
Reduction of the Uncertainties in the Hydrological
Projections in Korean River Basins Using
Dynamically Downscaled Climate Projections
Liying Qiu 

The Hong Kong University of Science and Technology
Joeng-Bae Kim 

Sejong University
Seon-Ho Kim 

Sejong University
Yeon-Woo Choi 

Massachusetts Institute of Technology
Eun-Soon Im  (  ceim@ust.hk )

The Hong Kong University of Science and Technology https://orcid.org/0000-0002-8953-7538
Deg-Hyo Bae 

Sejong University

Research Article

Keywords: Uncertainty in hydrological projections, dynamical downscaling, bias correction, Korean river
basin

Posted Date: October 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-942462/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Climate Dynamics on March 2nd, 2022. See
the published version at https://doi.org/10.1007/s00382-022-06201-8.

https://doi.org/10.21203/rs.3.rs-942462/v1
mailto:ceim@ust.hk
https://orcid.org/0000-0002-8953-7538
https://doi.org/10.21203/rs.3.rs-942462/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00382-022-06201-8


1 

 

Reduction of the uncertainties in the hydrological projections in Korean 1 

river basins using dynamically downscaled climate projections 2 

 3 

Liying Qiu1+, Joeng-Bae Kim2+, Seon-Ho Kim2, Yeon-Woo Choi3, Eun-Soon Im*1,4 and Deg-4 

Hyo Bae2 5 

 6 

1Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, 7 
Hong Kong SAR, China 8 

2Department of Civil and Environmental Engineering, Sejong University, Seoul, Korea 9 

3Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA 10 

4Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong 11 
Kong SAR, China 12 

+These authors contributed equally to this work 13 

 14 

 15 

*Correspondence to: ceim@ust.hk  16 

[Corresponding authors] 17 

Prof. Eun-Soon Im 18 

E-mail: ceim@ust.hk   19 

Address: Academic Building 3594, The Hong Kong University of Science and Technology, Clear Water Bay, 20 

Kowloon, Hong Kong, China.  21 

 22 

ORCID 23 

Liying Qiu (0000-0001-9944-4311) 24 

Jeong-Bae Kim (0000-0002-6121-7751) 25 

Seon-Ho Kim (0000-0002-1217-2075) 26 

Yeon-Woo Choi (0000-0002-3400-6705) 27 

Eun-Soon Im (0000-0002-8953-7538) 28 

Deg-Hyo Bae (0000-0002-0429-1154) 29 

mailto:ceim@ust.hk


2 

 

 Abstract 30 

How the added value of dynamically downscaled climate variables can be transferable to the hydrological 31 
impact assessment has been a long standing issue. This study investigates the potential benefit of high-32 
resolution climate data locally tailored over South Korea in terms of the reduction of uncertainties in 33 
hydrological projections. For this purpose, a large ensemble consisting of three Global Climate Model (GCM) 34 
projections and their downscaling products with different resolutions (i.e., 20 and 5 km), and four bias 35 
correction (BC) methods is fed into a semi-distributed hydrological model (HM) customized over Korean 36 
river basins. The in-depth comparison among the 45-members hydrological simulations proves that the added 37 
value of RCM would not be erased by the application of BC. While this study acknowledges the necessity of 38 
BC to remove the systematic bias in climate simulations, it is found that the high-resolution dynamical 39 
downscaling can significantly narrow the spread brought with different BC methods, thus reducing the 40 
uncertainty in the projected hydrological change. The projected streamflow changes for both the mean of wet 41 
season and the high flows indicate that there will be an intensified runoff, especially for the extremes, over 42 
South Korea under the warming. Altogether, this study provides a valuable exploration of uncertainty 43 
reduction in hydrological projections from the perspective of resolution effect of dynamical downscaling, 44 
which is meaningful for hydroclimate studies and climate change impact assessment. 45 
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1 Introduction 68 

One of the most critical impacts of climate change that needs deep understanding and profound planning is 69 
the change in the Earth’s hydrological cycle. It is expected that the river flows will witness substantial 70 
transitions affected by the changes in multiple processes under the global warming. For example, the 71 
exposure to flood hazards will continue to increase as the heavy rainfall increases under global warming on 72 
a local scale (Kundzewicz et al. 2014). Almost all of the physical processes included in the hydrological cycle, 73 
e.g., precipitation, evapotranspiration, infiltration, runoff, and routing, will be affected by the increasing 74 
temperature and relevant water vapor change, either directly or indirectly (Held and Soden 2006). Such 75 
changes in the water cycle should be carefully studied because they may impact the entire environment or 76 
even cause severe disasters. The reliable hydrological projections under global warming are thus urgently 77 
needed for the timely planning of water resource management and mitigation of the possible damages (Sun 78 
et al. 2017). 79 

Currently, the hydrological projections are usually realized in a modeling chain consisting of climate models 80 
(CMs), bias corrections (BCs), and hydrological model (HMs) (Teutschbein and Seibert 2012; Muerth et al. 81 
2013), which covers the numerical simulations of various physical processes and the statistical correction 82 
based on observed meteorological conditions. In this case, although HM is the last and direct tool for the 83 
streamflow simulation, the quality of hydrological projections is yet highly dependent on the reliability of 84 
the meteorological input into the HMs. The uncertainty sources of hydrological projections have been 85 
quantified in the previous studies for different regions around the world. These studies generally reach a 86 
similar conclusion that for most regions, CMs act as the leading source of uncertainty for the wet season or 87 
high flow projections (e.g., Aryal et al. 2019; Zhang et al. 2021), whereas HMs may contribute more to the 88 
uncertainty of dry season or low flow projections (e.g., Vetter et al. 2017; Lee et al. 2021). Also, the 89 
interactions among the uncertainty factors are non-negligible and may even play a larger role than the 90 
individual sources (Bosshard et al. 2013; Vetter et al. 2015; Zhang et al. 2021). For example, the impact of 91 
BC on runoff will increase with the bias of CMs (Muerth et al. 2013), because the correcting coefficient is 92 
scaled by the deviation of historical climate simulations from the observation. More importantly, considering 93 
the complicated and non-linear processes evolved in the climate system, the assumption of stationary bias 94 
for the present and future climate simulations used by BC (Teutschbein and Seibert 2012) is likely to distort 95 
the projected relative change if the correcting factor is too large. 96 

