NADPH depletion under glucose deprivation, which in turn led to disruption of cystine-cysteine-GSH
metabolic axis. It was worth to point out that the sensitization effect of glucose limitation on cancer cells
in response to selenite was not observed in normal lung cells, which was consistent with that the up-
regulation of SLC7A11 by selenite in cancer cells but not found in normal cells, further supporting the role
of SLC7A11 in glucose starvation-mediated sensitization effect on cancer cells. The mechanisms
underlying these differential effect of selenite on SLC7A11 expression between cancer cells and normal
cells need to be further investigated.

Oxidative stress induction by selenite is well established, which is suggested to play a pivotal role in its
cytotoxic effect on cancer cells. It has been shown that oxidative stress induction can sensitize cancer
cells to a variety of anticancer agents and radiotherapy|[8, 36, 37]. Our previous study has shown that
selenite sensitized LNCaP prostate cancer cells to TRIAL-induced apoptosis, which is due to its ability to
generate ROS[38]. A sensitization effect of selenite on refractory prostate cancer cells to radiation is also
associated with the redox status[19]. The induction of oxidative stress by selenite was boosted in the
context of glucose starvation, we therefore speculated that combination of selenite with glucose
deprivation could produce a stronger sensitization effect on cancer cells in response to certain types of
therapeutic treatments. This hypothesis needs to investigate in the follow-up studies.

As mentioned above, the form of selenium is an important factor affecting its anticancer activity. In the
preventive setting, Larry Clark et al[22] demonstrated that supplementation of selenium (Se) in the form
of selenized yeast, which contains multiple forms of selenium compounds, leads to reduction of cancer
risk, especially the cancer of prostate, lung and colon. However, a large-scale human intervention with
selenomethionine (SeMet) supplementation (the selenium and vitamin E cancer prevention trial, SELECT)
in North America failed to achieve an inhibitory effect on prostate carcinogenesis[39]. One possible
reason for these controversial outcomes is an incorrect choice of selenium form for this clinical study in a
context of selenium- adequate condition. This notion is supported by our previous study, in which, MSeA,
but not selenite or SeMet is effective in a xenograft model of prostate cancer[40]. In the present
experimental setting, our data showed that selenite alone was still ineffective, but combining glucose
limitation with selenite produced a significantly enhanced anticancer effect in the two xenograft models.
The sensitization effect was not induced by combining glucose limitation with MSeA. These data support
a context-dependent nature of selenium compound-mediated anticancer effect. The sensitization effect
of glucose limitation on selenite requires SLC7A11-meidated redox collapse. This event was not observed
in response to MSeA, providing possible interpretation for the lack of sensitization effect of glucose
limitation on MSeA.
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Conclusion

In summary, SLC7A11 was up-regulated by selenite exposure both in vitro and in vivo. The elevated
expression of SLC7A11 by selenite resulted in cystine accumulation, NADPH depletion and redox collapse
in the context of glucose starvation. Under such condition, the cytoctoxic effect of selenite on cancer cells
was specifically enhanced. Moreover, the therapeutic efficacy of selenite in vivo was greatly improved in
xenograft models of lung and colon cancer when the treatment was coupled with fasting. The findings of
the present study suggest that combination of selenite with fasting holds promising potential to be
developed as an effective treatment regimen for certain types of cancer.
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Figure 1

Glucose limitation sensitizes cancer cells to selenite-mediated cytotoxic effect. A-B Cell viability (A) and
cell death (B) of HCT116 cells cultured in the medium containing indicated concentrations of glucose
with or without treatment of selenite for 24 h. C Cell viability of HCT116 cells with or without treatment of
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selenite, BAY-876 or selenite/BAY-876 combination for 24 h. D Cell viability of LLC, A549, HepG2, MCF-7,
MDA-MB-231, DU145, HK2 and MRC-5 cells cultured in the medium containing indicated concentrations
of glucose with or without treatment of selenite for 24 h, 36 hi36 h, 48h, 36 h, 48 h, 48 h and 48 h,
respectively. E Cell viability of HCT116 cells cultured in the medium containing indicated concentrations
of glucose with or without treatment of methylseleninic acid for 24 h. Results are representative of three
biologically independent experiments. Data are expressed as meantSD, * p<0.05, ** p<0.01. Se: selenite,
MSeA: methylseleninic acid.
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Figure 2

