1. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619-29. doi: 10.1523/jneurosci.0373-15.2015.
2. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev. 2017;97(2):553-622. doi: 10.1152/physrev.00034.2015.
3. Digre KB. More Than Meets the Eye: The Eye and Migraine-What You Need to Know. J Neuroophthalmol. 2018;38(2):237-43. doi: 10.1097/wno.0000000000000660.
4. Kowacs PA, Utiumi MA, Piovesan EJ. The visual system in migraine: from the bench side to the office. Headache. 2015;55 Suppl 1:84-98. doi: 10.1111/head.12514.
5. Harriott AM, Schwedt TJ. Migraine is Associated With Altered Processing of Sensory Stimuli. Current Pain and Headache Reports. 2014;18(11):458. doi: 10.1007/s11916-014-0458-8.
6. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1-211. doi: 10.1177/0333102417738202.
7. de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol. 2014;10(3):144-55. doi: 10.1038/nrneurol.2014.14.
8. Main A, Dowson A, Gross M. Photophobia and phonophobia in migraineurs between attacks. Headache. 1997;37(8):492-5. doi: 10.1046/j.1526-4610.1997.3708492.x.
9. Vingen JV, Pareja JA, Støren O, White LR, Stovner LJ. Phonophobia in migraine. Cephalalgia. 1998;18(5):243-9. doi: 10.1046/j.1468-2982.1998.1805243.x.
10. Vanagaite J, Pareja JA, Støren O, White LR, Sand T, Stovner LJ. Light-induced discomfort and pain in migraine. Cephalalgia. 1997;17(7):733-41. doi: 10.1046/j.1468-2982.1997.1707733.x.
11. Friedman DI, De ver Dye T. Migraine and the environment. Headache. 2009;49(6):941-52. doi: 10.1111/j.1526-4610.2009.01443.x.
12. Demarquay G, Royet JP, Giraud P, Chazot G, Valade D, Ryvlin P. Rating of olfactory judgements in migraine patients. Cephalalgia. 2006;26(9):1123-30. doi: 10.1111/j.1468-2982.2006.01174.x.
13. Schwedt TJ, Krauss MJ, Frey K, Gereau RWt. Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia. 2011;31(1):6-12. doi: 10.1177/0333102410365108.
14. Ashkenazi A, Yang I, Mushtaq A, Oshinsky ML. Is phonophobia associated with cutaneous allodynia in migraine? J Neurol Neurosurg Psychiatry. 2010;81(11):1256-60. doi: 10.1136/jnnp.2009.198481.
15. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. 2011;70(5):838-45. doi: 10.1002/ana.22537.
16. Marciszewski KK, Meylakh N, Di Pietro F, Mills EP, Macefield VG, Macey PM, et al. Changes in Brainstem Pain Modulation Circuitry Function over the Migraine Cycle. J Neurosci. 2018;38(49):10479-88. doi: 10.1523/jneurosci.1088-18.2018.
17. Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Deep in the brain: Changes in subcortical function immediately preceding a migraine attack. Human Brain Mapping. 2018;39(6):2651-63. doi: 10.1002/hbm.24030.
18. Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache. Cephalalgia. 2020;40(5):448-60. doi: 10.1177/0333102420911623.
19. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI time-series revisited. Neuroimage. 1995;2(1):45-53. doi: 10.1006/nimg.1995.1007.
20. Särkkä S, Solin A, Nummenmaa A, Vehtari A, Auranen T, Vanni S, et al. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. Neuroimage. 2012;60(2):1517-27. doi: 10.1016/j.neuroimage.2012.01.067.
21. Macey PM, Macey KE, Kumar R, Harper RM. A method for removal of global effects from fMRI time series. Neuroimage. 2004;22(1):360-6. doi: 10.1016/j.neuroimage.2003.12.042.