To improve the reliability of meteorological input to the hydrological projections, one of the most popular 97 
approaches is to downscale the coarse-resolution climate simulations from the Global Climate Models 98 
(GCMs) by the Regional Climate Models (RCMs). Since the surface hydrological processes typically occur 99 
on scales finer than GCMs, RCMs can help to reduce the resolution gap and improve the quality of modeled 100 
meteorological conditions by resolving the small-scale processes. During the past decade, there have already 101 
been considerable efforts to apply and evaluate the benefits of dynamical downscaling products in 102 
hydrological impact assessments (Kotamarthi et al. 2021). However, the current typical grid size of 10-50 103 
km (e.g., Giorgi and Gutowski 2015; Jacob et al. 2020) employed in RCMs still cannot meet the desirable 104 
spatial scale and information quality required by HMs. For example, the bias in the estimation of rainfall-105 
driven flood can be largely attributed to the underestimation of daily precipitation variability and extreme 106 
events in the climate simulations. To resolve such problems and reduce the subsequent uncertainty in 107 
hydrological projections, the most straightforward and reliable way is to increase the resolution of RCMs 108 
(Qiu et al. 2020), which can enhance the reliability of the regional climate projections through a better 109 
representation of the complex topography and physical mechanisms. 110 

On the other hand, although there is a growing consensus regarding the necessity of reliable meteorological 111 
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input for HMs (Maraun et al. 2010), there are few explicit assessments of how the high-resolution RCMs 112 
help to reduce the uncertainty in hydrological projections. Especially under the extensive use of BC 113 
techniques, many studies are not aware of, or not clear about, how the quality of original climate simulations 114 
affects the reliability of hydrological impact assessments. Quite a few hydrological projections are still using 115 
GCM simulations processed only with simple interpolation and BC (e.g., Stefanidis et al. 2018; Zaman et al. 116 
2018; Anjum et al. 2019; Haider et al. 2020), despite the apparent incompatibility in the scale of the CM and 117 
HM. Even for those using the RCM products, they might also be uncertain about how dynamical downscaling 118 
and BC are affecting the results (Maraun et al. 2010). As a post-processing tool for climate model output, BC 119 
is useful but the application without good understanding of its relationship with the climate simulation may 120 
lead to problematic conclusions. It is warned that BC may have limited ability to correct and downscale 121 
variability, and it may even provide implausible climate change signals (Maraun et al. 2017). Thus, an 122 
integrated assessment should be made regarding how dynamical downscaling aids in the uncertainty 123 
reduction hydrological projection modeling chain, which is especially meaningful in this era of continuous 124 
marching into high-resolution climate simulation.  125 

In this study, we conduct a large ensemble of hydrological projections driven by long-term climate change 126 
simulations over South Korea from three different resolutions, i.e., three GCMs and their dynamical 127 
downscaling products in 20 and 5 km. As a follow-up study of Qiu and Im (2021)1, this study aims to evaluate 128 
and explore how the demonstrated advantage of very-high-resolution (i.e., 5 km) climate simulation benefits 129 
the hydrological studies. In this regard, we use four BC methods to process the climate projections of the 130 
three resolutions and feed the original and bias-corrected climate data into a designated HM for streamflow 131 
projections. Although previous studies have quantified the uncertainty contribution from CM, BC, and HM, 132 
we focus on how the combination of very-high-resolution RCM simulations and different BC methods affect 133 
the hydrological projection output. The 5-km dynamical downscaling is not only the finest resolution long-134 
term climate projections over this region so far, but more importantly, there have been few hydrological 135 
projections driven by RCM products at such a high resolution before despite the study area. Although the 136 
very-high-resolution dynamical downscaling has shown an added value over the coarse resolution 137 
highlighted by the improved reliability in the projected climate change features, this may seem “useless” to 138 
the end-users if no improvements can be seen in the hydrological projections that are run with bias-corrected 139 
climate data. Therefore, we adopt BC methods with different levels of complexity to provide a comprehensive 140 
comparative assessment for hydrological projections driven by the climate scenarios in different 141 
combinations of CM resolution and BC technique. It serves to provide straightforward information for the 142 
hydrological modeling community regarding the practical value of the high-resolution dynamical 143 
downscaling and the large ensemble of hydrological projections also adds valuable insight into the 144 
understanding of the regional water cycle change.  145 

2 Methodology and data 146 

2.1 Experimental procedure and study area 147 

Fig. 1a presents the experimental framework of this study in three steps: climate simulation, statistical BC, 148 
and hydrological simulation with HM. Three Coupled Model Intercomparison Project Phase 5 (CMIP5, 149 
Taylor et al 2012) GCM projections under the RCP8.5 scenario and their downscaling products in 20 km and 150 
5 km are combined with different BC methods to constitute a 3 [CMIP5 models] × 3 [resolutions] × (4+1) 151 
[BC methods] = 45-members ensemble of climate scenarios for driving hydrological simulations. The climate 152 
and hydrological simulations both cover 30-yr periods for the reference (REF, 1976-2005) and the future 153 

