[1] Y. Li, B. Xing, X. Wang, K. Wang, L. Zhu, and S. Wang, “Nitrogen-Doped Hierarchical Porous Biochar Derived from Corn Stalks for Phenol-Enhanced Adsorption,” Energy and Fuels, vol. 33, no. 12, pp. 12459–12468, Dec. 2019, doi: 10.1021/acs.energyfuels.9b02924.
[2] F. Guo et al., “A simple method for the synthesis of biochar nanodots using hydrothermal reactor,” MethodsX, vol. 7, p. 101022, 2020, doi: 10.1016/j.mex.2020.101022.
[3] Z. Ma et al., “Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures,” J. Anal. Appl. Pyrolysis, vol. 127, pp. 350–359, Sep. 2017, doi: 10.1016/j.jaap.2017.07.015.
[4] A. Enders, K. Hanley, T. Whitman, S. Joseph, and J. Lehmann, “Characterization of biochars to evaluate recalcitrance and agronomic performance,” Bioresour. Technol., vol. 114, pp. 644–653, 2012, doi: 10.1016/j.biortech.2012.03.022.
[5] X. Pan, Z. Gu, W. Chen, and Q. Li, “Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review,” Science of the Total Environment, vol. 754. p. 142104, Feb. 2021, doi: 10.1016/j.scitotenv.2020.142104.
[6] W. Wang et al., “Preparation of TiO 2 -modified Biochar and its Characteristics of Photo-catalysis Degradation for Enrofloxacin,” pp. 1–12, 2020, doi: 10.1038/s41598-020-62791-5.
[7] G. K. Parshetti, S. Chowdhury, and R. Balasubramanian, “Biomass derived low-cost microporous adsorbents for efficient CO2 capture,” Fuel, vol. 148, pp. 246–254, 2015, doi: 10.1016/j.fuel.2015.01.032.
[8] J. Wang and S. Wang, “Preparation, modification and environmental application of biochar: A review,” Journal of Cleaner Production, vol. 227. pp. 1002–1022, Aug. 2019, doi: 10.1016/j.jclepro.2019.04.282.
[9] F. Lian, G. Cui, Z. Liu, L. Duo, G. Zhang, and B. Xing, “One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity,” J. Environ. Manage., vol. 176, pp. 61–68, 2016, doi: 10.1016/j.jenvman.2016.03.043.
[10] J. E. Lee and Y. Park, “Applications of Modified Biochar-Based Materials for the Removal of Environment Pollutants: A Mini Review,” Sustainability, vol. 12, no. 15, p. 6112, Jul. 2020, doi: 10.3390/su12156112.
[11] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour. Technol., vol. 214, pp. 836–851, 2016, doi: 10.1016/j.biortech.2016.05.057.
[12] D. Kołodyńska, J. Bąk, M. Kozioł, and L. V. Pylychuk, “Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar,” Nanoscale Res. Lett., vol. 12, no. 1, p. 433, Dec. 2017, doi: 10.1186/s11671-017-2201-y.
[13] J. Liu, J. Li, R. Ye, X. Yan, L. Wang, and P. Jian, “Versatile bifunctional nitrogen-doped porous carbon derived from biomass in catalytic reduction of 4-nitrophenol and oxidation of styrene,” Chinese J. Catal., vol. 41, no. 8, pp. 1217–1229, 2020, doi: 10.1016/S1872-2067(20)63534-3.
[14] G. Marzun, A. Levish, V. Mackert, T. Kallio, S. Barcikowski, and P. Wagener, “Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis,” J. Colloid Interface Sci., vol. 489, pp. 57–67, Mar. 2017, doi: 10.1016/j.jcis.2016.09.014.
[15] M. Govarthanan et al., “Biosynthesis and characterization of silver Nanoparticles using Panchakavya, an Indian traditional farming formulating agent,” Int. J. Nanomedicine, vol. 9, no. 1, pp. 1593–1599, Mar. 2014, doi: 10.2147/IJN.S58932.
[16] Y. Zhang, D. Yang, Y. Kong, X. Wang, O. Pandoli, and G. Gao, “Synergetic Antibacterial Effects of Silver Nanoparticles @ Aloe Vera Prepared via a Green Method,” Nano Biomed Eng, no. 2(4), pp. 252–257, 2010, doi: 10.5101/nbe.v2i4.p252-257.1.
[17] F. Cheng, J. W. Betts, S. M. Kelly, J. Schaller, and T. Heinze, “Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent,” Green Chem., vol. 15, no. 4, p. 989, 2013, doi: 10.1039/c3gc36831a.
[18] H. Veisi, S. Azizi, and P. Mohammadi, “Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water,” J. Clean. Prod., vol. 170, pp. 1536–1543, Jan. 2018, doi: 10.1016/j.jclepro.2017.09.265.
[19] M. Al-Ansari, N. Alkubaisi, K. Gopinath, V. Karthika, A. Arumugam, and M. Govindarajan, “Facile and Cost-Effective Ag Nanoparticles Fabricated by Lilium lancifolium Leaf Extract: Antibacterial and Antibiofilm Potential,” J. Clust. Sci., vol. 30, no. 4, pp. 1081–1089, Jul. 2019, doi: 10.1007/s10876-019-01569-w.
