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Abstract 

Prediction models are commonly used to estimate risk for cardiovascular diseases; 
however, performance may vary substantially across relevant subgroups of the 
population. Here we investigated the variability of performance and fairness across a 
variety of subgroups for risk prediction of two common diseases, atherosclerotic 
cardiovascular disease (ASCVD) and atrial fibrillation (AF). We calculated the Cohorts 
for Heart and Aging in Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) for AF 
and the Pooled Cohort Equations (PCE) score for ASCVD in three large data sets: 
Explorys Life Sciences Dataset (Explorys, n = 21,809,334), Mass General Brigham 
(MGB, n = 520,868), and the UK Biobank (UKBB, n = 502,521). Our results 
demonstrate important performance heterogeneity of established cardiovascular risk 
scores across subpopulations defined by age, sex, and presence of preexisting disease. 
For example, in  CHARGE-AF, discrimination declined with increasing age, with 
concordance index of 0.72 [95% CI, 0.72–0.73] for the youngest (45–54y) subgroup to 
0.57 [0.56–0.58], for the oldest (85–90y) subgroup in Explorys. The statistical parity 
difference (i.e., likelihood of being classified as high risk) was considerable between 
males and females within the 65–74y subgroup with a value of -0.33 [95% CI, -0.33–-
0.33]. We observed also that large segments of the population suffered from both 
decreased discrimination (i.e., <0.7) and poor calibration (i.e., calibration slope outside 
of 0.7–1.3); for example, all individuals 75 or older in Explorys (17.4%). Our findings 
highlight the need to characterize and quantify how clinical risk models behave and 
perform within specific subpopulations so they can be used appropriately to facilitate 
more accurate and equitable assessment of disease risk. 
 
 
Keywords: Atrial fibrillation, Atherosclerotic cardiovascular disease, Risk prediction, 
Discrimination, Calibration, Fairness 
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Abbreviations 

1K PY – Per 1,000 patient years 

AF – Atrial fibrillation 

ASCVD – Atherosclerotic cardiovascular disease 

CHARGE-AF – Cohorts for Heart and Aging Research in Genomic Epidemiology atrial 
fibrillation 

CPT – Current Procedural Terminology 

DBP – Diastolic blood pressure 

EHR – Electronic health record 

HDL – High-density lipoprotein 

HF – Heart failure 

ICD – International Classification of Diseases 

Inc – Incidence 

MGB – Mass General Brigham 

MI – Myocardial infarction 

PCE – Pooled Cohort Equations 

SBP – Systolic blood pressure 

SD – Standard deviation 

SHR – Standardized hazard ratio 

T2DM – Type 2 diabetes mellitus 

TC – Total cholesterol 

TIA – Transient ischemic attack 

UKBB – United Kingdom Biobank   
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Variability in standard performance metrics to assess cardiovascular disease (CVD) risk 

has frequently been reported6,11 with findings highlighting that performance varies 

depending on the type of the groups, for example, sex groups1, racial groups (in the 

US2,3,4 and out of the US5,8,9), and groups with specific clinical factors7,10. With the 

continued growth of large collections of electronic health records accessible for 

research purposes it is now possible to more thoroughly explore and better understand 

performance heterogeneity, considering more refined subgroups. 

CVD risk models are commonly used to prioritize individuals for preventive 

counseling (e.g., weight loss, alcohol cessation) and therapies (e.g., cholesterol-

lowering medication). For atherosclerotic CVD (ASCVD), risk estimation using the 

Pooled Cohort Equations (PCE) is recommended by U.S. guidelines for determining 

whether individuals without established ASCVD should be considered for cholesterol-

lowering therapy12. For atrial fibrillation (AF), in which the presence of arrhythmia is 

associated with an increased risk of stroke and heart failure (HF), risk estimation may 

also prioritize individuals for screening to detect asymptomatic disease13,44. The Cohorts 

for Heart and Aging Research in Genomic Epidemiology AF (CHARGE-AF) score14,15 

has consistently demonstrated good predictive performance for incident AF risk across 

multiple community cohorts16,17 and electronic health record (EHR)-based repositories18. 