The sensitization effect of glucose limitation on selenite is attributed to elevated ROS generation. A The
intracellular ROS level staining with DHE ( for 02+-) or DCFH-DA (for H202) of HCT116 cells cultured in
the medium containing indicated concentrations of glucose with or without treatment of selenite for 22 h.
B Cell viability of HCT116 cells cultured in the medium containing 25 or 2.5 mM glucose with or without
treatment of selenite or MnTMPyP for 24 h. C 02-- levels of HCT116 cells cultured in the medium
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containing 25 or 2.5 mM glucose with or without treatment of selenite or MnTMPyP 22 h. Results are
representative of three biologically independent experiments. Data are expressed as mean+SD, ** p<0.01.
MnTMPyP: manganese (lll) tetrakis (1-methyl-4-pyridyl) porphyrin.
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Expression of SLC7A11 is up-regulated by selenite, accompanied by cystine accumulation, cysteine
reduction and NADPH depletion in the context of glucose deprivation. A SLC7A11 protein levels of

HCT116 treated with or without selenite in different concentrations of medium glucose for 22 h. B-E Cyss
levels (B), Cys levels (C), NADP+/NADPH ratios (D) and GSH levels (E) of HCT116 cells cultured in the
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medium containing indicated concentrations of glucose with or without treatment of selenite for 22 h. F
SLC7A11 protein levels of LLC, A549, MDA-MB-231, HepG2 and HK2 cells treated with or without selenite
in different concentnations of medium glucose for 22 h, 30 h, 30 h, 30 h and 48 h, respectively, SLC7A11
protein levels of HCT116 cells treated with or without MSeA in different concentnations of medium
glucose for 22 h. Results are representative of three biologically independent experiments. Data are
expressed as meanzSD, ** p<0.01. Cyss: cystine, Cys: cysteine, NADP+: oxidized form of nicotinamide-
adenine dinucleotide phosphate, NADPH: reduced form of nicotinamide-adenine dinucleotide phosphate,
GSH: glutathione, Se: selenite, MSeA: methylseleninic acid.
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Figure 4

SLC7A11-mediated cystine accumulation and NADPH depletion contributes to the elevated ROS
generation and enhanced cytotoxicity induction by combination of selenite and glucose deprivation. A-E
Cell viability (A), 02-- levels (B), Cys levels (C), NADP+/NADPH ratios (D) and GSH levels (E) of HCT116
cells cultured in the medium containing 2 .5 mM glucose with or without treatment of selenite or MSG for
24 h (A) and 22 h (B-E). F-H Cell viability (F), 02~ levels (G) and NADP+/NADPH ratios (H) of HCT116
cells cultured in the medium containing 2.5 mM glucose with or without treatment of selenite or SAS for
24 h (F) and 22 h (G, H). | Cell viability and SLC7A11 protein levels of HCT116 cells expressing either
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scrambled siRNA or siRNA against SLC7A11 cultured in the medium containing 2.5 mM glucose with or
without treatment of selenite for 24 h and 22 h, respectively. J-K Cell viability of HCT116 cells cultured in
the medium containing 2.5 mM glucose with or without treatment of selenite or NADPH or 2-DG for 24 h.
Results are representative of three biologically independent experiments. Data are expressed as
mean+SD, ** p<0.01. Se: selenite, SAS: salicylazosulfapyridine, Cyss: cystine, NADP+: oxidized form of
nicotinamide-adenine dinucleotide phosphate, NADPH: reduced form of nicotinamide-adenine
dinucleotide phosphate, GSH: glutathione, MSG: monosodium glutamate, 2-DG: 2-deoxy-D-glucose.