 
1 Qiu L, Im E-S (2021) Added value of high resolution climate projections over South Korea on the scaling of precipitation with 

temperature. Environ Res Lett. Under Review 
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(FUT, 2071-2100) over South Korea (Fig. 1b). The Korean Peninsula is a typical region needing high-154 
resolution climate modeling since its hydroclimate characteristics are strongly influenced by the varying 155 
geographic features with sharp topographical gradients encompassed by long coastlines. Also, it has been 156 
demonstrated the river flows of South Korea will witness substantial changes (Ryu et al. 2011; Jung et al. 157 
2013; Seo et al. 2016; Ahn and Kim 2016; Lee et al. 2018a, 2021; Kim et al. 2020) given the condition that 158 
the regional climate has been projected to experience a non-trivial change in the future (Seo et al. 2013; Kim 159 
et al. 2018; Oh and Suh 2018). Though the simulations covering the whole country, we target over the Han 160 
River basin (HRB) and Nakdong River basin (NRB) for the streamflow analyses, which are the two largest 161 
river basins in South Korea taking up more than two-thirds of the area and a large portion of the population 162 
(Lee et al. 2019b). Meanwhile, to highlight the effect on uncertainty reduction from the climate scenarios, 163 
we mostly focus on the performance during the wet season (June to September, JJAS) and the high flows. 164 

2.2 Climate simulations 165 

Table 1 lists the 3 [CMIP5 models] × 3 [resolutions] =9 climate projections under RCP8.5 scenario used in 166 
this study. The three CMIP5 models (i.e., CCSM4, NorESM1-M, and HadGEM2-ES, hereinafter as CCSM4, 167 
NorESM, and HadGEM2) were carefully selected to cover varying climate sensitivities and they all 168 
demonstrated reliable performances over East Asia. Then, a designated one-way double-nested system in the 169 
Weather Research and Forecasting model (WRF version 4.2, Skamarock et al. 2019) is used to downscale 170 
the three CMIP5 GCM projections into 20 km (hereinafter as WRF20) and 5 km (hereinafter as WRF05). 171 
Thus, for each CMIP5 model, we have climate simulations in the three resolutions (i.e., the original GCM, 172 
WRF20, and WRF05). The overall performance of the downscaling climate simulations and the added value 173 
of WRF05 were comprehensively evaluated in the previous studies (Qiu et al. 2020; Qiu and Im 2021). 174 

For driving the hydrological simulations, the daily time series of maximum temperature (Tmax), minimum 175 
temperature (Tmin), precipitation, and mean horizontal wind speed of the 9 climate simulations are needed. 176 
To resolve the discrepancy among horizontal resolution in the climate simulations, the four meteorological 177 
variables are first interpolated by distance-weighted average remapping onto the 0.125° grid (i.e., the grid of 178 
VIC simulation) before further post-processing. 179 

2.3 BC methods 180 

The principle of BC is to use observation as predictands for calibrating the simulated predictors. It can be 181 
used to correct the systematic bias in CM output, such as the overestimation of the occurrence of wet days 182 
and/or the underestimation of heavy precipitation (Maraun 2016). It is used to post-process either GCM or 183 
RCM data in almost all hydrological studies. Here, four BC methods are applied to three meteorological 184 
variables, i.e., daily Tmax, daily Tmin, and daily precipitation, for evaluating the effect of different 185 
combinations of climate simulations and BC methods on hydrological projections. The horizontal wind speed 186 
is not corrected because the BC of wind speed has little effect on the runoff projections (Haddeland et al. 187 
2012). Instead, for both the hydrological simulation in REF and FUT, the same original wind speed data from 188 
REF simulations is used so that no consideration is given to its bias and the change under global warming. 189 

The in-situ meteorological data used for correction is from 57 observation stations maintained by the Korean 190 
Meteorological Administration (KMA) during 1986-2005 (hereinafter as OBS). The station data is first 191 
interpolated onto the 0.125° grid (i.e., the grid of VIC simulation) for consistency with the model data, and 192 
then the BC is applied on a grid-point base. A sliding window of three months central with each calendar 193 
month is used to consider the seasonality following Teutschbein and Seibert (2012) and Cannon (2018). 194 

The four state-of-the-art BC methods used are namely Variance Scaling for temperature and Power 195 
Transformation for precipitation (VAPT), Empirical Quantile Mapping (EQM), Quantile Delta Mapping 196 
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(QDM), and Multivariate Bias Correction with the N-dimensional probability density function (MBCn). 197 
Specifically, VAPT, EQM, and QDM are applied by the R package “downscaleR” (version 3.1.0) (Bedia et 198 
al. 2020) and MBCn is applied by the R package “MBC” (version 0.10-5) (Cannon 2020). For the comparison, 199 
the raw climate simulation output without BC (hereinafter as RAW) is also used for hydrological simulation. 200 
Here, we include a brief introduction of the four BC methods below, but more detailed information can be 201 
reached from the relevant references.  202 

VAPT is the combination of two relatively simple approaches for correcting temperature and precipitation, 203 
respectively, based on the monthly mean and variance (Chen and Dudhia 2001; Leander and Buishand 2007). 204 
Quantile Mapping (QM) methods are the most popular BC technique and they follow the basic principle to 205 
make the Cumulative Distribution Function (CDF) of the modeled data equal to that of the observation after 206 
correction. EQM is one of the most extensively used QM methods and it uses the empirical CDF for the 207 
correction instead of assuming a parametric distribution (Teutschbein and Seibert 2012). QDM is a more 208 
advanced QM method because it tries to preserve the projected relative change in quantiles by removing and 209 
adding the future trend before and after QM (Cannon et al. 2015). Lastly, MBCn is a relatively “high-level” 210 
approach that uses an image processing technique to conduct multivariate-based BC. Unlike the other three 211 
methods that can correct only a single meteorological variable, it is applied to multiple variables at the same 212 
time by considering their joint dependence while also preserving the relative change pattern. Fig. 2 shows an 213 
illustrative example of the pairwise bivariate correlations for the observation and model output in this study. 214 
The correlation pattern in REF corrected by MBCn is more scattered, showing a higher similarity to OBS. 215 
The characteristics that the bias-corrected joint dependence in FUT depends on both the MBCn correcting 216 
algorithm calibrated for REF and the projected changes in the RAW may make MBCn better than the other 217 
three BC methods (Cannon 2018).  218 