Leveraging three large and distinct datasets, one from a prospective cohort and 

two from electronic health records, covering millions of individuals, we aimed to robustly 

characterize CVD risk score performance heterogeneity across multiple subpopulations 

defined by clinically relevant strata (e.g., age, sex, and presence of relevant diseases at 

baseline). Specifically, we deployed the CHARGE-AF and PCE scores within 
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subpopulations across each dataset and quantified model performance, including 

discrimination, calibration, and fairness metrics, assessing for important and consistent 

patterns of heterogeneity19. 
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Methods 

Data sources 

A high-level summary of our methodology is illustrated in SUPPLEMENTARY FIGURE 

1. We analyzed 3 independent data sources: the Explorys Dataset, Mass General 

Brigham (MGB), and the UK Biobank (UKBB).  

The Explorys Dataset is comprised of the healthcare data of over 21 million 

individuals, pooled from different healthcare systems with distinct EHRs that have been 

previously used for medical research20,18,21. Data were statistically de-identified22, 

standardized, and normalized using common ontologies and made searchable after 

being uploaded to a Health Insurance Portability and Accountability Act-enabled 

platform. The data included EHR entries for all patients who were seen between 

January 1, 1999, and December 31, 2020. 

MGB is a large healthcare network serving the New England region of the US. 

We utilized the Community Care Cohort Project23, an EHR dataset comprising over 

520,000 individuals who received care at any of the 7 academic and community 

hospitals in MGB.  

The UKBB is a prospective cohort of over 500,000 participants enrolled during 

2006–201024. Briefly, approximately 9.2 million individuals aged 40–69 years living 

within 25 miles of 22 assessment centers in the UK were invited, and 5.4% participated 

in the baseline assessment. Questionnaires and physical measures were collected at 

recruitment, and all participants are followed for outcomes through linkage to national 

health-related datasets. 
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Cohort construction 

To ensure adequate data ascertainment and follow-up, we included in Explorys 

individuals with at least two outpatient encounters greater than or equal to 2 years 

apart25. Individuals in the MGB dataset had at least one pair of primary care office visits 

1-3 years apart. We included all individuals who enrolled in the UKBB study. We 

excluded all enrolled individuals who decided at a later point to withdraw consent. 

In Explorys, the start of follow-up was defined as the first encounter following the 

second qualifying outpatient encounter. In MGB, the start of follow-up was defined as 

the second office visit of the earliest qualifying pair. In UKBB, as an enrollment-based 

resource, start of follow-up was the date of the initial assessment visit. In each dataset, 

individuals with missing data for AF risk estimation at baseline were excluded. We refer 

to the AF analysis sets as the “AF Subsets”. We defined the ASCVD analysis set 

analogously, with exclusion of individuals with missing data needed to calculate the 

PCE score (“ASCVD Subsets”). Full details of the cohort construction for the 3 datasets 

are shown in SUPPLEMENTARY TABLES I–VI. 

 

Clinical factors 

Age, sex, race, and smoking status were defined using EHR fields in Explorys and MGB 

and were self-reported at the initial assessment visit in UKBB. Height, weight, blood 

pressure, total cholesterol, and high-density lipoprotein cholesterol values were 

measured relative to baseline in all 3 datasets18,45. For patients with multiple eligible 

values in the baseline period, only the most recent was used. Smoking status was 
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classified as present or absent and race was classified as White or Black. Patients who 

indicated themselves as Black (possibly with one or more other race types) were 

considered Black for risk calculations, and White otherwise. The presence of clinical 

comorbidities was ascertained using diagnostic (International Classification of Diseases-

9th [ICD-9] and -10th [ICD-10] revisions) and procedural (Current Procedural 

Terminology, CPT) codes, either extracted from the EHR (Explorys and MGB), or from 

linked national health record data (UK Biobank). All covariates were used in accordance 

with the CHARGE-AF and PCE definitions12,15,31. Clinical factor definitions of all 

covariates appear in SUPPLEMENTARY TABLE VII. 