120 3 120 -
— *
. 1007 . g = 1001
=S - - 3
= 50 = 21 . 807
= 2 = =
Z 607 2 g 60
Z 404 & 14 Z 401
= . 2 © = -
< 20+ - g ~ 204
< =
0= = o . 0+
Se (uM) - 2.5 - 25 Se (pM) 25 - 25 Se (uM) - 2.5 : 2.5
Gln (mM) 2 2 0 0 Gln (mM) 2 2 0 0 DFO ( puM) = = 50 50
- - 2.0+
120 3.0 . -
1004 w 25 v <
= = T}J 1.59
< 804 520 2
= = 5104
Z 607 5 1.5+ -
> z
Z 404 s 1.0 =
= - - = T 0.59
“ 204 & 0.5 -
0= 0.0 0.0=
Se (uM) - 2.5 - 2.5 o i ) “ )
) :?0 o) ,‘3 .-.;?6 A ;’ Q;?S ":—) o = ) ,"‘: Vv < a8
Fer-1 ( pM) - . 10 10 o S & el
O < & i<
" n/‘-’ " L
3= 12 ok _ 60+
L —
=) 2 .
= T . -é 109 ; T . = 50
5 - £ 404
2 21 T 84 = 40 *
;: [ =} =
& < 6 = 304
o Z —
N 1 + 4 D 2(=
= = 5 "
c a —
) 71 = 1 g ]
— - — :J)
0= - 0-- - © 0=
Se(uM) - 2.5 - 2.5 Se(uM) - 2.5 - 2.5 Se (pM) - 2.5 o 25
Gln (mM) 2 2 0 0 Gln (mM) 2 2 0 0 Gln (mM) 2 2 0 0
Figure 5

Selenite/glucose deprivation-induced cytotoxicity is independent of ferroptosis. A-B Cell viability (A) and
02-- levels (B) of HCT116 cells cultured in the medium containing 2.5 mM glucose with or without
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treatment of selenite or glutamine deprivation for 24 h (A) and 22 h (B). C-D Cell viability of HCT116 cells
cultured in the medium containing 2.5 mM glucose with or without treatment of selenite or DFO or Fer-1
for 24 h. E-F LPO levels (E) and LIP levels (F) of HCT116 cells cultured in the medium containing 25 or 2.5
mM glucose with or without treatment of selenite for 22 h. Cells cultured in the medium containing 25
mM glucose were treated by 1 mM T-BHP or 200 uM FAS for 30 min before detection. G-I Cyss levels (G),
NADP+/NADPH ratios (H) and GSH level (I) of HCT116 cells cultured in the medium containing 2.5 mM
glucose with or without treatment of selenite or glutamine deprivation for 22 h. Results are representative
of three biologically independent experiments. Data are expressed as meanSD, * p<0.05, ** p<0.01. GIn:
glutamine, DFO: deferoxamine mesylate, Fer-1: ferrostatin-1, LPO: lipid peroxidation, LIP: labile iron poolX
T-BHP: tert-butyl hydroperoxide, FAS: ferrous ammonium sulfate, Cyss: cystine, NADP+: oxidized form of
nicotinamide-adenine dinucleotide phosphate, NADPH: reduced form of nicotinamide-adenine
dinucleotide phosphate, GSH: glutathione.
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Fasting improves therapeutic efficacy of selenite in vivo. A In vivo growth of tumors as measured by
tumor volume in mice inoculated with HCT116 cells or LLC cells, picture and volume of tumors isolated
from mice in different groups. B Weight of tumors isolated from mice in different groups. C-E
Measurement of GSH levels (C), NADP+/NADPH ratios (D) and SLC7A11 protein levels (E) of tumors
isolated from mice in different groups. Data are expressed as mean%SD, * p<0.05, ** p<0.01. Control:
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control group, mice were fed ad libitum and treated with water, Fasting: fasting group, mice experienced
feeding/fasting cycles for 24 hours, respectively, Se: selenite group, mice were fed ad libitum, and treated
with 2 mg/kg body weight of selenite during fasting cycle, Set+Fasting: selenite-hypoglycemia
combination group, mice experienced feeding/fasting cycles for 24 hours, respectively and were treated
with 2 mg/kg body weight of selenite during fasting cycle, n = 5 per group.
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