[20] S. Li et al., “Green synthesis of silver nanoparticles using Capsicum annuum L. Extract,” Green Chem., vol. 9, no. 8, pp. 852–85, 2007, doi: 10.1039/b615357g.
[21] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater., vol. 14, no. 11, pp. 4736–4745, 2002, doi: 10.1021/cm020587b.
[22] Y. Tan, Y. Wang, L. Jiang, and D. Zhu, “Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system,” J. Colloid Interface Sci., vol. 249, no. 2, pp. 336–345, 2002, doi: 10.1006/jcis.2001.8166.
[23] A. Callegari, D. Tonti, and M. Chergui, “Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape,” Nano Lett., vol. 3, no. 11, pp. 1565–1568, 2003, doi: 10.1021/nl034757a.
[24] K. Mallick, M. J. Witcomb, and M. S. Scurrell, “Self-assembly of silver nanoparticles in a polymer solvent: Formation of a nanochain through nanoscale soldering,” Mater. Chem. Phys., vol. 90, no. 2–3, pp. 221–224, 2005, doi: 10.1016/j.matchemphys.2004.10.030.
[25] Y. C. Liu and L. H. Lin, “New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods,” Electrochem. commun., vol. 6, no. 11, pp. 1163–1168, 2004, doi: 10.1016/j.elecom.2004.09.010.
[26] M. A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, M. Shirzadi-Ahodashti, and S. Mortazavi-Derazkola, “Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application,” Bioorg. Chem., vol. 94, p. 103425, Jan. 2020, doi: 10.1016/j.bioorg.2019.103425.
[27] L. Zhang, Y. Shen, A. Xie, S. Li, B. Jin, and Q. Zhang, “One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers,” J. Phys. Chem. B, vol. 110, no. 13, pp. 6615–6620, 2006, doi: 10.1021/jp0570216.
[28] A. Swami, P. R. Selvakannan, R. Pasricha, and M. Sastry, “One-step synthesis of ordered two-dimensional assemblies of silver nanoparticles by the spontaneous reduction of silver ions by pentadecylphenol langmuir monolayers,” J. Phys. Chem. B, vol. 108, no. 50, pp. 19269–19275, 2004, doi: 10.1021/jp0465581.
[29] M. F. Zayed, W. H. Eisa, Y. K. Abdel-Moneam, S. M. El-kousy, and A. Atia, “Ziziphus spina-christi based bio-synthesis of Ag nanoparticles,” J. Ind. Eng. Chem., vol. 23, pp. 50–56, Mar. 2015, doi: 10.1016/j.jiec.2014.07.041.
[30] X. Zhu, K. Pathakoti, and H.-M. Hwang, “Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation,” in Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, 2019, pp. 223–263.
[31] M. M. H. Khalil, E. H. Ismail, K. Z. El-Baghdady, and D. Mohamed, “Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity,” Arab. J. Chem., vol. 7, no. 6, pp. 1131–1139, Dec. 2014, doi: 10.1016/j.arabjc.2013.04.007.
[32] H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 339, no. 1–3, pp. 134–139, 2009, doi: 10.1016/j.colsurfa.2009.02.008.
[33] L. P. Silva, T. M. Pereira, and C. C. Bonatto, “Frontiers and perspectives in the green synthesis of silver nanoparticles,” in Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, 2019, pp. 137–164.
[34] A. B. Moghaddam et al., “Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities,” Molecules, vol. 22, no. 6, p. 872, May 2017, doi: 10.3390/molecules22060872.
[35] H. Shagholani, S. M. Ghoreishi, and M. Mousazadeh, “Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application,” Int. J. Biol. Macromol., vol. 78, pp. 130–136, Jul. 2015, doi: 10.1016/j.ijbiomac.2015.02.042.
[36] J. K. Xu, F. F. Zhang, J. J. Sun, J. Sheng, F. Wang, and M. Sun, “Bio and nanomaterials based on Fe3O4,” Molecules, vol. 19, no. 12, pp. 21506–21528, 2014, doi: 10.3390/molecules191221506.
[37] N. Esmaili, P. Mohammadi, M. Abbaszadeh, and H. Sheibani, “Green synthesis of silver nanoparticles using Eucalyptus comadulensis leaves extract and its immobilization on magnetic nanocomposite (GO‐Fe 3 O 4 /PAA/Ag) as a recoverable catalyst for degradation of organic dyes in water,” Appl. Organomet. Chem., vol. 34, no. 4, Apr. 2020, doi: 10.1002/aoc.5547.
[38] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x.
[39] T. Kim, X. Fu, D. Warther, and M. J. Sailor, “Size-Controlled Pd Nanoparticle Catalysts Prepared by Galvanic Displacement into a Porous Si-Iron Oxide Nanoparticle Host,” ACS Nano, vol. 11, no. 3, pp. 2773–2784, Mar. 2017, doi: 10.1021/acsnano.6b07820.