 

Follow-up and outcome definitions  

The primary outcomes were 5-year incident AF (for the AF Subsets), and 10-year 

incident ASCVD (for the ASCVD Subsets). Incident AF was defined using a modified 

version of a previously validated EHR-based AF ascertainment algorithm (positive 

predictive value 92%), in which electrocardiographic criteria were not used given the 

absence of electrocardiogram reports in the Explorys Dataset26. Incident ASCVD was 

defined as a composite of myocardial infarction (MI) and stroke, each defined using 

previously published sets of diagnosis codes27. Outcome definitions are shown in 

SUPPLEMENTARY TABLE VII. 

All models were censored at the earliest of death, last follow-up, or the end of the 

relevant prediction window (i.e., 5 years for CHARGE-AF and 10 years for the PCE). 

Last follow-up was defined as the last office visit or hospital encounter in Explorys, last 
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EHR encounter in MGB, and date of last available linked hospital data in UKBB. 

 

Subgroup types 

Per the original design of the PCE, we assessed the 4 sex- and race-specific models 

within their respective populations (Black women, Black men, White women, White 

men). All populations were stratified further into 10-year age ranges. These age-based 

analyses included 6 age strata for CHARGE-AF (45–54, 55–64, 65–74, 75–84, 85–90, 

and all) and 5 age strata for PCE (40–49, 50–59, 60–69, 70–79, and all). In the AF 

analyses, we evaluated the following additional subgroups: females, males, Black race, 

White race, prevalent HF, and prevalent stroke. In the PCE analyses, we also evaluated 

prevalent HF. 

 

Quantification of model performance 

We computed incidence rates for each outcome, reported per 1,000 patient years (1K 

PY). For each risk score and subgroup, we assessed the association between the risk 

score and its respective outcome using Cox proportional hazards regression, with 5-

year AF as the outcome of interest for CHARGE-AF and 10-year ASCVD as the 

outcome of interest for PCE. Hazard ratios were scaled by the within-sample standard 

deviation (SD) of the linear predictor of each score for comparability (Standardized 

Hazard Ratio [SHR]). Therefore, the SHR reflects the relative increase in event hazard 

observed with a 1-SD increase in the respective linear predictor. We also assessed the 

discrimination of each score by calculating Harrell’s c-index. We compared calibration 
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slopes, defined as the beta coefficient of a univariable Cox proportional hazards model 

with the prediction target as the outcome and the linear predictor of the respective risk 

score as the sole covariate, where an optimally calibrated slope has a value of one28. 

To assess further potential biases in performance, we calculated fairness 

measures, including differences in statistical parity, true positive rates, and true negative 

rates29. These analyses focused on subgroups most likely to be affected by potential 

bias, including age, sex (female and male) and race (Black and White). For these 

analyses, the CHARGE-AF and PCE scores were converted to event probabilities using 

their published equations14,12. Where fairness metrics required application of binary risk 

cutoffs (i.e., true positive rate difference and false positive rate difference), we defined 

high AF risk as estimated 5-year AF risk  5.0% using CHARGE-AF30,18 and high 

ASCVD risk as estimated 10-year ASCVD risk  7.5%31,1,2,6.  

All analyses were performed using R version 3.6, including the “survival,” “rms,” 

“data.table,” and “prodlim” packages32. 
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Results 

A summary of baseline characteristics for the three data sets and their associated two 

distinct outcomes is shown in TABLE 1, including mean (SD) for continuous 

measurements, percentage for binary attributes, and follow-up durations for each of the 

six scenarios (i.e., two scores applied to three distinct datasets). For brevity, only the 

PCE model with the largest cohort (female-White; n = 1,603,450) is described in the 

sections below; results for all four PCE models are presented in SUPPLEMENTARY 

TABLE VIII and SUPPLEMENTARY FIGURE 2. 