22. Mai JK, Paxinos G, Voss T. Atlas of the Human Brain. 3rd ed. Academic Press; 2007.
23. Yan C, Zang Y. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience. 2010;4(13). doi: 10.3389/fnsys.2010.00013.
24. Alshelh Z, Di Pietro F, Youssef AM, Reeves JM, Macey PM, Vickers ER, et al. Chronic Neuropathic Pain: It's about the Rhythm. The Journal of Neuroscience. 2016;36(3):1008-18. doi: 10.1523/jneurosci.2768-15.2016.
25. Di Pietro F, Lee B, Henderson LA. Altered resting activity patterns and connectivity in individuals with complex regional pain syndrome. Human Brain Mapping. 2020;41(13):3781-93. doi: https://doi.org/10.1002/hbm.25087.
26. Wang L, Mruczek REB, Arcaro MJ, Kastner S. Probabilistic Maps of Visual Topography in Human Cortex. Cereb Cortex. 2015;25(10):3911-31. doi: 10.1093/cercor/bhu277.
27. Parri HR, Crunelli V. Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport. 2001;12(18):3897-900. doi: 10.1097/00001756-200112210-00008.
28. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13(2):54-63. doi: 10.1016/j.molmed.2006.12.005.
29. Lorincz ML, Geall F, Bao Y, Crunelli V, Hughes SW. ATP-dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS One. 2009;4(2):e4447. doi: 10.1371/journal.pone.0004447.
30. Cunningham MO, Pervouchine DD, Racca C, Kopell NJ, Davies CH, Jones RS, et al. Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci U S A. 2006;103(14):5597-601. doi: 0600604103 [pii]
10.1073/pnas.0600604103.
31. Crunelli V, Blethyn KL, Cope DW, Hughes SW, Parri HR, Turner JP, et al. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics. Philos Trans R Soc Lond B Biol Sci. 2002;357(1428):1675-93. doi: 10.1098/rstb.2002.1155.
32. Huff T, Mahabadi N, Tadi P: Neuroanatomy, Visual Cortex. (2020). Accessed.
33. Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Géraud G. A PET study of photophobia during spontaneous migraine attacks. Neurology. 2011;76(3):213-8. doi: 10.1212/WNL.0b013e3182074a57.
34. Mueller HG. Assessment of Central Auditory Dysfunction: Foundations and Clinical Correlates. Ear and Hearing. 1987;8(2).
35. Agessi LM, Villa TR, Dias KZ, Carvalho DdS, Pereira LD. Central auditory processing and migraine: a controlled study. The Journal of Headache and Pain. 2014;15(1):72. doi: 10.1186/1129-2377-15-72.
36. Hodkinson DJ, Veggeberg R, Wilcox SL, Scrivani S, Burstein R, Becerra L, et al. Primary Somatosensory Cortices Contain Altered Patterns of Regional Cerebral Blood Flow in the Interictal Phase of Migraine. PLOS ONE. 2015;10(9):e0137971. doi: 10.1371/journal.pone.0137971.
37. DaSilva AFM, Granziera C, Snyder J, Hadjikhani N. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69(21):1990-5. doi: 10.1212/01.wnl.0000291618.32247.2d.
38. Veldhuizen MG, Nachtigal D, Teulings L, Gitelman DR, Small DM. The insular taste cortex contributes to odor quality coding. Front Hum Neurosci. 2010;4. doi: 10.3389/fnhum.2010.00058.
39. Borsook D, Veggeberg R, Erpelding N, Borra R, Linnman C, Burstein R, et al. The Insula: A "Hub of Activity" in Migraine. Neuroscientist. 2016;22(6):632-52. doi: 10.1177/1073858415601369.
40. Stankewitz A, May A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology. 2011;77(5):476-82. doi: 10.1212/WNL.0b013e318227e4a8.
41. Gunaydin S, Soysal A, Atay T, Arpaci B. Motor and Occipital Cortex Excitability in Migraine Patients. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques. 2006;33(1):63-7. doi: 10.1017/S0317167100004716.