[40] S. Bagheri and N. M. Julkapli, “Magnetite hybrid photocatalysis: Advance environmental remediation,” Rev. Inorg. Chem., vol. 36, no. 3, pp. 135–151, 2016, doi: 10.1515/revic-2015-0014.
[41] J. C. Colmenares et al., “Mild ultrasound-assisted synthesis of TiO 2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol,” Appl. Catal. B Environ., vol. 183, pp. 107–112, Apr. 2016, doi: 10.1016/j.apcatb.2015.10.034.
[42] M. Nasrollahzadeh, Z. Nezafat, M. G. Gorab, and M. Sajjadi, “Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds,” Mol. Catal., vol. 484, no. December 2019, p. 110758, 2020, doi: 10.1016/j.mcat.2019.110758.
[43] M. Bordbar and N. Mortazavimanesh, “Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 4093–4104, 2017, doi: 10.1007/s11356-016-8183-y.
[44] S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, “Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction,” Langmuir, vol. 26, no. 4, pp. 2885–2893, 2010, doi: 10.1021/la902950x.
[45] M. Orlandi, D. Brenna, R. Harms, S. Jost, and M. Benaglia, “Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines,” Org. Process Res. Dev., vol. 22, no. 4, pp. 430–445, 2018, doi: 10.1021/acs.oprd.6b00205.
[46] K. Zhang et al., “Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution,” Res. Chem. Intermed., vol. 45, no. 2, pp. 599–611, 2019, doi: 10.1007/s11164-018-3621-8.
[47] D. Formenti, F. Ferretti, F. K. Scharnagl, and M. Beller, “Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts,” Chem. Rev., vol. 119, no. 4, pp. 2611–2680, Feb. 2019, doi: 10.1021/acs.chemrev.8b00547.
[48] H. C. Brown and P. V. Ramachandran, “Sixty Years of Hydride Reductions,” in ACS Symposium Series, vol. 641, 1996, pp. 1–30.
[49] L. Pasumansky, C. T. Goralski, and B. Singaram, “Lithium aminoborohydrides: Powerful, selective, air-stable reducing agents,” Org. Process Res. Dev., vol. 10, no. 5, pp. 959–970, 2006, doi: 10.1021/op0600759.
[50] S. Naghdi, M. Sajjadi, M. Nasrollahzadeh, K. Y. Rhee, S. M. Sajadi, and B. Jaleh, “Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes,” J. Taiwan Inst. Chem. Eng., vol. 86, pp. 158–173, May 2018, doi: 10.1016/j.jtice.2017.12.017.
[51] K. M. Gayathri, S. Paramparambath, A. Satheesh, S. Selvam, and E. Kandasamy, “Reduction of aldehydes and ketones by NaBH4 in presence of 1-alkyl-1,2,4-triazolium salts,” Mater. Today Proc., vol. 33, no. xxxx, pp. 2381–2384, 2020, doi: 10.1016/j.matpr.2020.05.470.
[52] H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu, “Synthesis and stabilization of metal nanocatalysts for reduction reactions - A review,” J. Mater. Chem. A, vol. 3, no. 21, pp. 11157–11182, 2015, doi: 10.1039/c5ta00753d.
[53] B. Zeynizadeh and F. Shirini, “Mild and Efficient Method for Reduction of Aldehydes and Ketones with NaBH 4 in the Presence of Dowex1-x8,” J. Chem. Res., vol. 2003, no. 6, pp. 335–339, Jun. 2003, doi: 10.3184/030823403103174290.
[54] F. A. Westerhaus et al., “Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes,” Nat. Chem., vol. 5, no. 6, pp. 537–543, 2013, doi: 10.1038/nchem.1645.
[55] M. Atarod, M. Nasrollahzadeh, and S. Mohammad Sajadi, “Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO 2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water,” J. Colloid Interface Sci., vol. 462, pp. 272–279, Jan. 2016, doi: 10.1016/j.jcis.2015.09.073.
[56] T. Jiao et al., “Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment,” Sci. Rep., vol. 5, no. 1, p. 11873, Dec. 2015, doi: 10.1038/srep11873.
[57] A. Maleki, Z. Hajizadeh, and R. Firouzi-Haji, “Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones,” Microporous Mesoporous Mater., vol. 259, pp. 46–53, Mar. 2018, doi: 10.1016/j.micromeso.2017.09.034.
[58] Z. Varzi and A. Maleki, “Design and preparation of ZnS-ZnFe2O4: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2,4,5-triaryl-1H-imidazoles,” Appl. Organomet. Chem., vol. 33, no. 8, pp. 1–11, 2019, doi: 10.1002/aoc.5008.
[59] N. Vahedi-Notash, M. M. Heravi, A. Alhampour, and P. Mohammadi, “Ag nanoparticles immobilized on new mesoporous triazine-based carbon (MTC) as green and recoverable catalyst for reduction of nitroaromatic in aqueous media,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-74232-4.