 

Association between age and incidence of AF and ASCVD  

As shown in FIGURE 1A (AF) and FIGURE 1B (ASCVD) incidence rate increased with 

age in each dataset. Explorys and MGB showed similar incidence rates in each age 

group, whereas UKBB patients had substantially lower AF incidence. Similarly, the 

ASCVD incidence rate increased with age. The effect of age on ASCVD within each of 

the four PCE groups is shown in SUPPLEMENTARY TABLE VIII. 

 

Performance heterogeneity of CHARGE-AF 

We observed that a variety of subgroups were affected by poor discrimination, poor 

calibration, or both (SUPPLEMENTARY TABLE X and XI); for example, patients 75 or 

older had discrimination lower than 0.7 and calibration slope out of the 0.7–1.3 range 

(17.4% in Explorys, 10.6% in MGB). All patients with prevalent HF had the two 

measures out of boundaries as well (3.7% in Explorys, 1.9% in MGB). 

FIGURE 2 summarizes performance measures for the CHARGE-AF score. 
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Discrimination consistently decreased with increased age (FIGURE 2A); for example, 

discrimination declined with increasing age from concordance index of 0.721 [95% CI, 

0.716–0.726] for the youngest (45–54y) subgroup to 0.566 [0.556–0.577], for the oldest 

(85–90y) subgroup in Explorys. Discrimination was higher for females than for males, 

consistent with prior findings15,18,6,30, whereas differences across White versus Black 

race were minor. Discrimination was substantially lower among individuals with 

prevalent HF and stroke. 

We also observed miscalibration within subgroups of age; for all 3 datasets 

calibration slopes decreased with increasing age, reflecting a general tendency toward 

underestimation at younger ages and overestimation at older ages (FIGURE 2B); for 

example, in Explorys, values declined from 1.222 [95% CI, 1.198–1.246] for the 

youngest (45–54y) subgroup to 0.422 [0.371–0.474] for the oldest (85–90y) subgroup. 

The strength of association between the CHARGE-AF score and incident AF (as 

measured using SHRs) decreased with older age (FIGURE 2C); for example, SHR 

declined from 3.395 [95% CI, 3.315–3.477] for the youngest (45–54y) subgroup to 

1.526 [1.449–1.606] for the oldest (85–90y) subgroup in Explorys. Within strata defined 

by sex and race, SHRs were highest in the UKBB, followed by MGB and Explorys. 

SHRs were substantially lower among individuals with prevalent HF and stroke. 

 

Biased behaviors for CHARGE-AF 

As shown in FIGURE 3A, risk estimates using the CHARGE-AF model were much 

lower for females than for males, with regard to the population as a whole and 

particularly in the age groups (65–74 and 75–84); for example, the most biased 
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subgroup was 65–74y with a statistical parity difference of -0.331 [95% CI, -0.333–-

0.329] in Explorys. As shown in FIGURE 3B, consistent across each dataset, sensitivity 

was lower for females, particularly in intermediate age groups (65–74 and 75–84); for 

example, the most biased subgroup was 65–74y with sensitivity difference of -0.311 

[95% CI, -0.319–-0.304] in Explorys. As shown in FIGURE 3C, specificity was higher for 

females in intermediate age groups (65–74 and 75–84); for example, the most biased 

subgroup was 65–74y with specificity difference of 0.328 [95% CI, 0.326–0.330] in 

Explorys. 

Similar to the bias pattens for sex, biases for race were notable in intermediate 

age groups (65–74 and 75–84). As shown in FIGURE 3D, risk estimates using the 

CHARGE-AF model were much lower for Black individuals than for White individuals, as 

expected since White race is a risk enhancing factor in the CHARGE-AF model; for 

example, the 75–84y subgroup had statistical parity difference of -0.228 [95% CI, -

0.232–-0.225] in Explorys. Likely as a result of systematically lower predicted risk 

estimates, CHARGE-AF exhibited lower sensitivity (FIGURE 3E) and greater specificity 

(FIGURE 3F) among Black individuals; as an example, sensitivity difference was -0.168 

[95% CI, -0.180–-0.157], and specificity difference was 0.231 [0.228–0.235] for the 75–

84y subgroup in Explorys. For both sex and race, biased behavior was similar between 

Explorys and MGB but less prominent in the UKBB. 