2.4 Hydrological simulation 219 

To simulate the streamflow over South Korea, the bias-corrected and the RAW meteorological variables are 220 
fed into the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model (Liang et al. 1994; Hamman 221 
et al. 2018)) to generate the runoff. For simplicity, the corresponding experiments are called the 222 
“ModelResolution-Period_BC method”. For example, CCSM4WRF20-REF_VAPT is the 20-km WRF downscaling of CCSM4 223 
for the REF period corrected by the VAPT method. Note that “ENS” stands for the ensemble mean of the 224 
output from the hydrological simulations driven by CCSM4, NorESM, and HadGEM2 (or ensemble mean 225 
of the hydrological output driven by their downscaling products), instead of using the ensemble-mean 226 
meteorological inputs to drive the hydrological simulations. And “ENSBC” is used at the subscript for 227 
representing the ensemble mean of the hydrological simulations driven by the same CM data but corrected 228 
by four different BC methods.  229 

VIC is a large-scale, semi-distributed HM that has been applied widely for the analysis and assessments of 230 
climate change impacts on water resources by being coupled to different climate scenarios (e.g., Liang et al. 231 
1994; Bae et al. 2015). A 0.125° grid system covering South Korea except for the Jeju Island represented as 232 
575 grid points is employed by VIC in this study (Fig. 1b). For hydrological simulations in the VIC, the 233 
geophysical datasets with the different spatial resolutions are collected from various sources and aggregated 234 
onto the 0.125° grid. The 100-m Digital elevation model (DEM) data is obtained from the Korean National 235 
Geographic Information Institute (NGII Korea). Soil data with a 1: 25,000 scale map is from Korea Rural 236 
Development Administration (RDA), and land cover data with a 1-km resolution is collected from the Water 237 
Resources Management Information System (WAMIS) of Korea. The VIC physics configuration follows 238 
Kim et al. (2020) that is set up specifically for this region and it has been proved to show optimal performance 239 
through sensitivity tests. Here, we perform an observational run for the validation of HM performance, in 240 
which precipitation observation during 1986-2005 maintained by the Korea Ministry of Environment (MOE) 241 



7 

 

from WAMIS is additionally used for the forcing together with the KMA OBS data mentioned in Section 2.3. 242 
Fig. 3 shows the daily time series (left column) during REF of the simulated streamflow from the validation 243 
run and the measured streamflow. Since streamflow measurement is only available over specific sites (e.g., 244 
dam), the Chungju and Andong dams are selected respectively for the two target river basins. The in-situ 245 
measured daily inflow at the two dams were collected by WAMIS, and the simulation values are obtained by 246 
adding all the runoff values of VIC grids within the Chungju and Andong dam basins. Such a validation 247 
process has been widely used for the HM without horizontal routing module (Safeeq et al. 2014; Kim et al. 248 
2020). The time series shows that the simulated streamflow well follows the measured dam inflows both in 249 
terms of the temporal variation and the runoff magnitude. The Nash-Sutcliffe efficiency (NSE) and percent 250 
bias (PBIAS) of the VIC model are 0.70/0.71 and -2.3%/-3.55% for Chungju/Andong dam basin respectively. 251 
These statistics demonstrate the ability of the VIC to capture the streamflow variability. Apart from the time 252 
series, Fig. 3 (right column) also provides a day-to-day validation based on the streamflow intensity. It shows 253 
that the HM better captures the high flows than the low flows that it may overestimate the flow less than 10 254 
CMS. However, the simulation also tends to underestimate the high flows for the extreme tail, which may be 255 
due to the insufficient resolution in the OBS data, which has been smoothed due to the interpolation process, 256 
especially for the extremely heavy precipitation cases. 257 

3 Result 258 

3.1 The effect of multiple BC methods on precipitation and temperature 259 

Before the streamflow projections, we first have a look at the precipitation and temperature in different 260 
combinations of climate simulations and BC methods. Fig. 4 presents the spatial pattern of the climatological 261 
mean Tmax, Tmin, and precipitation in ENSREF and the OBS in JJAS for reference. It is clear that all the four 262 
BC methods tend to reduce the bias in the climate simulations, regardless of how large the bias in the raw 263 
output is (e.g., precipitation in ENSGCM-REF_RAW). Although slight differences exist among different BC 264 
methods, all of them show similarly good performance in terms of the seasonal mean, which is not surprising 265 
because BC methods are usually well designed for calibrating the monthly mean. 266 

Then, following Cannon et al. (2015) and Seo et al. (2019), several Expert Team on Climate Change 267 
Detection and Indices (ETCCDI) indices (Zhang et al. 2011) are used for evaluating the performance of the 268 
BC methods. Seo et al. (2019) suggested that 7 ETCCDI indices together with the annual mean can be used 269 
as the representative meteorological indices for regional hydrologic impact studies. Here, we exclude those 270 
indices more related with the dry season or low flows and additionally include two precipitation indices. 271 
Altogether, 6 ETCCDI indices (Table 2) are calculated from all the 45 climate scenarios on a grid-point base. 272 
These indices cover both those for the extremes (e.g., Rx1day) and those for the annual mean/accumulation 273 
(e.g., SDII). Also, we include the JJAS mean of precipitation, Tmax, and Tmin instead of the annual mean in 274 
the evaluation, thus the 9 indices altogether can give a comprehensive assessment of the BC methods 275 
regarding the climate indices for hydrologic impact studies during the wet season. 276 

