[1] A.C. da Costa, F. Santa-Cruz, L.A.R. Mattos, M.A. Rego Aquino, C.R. Martins, A.A. Bandeira Ferraz, J.L. Figueiredo, Cathepsin S as a target in gastric cancer, Mol Clin Oncol 12(2) (2020) 99-103.
[2] M.F. Heymann, F. Lézot, D. Heymann, The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma, Cellular immunology 343 (2019) 103711.
[3] L. Marchandet, M. Lallier, C. Charrier, M. Baud'huin, B. Ory, F. Lamoureux, Mechanisms of Resistance to Conventional Therapies for Osteosarcoma, Cancers (Basel) 13(4) (2021).
[4] K.H. Lu, R.C. Lin, J.S. Yang, W.E. Yang, R.J. Reiter, S.F. Yang, Molecular and Cellular Mechanisms of Melatonin in Osteosarcoma, Cells 8(12) (2019).
[5] G.T. Lim, D.G. You, H.S. Han, H. Lee, S. Shin, B.H. Oh, E.K.P. Kumar, W. Um, C.H. Kim, S. Han, S. Lee, S. Lim, H.Y. Yoon, K. Kim, I.C. Kwon, D.G. Jo, Y.W. Cho, J.H. Park, Bioorthogonally surface-edited extracellular vesicles based on metabolic glycoengineering for CD44-mediated targeting of inflammatory diseases, Journal of extracellular vesicles 10(5) (2021) e12077.
[6] Y. Dong, A.A. Arif, J. Guo, Z. Ha, S.S.M. Lee-Sayer, G.F.T. Poon, M. Dosanjh, C.D. Roskelley, T. Huan, P. Johnson, CD44 Loss Disrupts Lung Lipid Surfactant Homeostasis and Exacerbates Oxidized Lipid-Induced Lung Inflammation, Front Immunol 11 (2020) 29.
[7] S. Li, C. Li, Y. Zhang, X. He, X. Chen, X. Zeng, F. Liu, Y. Chen, J. Chen, Targeting Mechanics-Induced Fibroblast Activation through CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-Induced Silicosis, Theranostics 9(17) (2019) 4993-5008.
[8] R. Pothuraju, S. Rachagani, S.R. Krishn, S. Chaudhary, R.K. Nimmakayala, J.A. Siddiqui, K. Ganguly, I. Lakshmanan, J.L. Cox, K. Mallya, S. Kaur, S.K. Batra, Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance, Mol Cancer 19(1) (2020) 37.
[9] K.E. Gomez, F. Wu, S.B. Keysar, J.J. Morton, B. Miller, T.S. Chimed, P.N. Le, C. Nieto, F.N. Chowdhury, A. Tyagi, T.R. Lyons, C.D. Young, H. Zhou, H.L. Somerset, X.J. Wang, A. Jimeno, Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells, Cancer Res 80(19) (2020) 4185-4198.
[10] X. Liu, R. Taftaf, M. Kawaguchi, Y.F. Chang, W. Chen, D. Entenberg, Y. Zhang, L. Gerratana, S. Huang, D.B. Patel, E. Tsui, V. Adorno-Cruz, S.M. Chirieleison, Y. Cao, A.S. Harney, S. Patel, A. Patsialou, Y. Shen, S. Avril, H.L. Gilmore, J.D. Lathia, D.W. Abbott, M. Cristofanilli, J.S. Condeelis, H. Liu, Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models, Cancer discovery 9(1) (2019) 96-113.
[11] H. Cao, J. Xiao, M.E. Reeves, K. Payne, C.S. Chen, D.J. Baylink, G. Marcucci, Y. Xu, Discovery of proangiogenic CD44+mesenchymal cancer stem cells in an acute myeloid leukemia patient's bone marrow, J Hematol Oncol 13(1) (2020) 63.
[12] T. Kong, R. Ahn, K. Yang, X. Zhu, Z. Fu, G. Morin, R. Bramley, N.C. Cliffe, Y. Xue, H. Kuasne, Q. Li, S. Jung, A.V. Gonzalez, S. Camilleri-Broet, M.C. Guiot, M. Park, J. Ursini-Siegel, S. Huang, CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers, Cancer Res 80(3) (2020) 444-457.
[13] C. Zheng, F. Tang, L. Min, F. Hornicek, Z. Duan, C. Tu, PTEN in osteosarcoma: Recent advances and the therapeutic potential, Biochim Biophys Acta Rev Cancer 1874(2) (2020) 188405.
[14] J. Cui, D. Dean, F.J. Hornicek, Z. Chen, Z. Duan, The role of extracelluar matrix in osteosarcoma progression and metastasis, Journal of experimental & clinical cancer research : CR 39(1) (2020) 178.
[15] A. Ouhtit, B. Rizeq, H.A. Saleh, M.M. Rahman, H. Zayed, Novel CD44-downstream signaling pathways mediating breast tumor invasion, International journal of biological sciences 14(13) (2018) 1782-1790.