 

Performance heterogeneity of PCE 

As with CHARGE-AF, we observed that a variety of subgroups were affected by poor 

discrimination, poor calibration, or both (SUPPLEMENTARY TABLE XII and XIII). Only 
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a few of the subgroups across the 3 datasets were associated with both good 

discrimination and calibration (e.g., female-White 40–49 in the UKBB with a percentage 

of 21.9% of the total patients in this subgroup). 

Consistent with CHARGE-AF, discrimination using the PCE decreased with older 

age from a concordance index of 0.661 [95% CI, 0.650–0.672] for the 40–49y subgroup 

to 0.569 [0.564–0.574] for the 70–79y subgroup in Explorys (FIGURE 4A). This 

behavior was consistent across all 3 datasets. Discrimination among individuals with 

prevalent HF was similar to the overall 70–79y subgroup.  

We also observed miscalibration using the PCE within subgroups of age, with 

consistently lower calibration slopes in the youngest and oldest groups, indicating an 

overall tendency to overestimate risk at extremes of age (FIGURE 4B); for example, in 

Explorys, values were the lowest for the 40–49y subgroup with a slope of 0.582 [95% 

CI, 0.549–0.615], and 0.396 [0.368–0.423] for the 70–79y subgroup, in comparison to 

values above 0.7 for the intermediate age subgroups. Similar to CHARGE-AF, 

calibration was poor among individuals with prevalent HF, again with a general 

tendency to overestimate risk.  

The strength of association between the PCE score on incident ASCVD (as 

measured using SHRs) was highest in intermediate age groups (50–59 and 60–69) 

compared to the younger (40–49) and older (70–79) age groups (FIGURE 4C); for 

example, highest SHR was 2.083 [95% CI, 2.025–2.142] for the 50–59 subgroup and 

1.485 [1.446–1.526] for the 70–79 subgroup, in Explorys. 
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Biased behaviors for PCE  

As shown in FIGURE 5A, risk estimates using the PCE were much lower for 

females than for males in the overall population as well as within the intermediate age 

groups (50–59 and 60–69); for example, in Explorys, the 60–69y subgroup had the 

most bias with a statistical parity difference of -0.424 [95% CI, -0.425–-0.422]. As shown 

in FIGURE 5B, across all datasets, sensitivity was lower for females, especially at 

intermediate age groups (50–59 and 60–69); for example, the subgroup with the most 

bias was 50–59y with sensitivity difference of -0.354 [95% CI, -0.367–-0.341] in 

Explorys. Specificity was higher among females (FIGURE 5C), especially at 

intermediate age groups (50–59 and 60–69); for example, the subgroup with the most 

bias was 60–69y with specificity difference of 0.428 [95% CI, 0.426–0.429] in Explorys. 

Overall, patterns observed on the basis of sex using the PCE were similar to those 

observed using CHARGE-AF. 

As shown in FIGURE 5D, unlike CHARGE-AF, risk estimates using the PCE 

were higher in Black individuals in all datasets; this effect was especially noticeable at 

intermediate age groups (50–59 and 60–69); for example, statistical parity difference for 

the 50–59y subgroup was the largest compared to the other subgroups in Explorys at 