The distributions of the 9 indices during REF from the model are evaluated against those from OBS using 277 
Kolmogorov-Smirnov (K-S) test at a 1% significance level. A detailed technical explanation can be found in 278 
Cannon et al. (2015). Fig. 5 shows the proportion of grid points passing local K-S diagnostic tests for each 279 
index in each climate scenario, with warm colors standing for a higher proportion and thus better performance. 280 
The test result indicates a significant bias in the simulated distribution of the indices in RAW climate 281 
simulations. With the downscaling of increasing resolution (GCM-WRF20-WRF05), the bias reduces but 282 
still exists. BC helps to significantly improve the modeled distribution that the portion of grid points passing 283 
K-S exceeds 90% for most indices, except for CWD and SDII, which demonstrates the necessity of BC as a 284 
pre-processing tool for hydrological simulations. Also, for TN90p in NorESMGCM-REF, it seems that BC 285 
cannot improve its annual distribution. Comparatively, despite the resolution of the models, the performance 286 
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of BC methods can be roughly ranked as MBCn > QDM > EQM > VAPT, which generally corresponds with 287 
their degree of complexity and the computation cost. On the other hand, although BC can significantly reduce 288 
the bias in the RAW, it does not mean that the quality of the RAW climate simulations is not meaningful. 289 
Instead, even after BC, WRF05 still overweighs WRF20 in the K-S test, not to mention the original GCM. It 290 
indicates that the added value of high-resolution RCM would not be erased under the use of BC. Instead, the 291 
hybrid of WRF05 with MBCn, i.e., the best-performing dynamical downscaling with best-performing BC 292 
approach, yields a pass-portion of over 90% for all the indices including CWD, SDII, and TN90p for NorESM. 293 
While the bias-corrected result of the climatological mean seems to be independent of the quality of the RAW 294 
simulation, which is also a common skepticism about the necessity of dynamical downscaling (Lee et al. 295 
2018b), this result proves that the quality of RAW still affects the extreme statistics even after BC. It is 296 
because that if the deviation of the original model simulation is prominent from the observation, the 297 
correction factors will also be large, potentially destructing the distribution of extremes that are often non-298 
linear to the climatological mean. 299 

Moving to how the BC affects the projected change in precipitation and temperature, Fig. 6 shows the relative 300 
change of the climatological mean in JJAS. Although all the BC methods retain the change signs from the 301 
RAW, the discrepancy between the relative change in the bias-corrected products and that in the RAW varies 302 
with the CM resolution. It is within only ±3% for WRF05, but that in the GCMs is much larger. Especially, 303 
the EQM-corrected changes in Tmax and Tmin for ENSGCM are much higher than the others; and the VAPT- 304 
and EQM- corrected changes in precipitation also show more than 9% deviation from RAW in this case. Here, 305 
VAPT and EQM, compared to QDM and MBCn, do not give consideration to preserving the change trend 306 
during the correction processes. While this will not significantly affect the result of the high-resolution 307 
downscaled climate variables, it can lead to a large deviation from the RAW in the coarse resolution run 308 
given its large bias in the original climate simulations. 309 

For zooming into the difference of projected change of the four BC methods, distributions over South Korea 310 
of the projected relative changes in the mean Tmax, Tmin, precipitation, and Rx5day as a representative of 311 
extreme precipitation, are displayed in Fig. 7. The black is drawn from the RAW, while the colored boxes are 312 
from the bias-corrected distributions. It shows that in the coarse resolution, the spatial variation is relatively 313 
smaller than in the high resolution, especially for precipitation and its extreme. BC can increase the spatial 314 
variability for all the simulations, but the resulted distributions from different BC methods also show 315 
differences. Among the four BC techniques applied, the delta method is adopted in QDM and MBCn that it 316 
may help them to preserve the change trend across different quantiles by design. EQM and VAPT, on the 317 
other, show large positive outliers compared to the RAW, which is also shown in Cannon et al. (2015). Here, 318 
in the ENSGCM, the changes in EQM-corrected mean Tmax and Tmin are larger than those corrected by other 319 
methods, and the changes in mean precipitation and Rx5day also show a large spread when corrected with 320 
different BC methods. For example, for Rx5day, the median in ENSGCM_VAPT is around 10% higher than 321 
ENSGCM_MBCn. Comparatively, such a difference becomes much smaller as the resolution increases with 322 
downscaling. In ENSWRF05, the larger change for EQM-corrected temperatures becomes smaller; and more 323 
importantly, it shows a primarily similar distribution for the precipitation change corrected by the four BC 324 
methods. 325 

As a whole, BC shows remarkable performance in reducing the bias of the CM simulations, both for the 326 
mean and the extremes. Considering both the REF and FUT periods, QDM and MBCn outweigh VAPT and 327 
EQM, while MBCn also shows unique privilege in additionally preserving inter-dependence among the 328 
corrected variable. However, the results across different climate simulations corrected by different BC 329 
methods prove that the added value of dynamical downscaling, including that of increasing resolution, still 330 
exists even after applying BC. The best combination of "CM-BC" evaluated here is "WRF05-MBCn". 331 
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3.2 Reducing the uncertainty in historical streamflow simulation 332 