[16] P. Govindaraju, L. Todd, S. Shetye, J. Monslow, E. Puré, CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing, Matrix biology : journal of the International Society for Matrix Biology 75-76 (2019) 314-330.
[17] C. Chen, S. Zhao, A. Karnad, J.W. Freeman, The biology and role of CD44 in cancer progression: therapeutic implications, J Hematol Oncol 11(1) (2018) 64.
[18] S.P.J. Joosten, M. Spaargaren, H. Clevers, S.T. Pals, Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance, Biochim Biophys Acta Rev Cancer 1874(2) (2020) 188437.
[19] Y. Yamada, T. Miyamoto, H. Kashima, H. Kobara, R. Asaka, H. Ando, S. Higuchi, K. Ida, T. Shiozawa, Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant, Free radical research 50(4) (2016) 414-25.
[20] T.T. Lah, M. Novak, B. Breznik, Brain malignancies: Glioblastoma and brain metastases, Semin Cancer Biol 60 (2020) 262-273.
[21] R. Bhattacharya, T. Mitra, S. Ray Chaudhuri, S.S. Roy, Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem-like properties to ovarian cancer cells, J Cell Biochem 119(4) (2018) 3373-3383.
[22] S. Liang, H.L. Li, G.Y. Han, J.H. Cui, CD44V6 regulates gastric carcinoma occurrence and development through up-regulating VEGF expression, European review for medical and pharmacological sciences 21(22) (2017) 5121-5128.
[23] D. Dhar, L. Antonucci, H. Nakagawa, J.Y. Kim, E. Glitzner, S. Caruso, S. Shalapour, L. Yang, M.A. Valasek, S. Lee, K. Minnich, E. Seki, J. Tuckermann, M. Sibilia, J. Zucman-Rossi, M. Karin, Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling, Cancer cell 33(6) (2018) 1061-1077.e6.
[24] A. Steimle, H. Kalbacher, A. Maurer, B. Beifuss, A. Bender, A. Schafer, R. Muller, I.B. Autenrieth, J.S. Frick, A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells, J Immunol Methods 432 (2016) 87-94.
[25] E. Song, W. Song, M. Ren, L. Xing, W. Ni, Y. Li, M. Gong, M. Zhao, X. Ma, X. Zhang, R. An, Identification of potential crucial genes associated with carcinogenesis of clear cell renal cell carcinoma, J Cell Biochem 119(7) (2018) 5163-5174.
[26] X. Wang, L. Xiong, G. Yu, D. Li, T. Peng, D. Luo, J. Xu, Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells, American journal of translational research 7(1) (2015) 100-10.
[27] M.C. Hsin, Y.H. Hsieh, P.H. Wang, J.L. Ko, I.L. Hsin, S.F. Yang, Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells, Cell Death Dis 8(10) (2017) e3089.
[28] R. Brown, S. Nath, A. Lora, G. Samaha, Z. Elgamal, R. Kaiser, C. Taggart, S. Weldon, P. Geraghty, Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics, Respir Res 21(1) (2020) 111.
[29] H.H. Lin, S.J. Chen, M.R. Shen, Y.T. Huang, H.P. Hsieh, S.Y. Lin, C.C. Lin, W.W. Chang, J.Y. Chang, Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca(2+) entry, Biochim Biophys Acta Mol Cell Res 1866(12) (2019) 118517.
[30] M.J. Hsieh, C.W. Lin, M.K. Chen, S.Y. Chien, Y.S. Lo, Y.C. Chuang, Y.T. Hsi, C.C. Lin, J.C. Chen, S.F. Yang, Inhibition of cathepsin S confers sensitivity to methyl protodioscin in oral cancer cells via activation of p38 MAPK/JNK signaling pathways, Scientific reports 7 (2017) 45039.
[31] J. Gautam, Y.K. Bae, J.A. Kim, Up-regulation of cathepsin S expression by HSP90 and 5-HT7 receptor-dependent serotonin signaling correlates with triple negativity of human breast cancer, Breast Cancer Res Treat 161(1) (2017) 29-40.
[32] J. Bai, W.B. Chen, X.Y. Zhang, X.N. Kang, L.J. Jin, H. Zhang, Z.Y. Wang, HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling, World journal of stem cells 12(1) (2020) 87-99.
[33] C.H. Lu, C.H. Lin, K.J. Li, C.Y. Shen, C.H. Wu, Y.M. Kuo, T.S. Lin, C.L. Yu, S.C. Hsieh, Intermediate Molecular Mass Hyaluronan and CD44 Receptor Interactions Enhance Neutrophil Phagocytosis and IL-8 Production via p38- and ERK1/2-MAPK Signalling Pathways, Inflammation 40(5) (2017) 1782-1793.
[34] H. Su, N. Na, X. Zhang, Y. Zhao, The biological function and significance of CD74 in immune diseases, Inflamm Res 66(3) (2017) 209-216.