0.249 [95% CI, 0.246–0.252]. Again unlike CHARGE-AF, PCE had increased sensitivity 

among Black individuals versus White individuals (FIGURE 5E); for example, sensitivity 

difference for the 40–49y and 50–59y subgroups were the largest compared to the other 

subgroups in Explorys at 0.256 [95% CI, 0.235–0.278] and 0.268 [0.254–0.283], 

respectively. Differences in sensitivity on the basis of race decreased with increased 

age in all 3 datasets, with very little difference observed in the oldest age group (70–79). 
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As shown in FIGURE 5F and again unlike CHARGE-AF, across specific age ranges, 

specificity was lower for Black individuals than for White individuals; this effect was 

especially noticeable at intermediate age groups (50–59 and 60–69); for example, 

specificity difference for the 50–59y subgroup was the greatest compared to the other 

subgroups in Explorys at -0.246 [95% CI, -0.249–-0.243]. 
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Discussion 
 
We analyzed three large independent datasets including millions of individuals and 

identified important patterns of performance heterogeneity across clinically relevant 

subgroups as indicated by standard performance measures including discrimination, 

calibration, SHRs, and fairness metrics. Our results build on previous efforts to 

understand the nature of AF and of ASCVD risk in several keyways. First, we assessed 

the scores on very large databases, allowing us to perform more granular subgroup 

analyses. Second, we provide results applicable to 3 resources, allowing us to assess 

consistency in results across independent datasets. Third, our results provide analyses 

focused on 2 distinct outcomes, which allows a comparison of performance measures 

not only using different resources, but also different conditions. Fourth, our results 

highlight the magnitude of poor performance affecting a large proportion of the 

population (discrimination, calibration, or both), especially patients at older ages and 

with prevalent conditions. Fifth, to our knowledge, our study is the first to report on 

fairness-related measures for the CHARGE-AF (to predict 5-year incident AF) and PCE 

(to predict 10-year incident ASCVD) scores to assess possible biases considering sex 

and race differences. 

Patterns of variability were fairly consistent across the CHARGE-AF and PCE 

models. Importantly, we observed that discrimination and calibration were consistently 

lower at extremes of age, as well as for individuals with certain prevalent conditions 

(e.g., HF). Furthermore, we observed evidence of potentially biased performance, with 

important differences in fairness metrics for sex and race in both scores; for instance, 

sensitivity was much lower for females than males for both scores in intermediate 
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subgroups, a finding that was consistent in all datasets. Overall, our findings underscore 

the importance of evaluating prognostic models across the many specific 

subpopulations in which risk prediction is intended, in order to better understand the 

accuracy and potential bias of the prognostic information used to drive clinical decisions 

at the point of care. 

Our findings suggest that clinicians utilizing prognostic models should not 

assume that a given level of performance in the overall population will translate to 

similar accuracy within a subgroup of the population to which their patient belongs. 

Consistent with prior findings suggesting good overall performance of CHARGE-AF16,17 

and the PCE33,7 across multiple populations, we observed moderate or greater 

discrimination using each score in our datasets. However, we observed that multiple 

standard metrics (e.g., discrimination and calibration) vary substantially within 

subpopulations. Specifically, we observed a consistent pattern of decreasing 

discrimination and increasing miscalibration for higher age groups. Since risk of the 

majority of incident CVD occurs among older individuals, our findings suggest that more 

accurate models for an older population remains a critical unmet need. Future work is 

needed to assess whether models derived within specific subgroups of clinical 

importance may lead to better and more consistent model performance across 

important subsets of the population. In addition to variation across standard model 

metrics, our findings also suggest that common prognostic models may have biased 

performance across strata of sex and race. Use of the CHARGE-AF score led to lower 

sensitivity and greater specificity among women, as well as for Black individuals. 

Although use of the PCE also led to lower sensitivity and greater specificity among 
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women, it demonstrated the opposite pattern (greater sensitivity and lower specificity) 

among Black individuals. It is notable that these differences existed despite the fact that 

the PCE has dedicated models stratified on the basis of race and sex (i.e., it is based on 

4 distinct equations). Since PCE model predictions were generally better calibrated 

among White individuals (as shown in SUPPLEMENTARY FIGURE 2B), our findings 

suggest that model derivation in populations having greater representation of women 

and Black individuals may lead to more accurate and generalizable models with less 

bias. 