In this section, we turn our focus onto the simulated streamflow for the REF period driven by the modeled 333 
meteorological variables, using the OBS-driven VIC simulation as the reference for validation. First, the 334 
analysis begins with the climatological monthly total runoff over the two basins (Fig. 8). The shaded area is 335 
from the OBS run; the black dashed lines mark the hydrological simulations driven by RAW and the colored 336 
lines delegate those driven by the bias-corrected meteorological conditions. Not surprisingly, there is little 337 
difference brought by different BC methods on the monthly time scale, which is consistent with the finding 338 
in Section 3.1. Also, compared to the RAW, BC improves the simulated runoff for all the models and 339 
resolutions. On the other hand, discrepancies among the CMIP5 models and the CM resolutions can be found. 340 
All the three original GCMs underestimate the peaks of streamflow in the wet season for the two basins. 341 
Although BC helps reduce such biases, the bias is still found especially for CCSM4GCM-REF over HRB and 342 
HadGEM2GCM-REF over NRB. The BC procedure that the correcting coefficient is obtained from a 90-day 343 
window centered for individual months may explain the bias in the annual cycle. If the bias in the original 344 
climate simulation is too large, then the effect of the 90-day window will also be noticeable on the monthly 345 
statistics, though it may not be obvious when considering the seasonal mean. Comparatively, the downscaling 346 
with WRF improves the simulated annual cycle so that the simulated runoff after BC is much closer to the 347 
OBS. Here, the performances of WRF20 and WRF05 with BC are similar, which is reasonable since WRF20 348 
has also been proved to perform well for the climatological monthly statistics in the previous study (Qiu et 349 
al. 2020). Fig. 8 also indicates a clear annual phase of the streamflow over South Korea. While the 350 
hydrological simulations driven by bias-corrected meteorological conditions can generally capture the entire 351 
annual cycle indicated in the OBS run, this study mainly focuses on the “wet season” defined as June to 352 
September that is a period with higher runoff. 353 

Fig. 9a presents the mean for the wet season from ENSGCM, ENSWRF20, and ENSWRF05 to evaluate the spatial 354 
patterns of the simulated runoff. The result shows that more extensive runoff is found for the HRB than the 355 
NRB, and the NRB shows higher runoff on the south than the north. Such spatial characteristics are missed 356 
in ENSGCM-REF_RAW, accompanied by a significant underestimation in the magnitude. Downscaling much 357 
improves the spatial variation while ENSWRF05-REF_RAW reduces the wet bias in ENSWRF20-REF_RAW. For all the 358 
resolutions, BC significantly helps improve the simulated runoff. It reduces the bias in the runoff magnitude 359 
and improves the spatial distribution, which results in the highly similar patterns of the wet season mean 360 
runoff despite the BC methods used and the original climate simulation resolution. 361 

For the mean of the annual maximum daily streamflow (AMDS), which is one of the indices for representing 362 
the high flows (Lee et al. 2019a) (Fig. 9b), ENSGCM-REF_RAW again barely captures either the magnitude or 363 
spatial distribution. The downscaling effectively demonstrates the effect of resolution in improving the 364 
reproduction of spatial variability, but it also inherits the problem of overestimation from the precipitation 365 
representation (Qiu and Im 2021). However, as mentioned in Section 2.4, it should also be noted that the 366 
hydrological simulation driven by interpolated station data (i.e., the OBS run) may have the problem of 367 
underestimated high flow, especially for the extremely heavy case. The application of BC, while greatly 368 
improving the performance of ENSGCM-REF and also reducing the overestimation in NRB for ENSWRF20-REF 369 
and ENSWRF05-REF, seems to "over-correct" the high flow for HRB in the hydrological simulations driven by 370 
downscaled products. The high flows in HRB from the simulations with BC show a larger discrepancy from 371 
OBS than those with RAW. This may be due to the fact that the BC coefficients for precipitation in WRF20 372 
and WRF05 are primarily scaled by the majority of the distribution. That is, the correction coefficient is made 373 
to be negative to reduce the overestimation. However, for the very extreme cases represented by AMDS that 374 
are actually not overestimated in the RAW, the negative correction coefficients, on the contrary, distort the 375 
distribution of extremes. 376 



10 

 

In all, the above analyses show the benefits and necessity of BC for post-processing either GCM or RCM 377 
output before applying them to the HMs. It is useful in improving the simulated streamflow especially when 378 
there is a large bias in the original climate simulations. However, the BC may cause the problem in the very 379 
extreme values (e.g., AMDS) when the signal of their bias is different from that in the majority of the 380 
distribution. 381 

3.3 Reducing the uncertainty in future streamflow projection 382 

For the streamflow projection for the future, Fig. 10 presents the spatial pattern of the relative change in the 383 
runoff  during wet season from the hydrological simulations driven by RAW climate simulations and the 384 
ensemble mean of the hydrological simulations driven by same CM data corrected by four different BC 385 
methods (i.e., ENSBC). The signal of the intensified streamflow occupies a large area in the target basins, 386 
but disagreement among the models can still be seen where uncertainty has been found in the projected 387 
precipitation change, mainly in the middle of Korean Peninsula (Qiu and Im 2021). The simulated change of 388 
streamflow follows a similar spatial pattern with precipitation for all the models in all the resolutions, which 389 
is understandable because precipitation takes up the major contribution to wet season river runoffs. The inter-390 
model uncertainty is highly subject to the levels of warming in the corresponding GCMs, that the decreasing 391 
signals appear over the middle and south part of the country under a low warming level (i.e., CCSM4 in this 392 
study). Similar precipitation change pattern were projected in previous downscaling studies with other GCMs 393 
and RCMs (Kim et al. 2018; Oh and Suh 2018), and such uncertainty in precipitation projection is then 394 
reflected on the streamflow projection. 395 

On the other hand, for the comparison between RAW and ENSBC, the simulated runoff from bias-corrected 396 
meteorological conditions shows a qualitatively similar pattern with RAW in terms of the change signal and 397 
spatial distribution. However, the coarse resolution shows quite a large difference in the projected change 398 
magnitude with and without BC. For example, the relative change in NorESMGCM_ENSBC is more than two 399 
times that in NorESMGCM_RAW. Such a large difference in the hydrological simulations driven by climate 400 
conditions with and without BC is a non-negligible uncertainty in the understanding of the projected change. 401 

