1. Makarewich CA, Olson EN. Mining for Micropeptides. Trends Cell Biol. 2017;27:685–96. doi:https://doi.org/10.1016/j.tcb.2017.04.006.
2. Chugunova A, Navalayeu T, Dontsova O, Sergiev P. Mining for Small Translated ORFs. J Proteome Res. 2018;17:1–11. doi:10.1021/acs.jproteome.7b00707.
3. Couso J-P, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol. 2017;18:575. http://dx.doi.org/10.1038/nrm.2017.58.
4. Olexiouk V, Van Criekinge W, Menschaert G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 2018;46:D497–502.
5. Olexiouk V, Crappé J, Verbruggen S, Verhegen K, Martens L, Menschaert G. sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 2016;44:D324–9. http://dx.doi.org/10.1093/nar/gkv1175.
6. Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606. doi:10.1016/j.cell.2015.01.009.
7. Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R, et al. Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal. 2016;9:ra119 LP-ra119. http://stke.sciencemag.org/content/9/457/ra119.abstract.
8. Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE, Bishop SA, et al. Conserved Regulation of Cardiac Calcium Uptake by Peptides Encoded in Small Open Reading Frames. Science (80- ). 2013;341:1116 LP-1120. http://science.sciencemag.org/content/341/6150/1116.abstract.
9. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The Mitochondrial-Derived Peptide MOTS-c Promotes Metabolic Homeostasis and Reduces Obesity and Insulin Resistance. Cell Metab. 2015;21:443–54. doi:https://doi.org/10.1016/j.cmet.2015.02.009.
10. Schwab SR, Li KC, Kang C, Shastri N. Constitutive Display of Cryptic Translation Products by MHC Class I Molecules. Science (80- ). 2003;301:1367 LP-1371. http://science.sciencemag.org/content/301/5638/1367.abstract.
11. Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med. 1996;183:1131 LP-1140. http://jem.rupress.org/content/183/3/1131.abstract.
12. Yeasmin F, Yada T, Akimitsu N. Micropeptides Encoded in Transcripts Previously Identified as Long Noncoding RNAs: A New Chapter in Transcriptomics and Proteomics. Front Genet. 2018;9:144. doi:10.3389/fgene.2018.00144.
13. Cai B, Li Z, Ma M, Wang Z, Han P, Abdalla BA, et al. LncRNA-Six1 Encodes a Micropeptide to Activate Six1 in Cis and Is Involved in Cell Proliferation and Muscle Growth. Front Physiol. 2017;8:230. doi:10.3389/fphys.2017.00230.
14. Ingolia NT. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 2014;15:205. https://doi.org/10.1038/nrg3645.
15. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science (80- ). 2009;324:218 LP-223. http://science.sciencemag.org/content/324/5924/218.abstract.
16. Mudge JM, Harrow J. The state of play in higher eukaryote gene annotation. Nat Rev Genet. 2016;17:758. https://doi.org/10.1038/nrg.2016.119.
17. Ingolia NT. Ribosome Footprint Profiling of Translation throughout the Genome. Cell. 2016;165:22–33. doi:https://doi.org/10.1016/j.cell.2016.02.066.
18. Raj A, Wang SH, Shim H, Harpak A, Li YI, Engelmann B, et al. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. Elife. 2016;5.
19. Skarshewski A, Stanton-Cook M, Huber T, Al Mansoori S, Smith R, Beatson SA, et al. uPEPperoni: an online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinformatics. 2014;15:36.
20. Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K, Shiu S-H. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics. 2010;26:399–400.
21. Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K, Calviello L, et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 2015;16:179. doi:10.1186/s13059-015-0742-x.
22. Crappé J, Van Criekinge W, Trooskens G, Hayakawa E, Luyten W, Baggerman G, et al. Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs. BMC Genomics. 2013;14:648. doi:10.1186/1471-2164-14-648.
23. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014;33:981 LP-993. http://emboj.embopress.org/content/33/9/981.abstract.
24. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35 Web Server issue:W345-9.
25. Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6. http://dx.doi.org/10.1093/nar/gkx428.
26. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74–e74. http://dx.doi.org/10.1093/nar/gkt006.
27. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166–e166. http://dx.doi.org/10.1093/nar/gkt646.
28. Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011;27:i275–82. http://dx.doi.org/10.1093/bioinformatics/btr209.
29. Hao Y, Zhang L, Niu Y, Cai T, Luo J, He S, et al. SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci. Brief Bioinform. 2018;19:636–43. http://dx.doi.org/10.1093/bib/bbx005.
30. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43 Database issue:D204-12.
31. Farrell CM, O’Leary NA, Harte RA, Loveland JE, Wilming LG, Wallin C, et al. Current status and new features of the Consensus Coding Sequence database. Nucleic Acids Res. 2014;42 Database issue:D865-72.
32. Harte RA, Farrell CM, Loveland JE, Suner M-M, Wilming L, Aken B, et al. Tracking and coordinating an international curation effort for the CCDS Project. Database (Oxford). 2012;2012:bas008.
33. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009;19:1316–23.
34. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61. http://dx.doi.org/10.1093/nar/gkx1098.
35. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. Elife. 2014;3:e03523. doi:10.7554/eLife.03523.
36. Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife. 2015;4:e08890. doi:10.7554/eLife.08890.
37. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins. Cell. 2013;154:240–51. doi:https://doi.org/10.1016/j.cell.2013.06.009.
38. Zhang H, Li P, Zhong H-S, Zhang S-H. Conservation vs. variation of dinucleotide frequencies across bacterial and archaeal genomes: evolutionary implications. Front Microbiol. 2013;4:269. doi:10.3389/fmicb.2013.00269.
39. Jiang M, Anderson J, Gillespie J, Mayne M. uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinformatics. 2008;9:192. doi:10.1186/1471-2105-9-192.
40. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37 suppl_2:W202–8. http://dx.doi.org/10.1093/nar/gkp335.
41. Chan BY, Kibler D. Using hexamers to predict cis-regulatory motifs in Drosophila. BMC Bioinformatics. 2005;6:262. doi:10.1186/1471-2105-6-262.
42. Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C, et al. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation. Cell Rep. 2018;23:3701–9. doi:https://doi.org/10.1016/j.celrep.2018.05.058.
43. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science (80- ). 2016;351:271 LP-275. http://science.sciencemag.org/content/351/6270/271.abstract.
44. Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science (80- ). 2017;356:323 LP-327. http://science.sciencemag.org/content/356/6335/323.abstract.
45. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2016;541:228. http://dx.doi.org/10.1038/nature21034.
46. Huang J-Z, Chen M, Chen D, Gao X-C, Zhu S, Huang H, et al. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell. 2017;68:171–184.e6. doi:https://doi.org/10.1016/j.molcel.2017.09.015.
47. Plaza S, Menschaert G, Payre F. In Search of Lost Small Peptides. Annu Rev Cell Dev Biol. 2017;33:391–416. doi:10.1146/annurev-cellbio-100616-060516.
48. Cohen SM. Everything old is new again: (linc)RNAs make proteins! EMBO J. 2014;33:937 LP-938. http://emboj.embopress.org/content/33/9/937.abstract.