Of the 3 databases we analyzed, 2 were EHR-based (Explorys and MGB) and 

the other (UKBB) was a prospective cohort study. While we did identify a strong 

consistency between MGB and Explorys, patterns identified in the UKBB were not as 

consistent in all scenarios with the EHR databases. To make more accurate 

comparisons, additional studies are required to account for differences in EHR 

resources compared to enrollment-based resources. Individuals appearing in EHR 

resources are typically associated with higher prevalence of comorbid conditions (as 

highlighted in TABLE 1). Furthermore, EHR resources contain data entries collected for 

archiving and retrieval purposes; differently, prospective resources are based on 

systematic data collection mechanisms and are thus susceptible to selection biases.   

Our study has several limitations. First, mirroring definitions of race for CHARGE-

AF and the PCE, we classified race as White and Black, which limits our ability to 

assess for more granular effects of race on model behavior and performance. Second, 

we were unable to assess the effects of socioeconomic deprivation37,38,39 given the lack 

of available data in Explorys and MGB. Third, although we analyzed data from large 
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datasets representing very different settings (i.e., two EHR-based datasets and a 

prospective cohort study), the majority of individuals across the datasets were White. 

Inclusion of data sources comprising larger proportions of Black individuals may have 

allowed us to examine heterogeneity with greater precision. Fourth, cause of death was 

not available in any of the 3 datasets, affecting calculations of incident ASCVD and AF 

measures (we considered in our analyses all death causes, not just CVD-related). Fifth, 

although our findings provide important evidence of performance heterogeneity and 

potential bias in commonly used risk estimators, we did not explore methods to mitigate 

these biases. Sixth, we have not applied recently proposed fairness metrics that assess 

individual fairness (rather than assessing bias at the population level)42,43. 

 There are several potential strategies to mitigate the important heterogeneity in 

performance we characterized and quantified in the current study. One strategy is to 

adjust models according to empirically observed patterns of bias, such as a recalibration 

methodology, which have been previously proposed as a potential method to reduce 

bias and minimize, in particular, decisions related to the overtreatment of healthy 

individuals5,34. Another potential approach is to reweight existing models36,40,41 within 

each subgroup of the population, resulting in distinct weights for each subgroup of 

interest. Yet another strategy is to create new larger models that include certain 

variables (e.g., socioeconomic deprivation)35,5 that may offer more consistent prognostic 

value across subgroups, as well as variables defined to greater precision (e.g., more 

precise quantification of self-reported race(s)). Applying mitigation as well as individual-

level fairness assessment techniques are outside the scope of the current study and are 

the subject of planned future work. 



21 

 

 In summary, we identified evidence of important performance heterogeneity and 

bias in two cardiovascular risk scores, CHARGE-AF and the PCE. We observed 

consistent patterns across three large and contrasting populations totaling millions of 

individuals, including consistently worse risk discrimination among older individuals and 

substantial miscalibration at extremes of age. We also observed that use of common 

score thresholds may lead to notable biases on the basis of sex and race. Our study – 

characterizing and quantifying the performance heterogeneity and bias in clinical risk 

models – is just an initial step toward improved disease assessment. These results can 

help inform clinicians on when it may be appropriate to use and not use a particular risk 

model for an individual patient. They can also inform the important next step: the 

development of risk models that are more robust to differences across clinical settings 

and patient characteristics, to facilitate more accurate and equitable risk estimation to 

guide improved clinical decisions. A major challenge, however, may still remain – even 

if much more robust models will be developed, care systems that extensively rely on 

existing simple models must be convinced that not only the new models are significantly 

much more robust, but are also easy to use and interpretable.  
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Table 1. Baseline characteristics 

 Incident AF (5Y) Incident ASCVD (10Y) 

 Explorys 
(N = 4,750,660) 

UKBB 
(N = 445,329) 

MGB 
(N = 174,644) 

Explorys 
(N = 3,328,992) 

UKBB 
(N = 408,154) 

MGB 
(N = 198,184) 