Compared to the seasonal mean, the high flows may need more of our attention due to their severe impacts 402 
on human society. Thus, to have a deeper investigation of how the resolution of dynamical downscaling and 403 
statistical BC affect the streamflow projections, Fig. 11 presents the relative change of two high flow indexes, 404 
i.e., AMDS and Q95 (the daily streamflow exceeded 95% of the time throughout the year), from all the 405 
hydrological simulations. Note that the high flow indexes in Fig. 11 are derived on a basin basis rather than 406 
a grid basis. That is, the daily streamflow of each grid point is summed up over the basin first before 407 
calculating the indexes. The black is from the RAW and different colors are for different BC methods. Similar 408 
to the mean of wet season, the result shows that all the simulations project the high flow to increase. Also, 409 
the high flow may likely witness a considerably larger magnitude of increase than the seasonal mean, which 410 
is consistent with the general finding that the heavy precipitation will increase more intensely than the 411 
average. 412 

However, one thing that should be stressed is that the discrepancy in the projected change among the BC 413 
methods varies with the climate simulation resolution. There is a distinctly smaller range of spread among 414 
the different BC methods for WRF05-driven hydrological simulations than those driven with WRF20 and 415 
GCM in the projected increase. For example, the NorESMGCM with different BC methods shows an increasing 416 
rate from 60% to 110% for the AMDS over NRB, while that range for NorESMWRF05 is less than 3%. The 417 
large spread brought with different BC methods in the GCM-driven hydrological simulations can be 418 
significantly reduced by the downscaling with increasing resolution, which can be seen as the reduction of 419 
uncertainty in the projected result. Especially for WRF05, not only is the deviation range narrowed among 420 
different BC methods, the projected high flow change driven by meteorological conditions with and without 421 
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BC is also relatively small. This result is very meaningful because if the difference brought with BC methods 422 
can lead to such large uncertainty in the result, then it is hard to tell if the projected streamflow change is 423 
reliable or not. Especially, hydrological projections normally just use one or two BC methods to correct the 424 
meteorological variables. It is very likely that they simply rely on the bias-corrected result during the 425 
historical period but ignore such huge uncertainty in the projected streamflow change. 426 

4. Discussion and summary 427 

This study investigates the effect of very-high-resolution dynamical downscaling in the application of 428 
hydrological impact assessment. Although the benefits of RCM have been elaborated by comparing against 429 
observation and exploring the physical mechanisms behind it in many previous studies, the direct evaluation 430 
in hydrological implication may be more straightforward and meaningful for the end users (e.g., hydrological 431 
modeling community). In this regard, we use the multi-model, multi-resolution climate simulation ensemble 432 
to feed HM in combination with different BC methods to project the streamflow change in South Korea at 433 
the end of the 21st century. Three CMIP5 GCMs are downscaled into WRF20 and WRF05, and four BC 434 
methods covering simple-to-complicated approaches are used for post-processing the climate data to 435 
facilitate a comprehensive assessment. 436 

The results from the original climate simulations and the hydrological simulations driven by RAW show that 437 
high-resolution dynamical downscaling can significantly improve the simulated meteorological and 438 
hydrological variables, while we also acknowledge that BC plays an indispensable role in reducing the 439 
systematic bias in CM. However, although the bias-corrected product seems similar for the simulated 440 
seasonal mean during the REF period, this does not mean that BC would erase the added value of high-441 
resolution RCM. From the one side, WRF05 still preserves a better performance than GCM and WRF20 after 442 
BC for the reproduction of spatial variability and extreme indices in the REF period. On the other hand, more 443 
importantly, the higher resolution downscaling can help reduce the uncertainty of the projected change 444 
brought by BC.  445 

For all the hydrological simulations considered, they agree with an increase in wet season streamflow and 446 
especially the high flows over the targeted basins for the future. However, discrepancies can be found among 447 
the hydrological simulations driven by different GCMs, different resolutions of RCM, and the climate 448 
simulation post-processed by different BC methods. Although the projected streamflow change generally 449 
follows the pattern of change in the simulated precipitation, it is found that the improved representation in 450 
WRF05 can help reduce the uncertainty brought by different BC methods in the projected streamflow change, 451 
particularly for the high flows. The non-negligible bias in the coarse-resolution climate simulations during 452 
the REF period, on the contrary, leads to the large correcting coefficients that are very likely to induce 453 
considerable difference among different BC methods for the projected change, which greatly impairs the 454 
reliability of the subsequent hydrological projections. 455 

Currently, there are more and more high-resolution dynamically-downscaled climate products available, but 456 
there is still a long way to go for advertising their value to the end-users. Thus, the added value assessment 457 
of high resolution RCM should not be limited to region-specific climate features; a straightforward 458 
comparison for the hydrological simulations driven by different CM products may enable a more convincing 459 
evaluation from the perspective of impact assessment application. Note that this study does not neglect the 460 
effect of the statistical post-processing tools. On the other hand, we emphasize that the high resolution 461 
dynamical downscaling can reduce the uncertainty in BC while acknowledging the effect of BC on removing 462 
the systematic bias in climate simulations. Some studies stick to using GCMs for driving HM because they 463 
argue that BC is enough for reducing the bias seen in the reference period. However, this study points out 464 
that although the bias-corrected product seems “excellent” during the reference period, there can be a 465 
significant difference in the projected change using different BC methods. While previous study also pointed 466 
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out the impact of BC on runoff will increase with the bias of CMs (Muerth et al. 2013), this study is the first 467 
trial from the perspective of the large ensemble projections to assess the impact the very-high-resolution in 468 
dynamical downscaling to the modeling chain of CM-BC-HM. Although we do not explicitly quantify the 469 
uncertainty contribution from each source, which is not the focus of this study, we clearly demonstrate that 470 
the high-resolution RCM can narrow the spread from different BC methods and thus reduce the uncertainty 471 
in the hydrological projections. 472 