N events: 196,252 7,404 7,877 97,883 10,906 10,201 

Median follow-up, years (Q1, Q3): 3.6 (1.6, 5.0) 5.0 (5.0, 5.0) 5.0 (2.3, 5.0) 4.1 (2.0, 6.9) 8.9 (8.2, 9.7) 6.8 (2.6, 10.0) 

Characteristics % or Mean (SD) 

Female (%) 56.7 55.0 60.9 56.0 54.8 58.8 

Age (years) 62.6 (10.8) 58.4 (7.0) 60.9 (10.0) 59.0 (10.6) 56.9 (8.1) 57.0 (10.3) 

White race (%) 84.2 94.7 79.6 87.3 98.4 78.1 

Smoking (%) 17.3 10.7 8.0 19.2 10.4 7.4 

SBP (mmHg) 131 (18) 139 (19) 128 (17) 129 (17) 139 (20) 126 (17) 

DBP (mmHg) 77 (11) 83 (10) 76 (10) 
DBP, Height, and Weight were not necessary to calculate PCE 

scores. 
Height (kg) 168.5 (10.9) 168.2 (9.2) 166.6 (10.4) 

Weight (cm) 86.1 (22.1) 77.9 (15.8) 79.4 (19.5) 

HDL (US: mg/dL; UK: mmol/L) 
HDL and TC were not necessary to calculate CHARGE-AF scores. 

52 (17) 1.46 (0.4) 57 (18) 

TC (US: mg/dL; UK: mmol/L) 189 (43) 5.7 (1.1) 195 (39) 

Hypertensive therapy (%) 50.1 30.5 44.8 54.2 27.9 39.3 

Diabetes (%) 21.3 2.5 16.0 22.0 5.0 14.8 

Heart failure (%) 3.7 0.4 1.9 3.4 0.3 1.6 
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(a) AF. Zoom-in to better view details for the prevalent stroke and HF subgroups. Note that data for patients 75 or older was not available in the UKBB. 
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(b) ASCVD (female-White). Zoom-in to better view details for the prevalent HF subgroup. 

Figure 1. Incidence rates per 1K PY and population sizes. All population and subpopulation sizes and exact incidence rates are provided in SUPPLEMENTARY TABLE IX. 

 

 
 
 



27 

 

 

 

 

 

 

Figure 2. Performance measures for CHARGE-AF. Prev. = Prevalence; HF = Heart failure. 
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(a) Statistical parity difference for sex. 
(b) True positive rate for sex. (c) True negative rate for sex. 

 

 

 

 

 

 

(d) Statistical parity difference for race. (e) True positive rate for race. (f) True negative rate for race. 

Figure 3. Fairness analysis for CHARGE-AF. Note that data was not available in the UKBB for the 75–84 and 85–90 age subpopulations. 

 
 
 
 
 
 
 
 
 
 

More bias (risk estimates lower for females)                     No bias More bias (lower sensitivity for females)                               No bias No bias                           More bias (higher specificity for females) 

More bias (risk estimates lower for Black patients)          No bias More bias (lower sensitivity for Black patients)                    No bias No bias                More bias (higher specificity for Black patients) 
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Figure 4. Performance measures for PCE (Female-White). Prev. = Prevalence; HF = Heart failure. Refer to SUPPLEMENTARY TABLE VII for additional PCE models. 
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(a) Statistical parity difference for sex. (b) True positive rate for sex. (c) True negative rate for sex. 

 

 

 

 

 

 

 

(d) Statistical parity difference for race. (e) True positive rate for race. (f) True negative rate for race. 

Figure 5. Fairness analysis for PCE. 

 
 
 
 

 
 
 
 

More bias (risk estimates lower for females)                     No bias More bias (lower sensitivity for females)                               No bias No bias                           More bias (higher specificity for females) 

No bias          More bias (higher risk estimates for Black patients) 
No bias       More bias (higher sensitivity for Black patients) More bias (lower specificity for Black patients)              No bias 
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