Altogether, the comparative assessment provides valuable information for understanding the hydrological 473 
change under global warming of this region and for assessing the resolution effect in the model chain of 474 
climatic – hydrological simulations. Especially, the added value found in the hydrological application is not 475 
common, and it offers an added value in a wide-ranging context and thus can serve to advance the 476 
understanding and utilization of climate downscaling. Also, although some of the projected changes are 477 
consistent with the findings in previous studies, the generated hydroclimate dataset still provides an 478 
unprecedented multi-model, high-resolution ensemble of hydrological projections for this region. It is 479 
meaningful for the scientific and end-user communities for the process understanding and impact assessment. 480 

For further study, more HMs should be considered for a better understanding of the uncertainty stemming 481 
from the HM structure, allowing a more comprehensive assessment of the climate-hydrology model chain. 482 
In particular, the HM applied, VIC, is a semi-distributed model. Therefore, it is necessary to evaluate and 483 
compare the uncertainty from HMs with a different structure such as lumped models or fully-distributed 484 
models. Also, only one resolution, 12.5 km, is applied for the HM. For thoroughly examining the effect of 485 
high resolution dynamical downscaling, a larger ensemble of HM with different resolutions may help gain a 486 
clearer idea of the appropriate resolution necessary for a reasonable hydrological climate change impact 487 
assessment. 488 
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Figures

Figure 1

(a) Experimental framework that shows the combinations of different CMIP5 models, CM resolutions, and
BC methods; (b) Elevation map of the study area derived from the 30-m Digital Elevation Map (unit: m)
and the grid system employed by the VIC model in 0.125° grid over South Korea. The tributaries of the
main rivers are marked by the light blue lines. This study focuses on Han River basin (HRB) and Nakdong
River basin (NRB) outlined by the thick blue and green lines, respectively. The Chungju and Andong dam
basins (shaded area) are selected for validation for HRB and NRB respectively.



Figure 2

Illustrative example of the correlation matrices among daily Tmax, Tmin, and precipitation (pr) during
JJAS from (a) OBS, (b) RAW, and (c-f) BC products using VAPT, EQM, QDM and MBCn for (1) REF and (2)
FUT for a randomly select grid in CCSM4WRF05-REF.



Figure 3

(left column) The daily time series of measured in�ow and simulated stream�ow in observational run;
and (right column) the scatter plot of daily measured in�ow (x-axis) versus observational run simulated
stream�ow (on the y-axis) in the (a) Chungju dam basin and (b) Andong dam basin (unit: CMS).



Figure 4

Spatial maps of climatological mean precipitation (pr), Tmax, and Tmin in JJAS from (a) ENSGCM-REF,
(b) ENSWRF20-REF, and (c) ENSWRF05-REF of (1) RAW and its BC products using (2) VAPT, (3) EQM, (4)
QDM, and (5) MBCn. (6) is the OBS used as the reference for BC. The value at the top right of each sub-
�gure is the spatial-average value over South Korea land.



Figure 5

Plot showing the proportion of grid points passing local K-S diagnostic tests for each ETTCDI index (row
1-6) and JJAS mean precipitation (pr), Tmax, and Tmin (row 7-9) during REF for (a) GCM; (b) WRF20; and
(c) WRF05. The letter “C” stands for result from “CCSM4”, “N” for “NorESM”, “H” for “HadGEM2”.

Figure 6

Spatial maps of the relative change (FUT vs. REF, unit: %) of climatological mean pr, Tmax, and Tmin in
JJAS from (a) ENSGCM, (b) ENSWRF20, and (c) ENSWRF05 of (1) RAW and its BC products using (2)



VAPT, (3) EQM, (4) QDM, and (5) MBCn. The value at the top right of each sub-�gure is the spatial-
average value over South Korea land.

Figure 7

Boxplots of the relative change (FUT vs. REF, unit: %) in wet season mean Tmax & mean Tmin (left y-
axis), and wet season mean Pr and rx5day (right y-axis) at each grid cell over the South Korea domain
(land only) from (a) ENSGCM, (b) ENSWRF20, and (c) ENSWRF05. “R”, “V”, “E”, “Q”, and “M” stand for
RAW, VAPT, EQM, QDM and MBCn respectively. The median change over the domain is given by the
central line within each box.



Figure 8

Annual cycle of the climatological monthly mean total runoff during REF over (1) HRB and (2) NRB. The
lines are from hydrological simulations driven by (a) CCSM4, (b) NorESM, and (c) HadGEM2 in GCM (�rst
row), WRF20 (second row), and WRF05 (third row). The shading is obtained from the hydrological
simulation driven by OBS. The total runoff is obtained by adding all the stream�ow values of HM grids
within the basin.



Figure 9

Spatial pattern over HRB and NRB of the 30-year mean runoff of (a) wet season mean (JJAS) and (b) the
high �ow represented by the Annual Maximum daily stream�ow (AMDS) in ENSGCM (�rst row),
ENSWRF20 (second row), and ENSWRF05 (third row) for hydrological projections using different BC
methods and RAW. The fourth row is from OBS run. The value on the top-right corner is the spatial-
average runoff over HRB/NRB. The unit is mm/day.



Figure 10

Spatial pattern of the relative change (%, FUT vs. REF) of simulated runoff during wet season over HRB
and NRB from (a,e) CCSM, (b,f) NorESM, (c,g) HadGEM2. (a-d) is from RAW and (e-h) the ensemble mean
of those corrected by VAPT, EQM, QDM, and MBCn. The value on the top-right corner is the spatial-
average runoff over HRB/NRB.



Figure 11

Relative change (FUT vs. REF, unit: %) of high �ow indexes of (a,c) AMDS and (b,d) Q95 over the (a-b)
HRB and (c-d) NRB from different hydrological simulations. “C”, “N”, “H” stand for CMIP5 models of
“CCSM4”, “NorESM” and “HadGEM2”, and “G”, ”20”, “05” stand for the resolution of “GCM”, “WRF20”, and
“WRF05”.


