Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. D66, 213–221.
Applebury, M.L., Peters, K.S., and Rentzepis, P.M. (1978). Primary intermediates in the photochemical cycle of bacteriorhodopsin. Biophys. J. 23, 375–382.
Balashov, S.P., Govindjee, R., Kono, M., Imasheva, E., Lukashev, E., Ebrey, T.G., Crouch, R.K., Menick, D.R., and Feng, Y. (1993). Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry 32, 10331–10343.
Balashov, S.P., Imasheva, E.S., Govindjee, R., and Ebrey, T.G. (1996). Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys. J. 70, 473–481.
Balashov, S.P., Imasheva, E.S., Ebrey, T.G., Chen, N., Menick, D.R., and Crouch, R.K. (1997). Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry 36, 8671–8676.
van den Berg, R., Du-Jeon-Jang, Bitting, H.C., and El-Sayed, M.A. (1990). Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin. Biophys. J. 58, 135–141.
Berman, H.M., Kleywegt, G.J., Nakamura, H., and Markley, J.L. (2012). The Protein Data Bank at 40: Reflecting on the Past to Prepare for the Future. Structure 20, 391–396.
Braiman, M.S., Mogi, T., Marti, T., Stern, L.J., Khorana, H.G., and Rothschild, K.J. (1988). Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27, 8516–8520.
Braiman, M.S., Bousche, O., and Rothschild, K.J. (1991). Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. Proc. Natl. Acad. Sci. 88, 2388–2392.
Brown, L.S., Bonet, L., Needleman, R., and Lanyi, J.K. (1993). Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Biophys. J. 65, 124–130.
Chandonia, J.-M., and Brenner, S.E. (2006). The impact of structural genomics: expectations and outcomes. Science 311, 347–351.
Dickopf, S., Alexiev, U., Krebs, M.P., Otto, H., Mollaaghababa, R., Khorana, H.G., and Heyn, M.P. (1995). Proton transport by a bacteriorhodopsin mutant, aspartic acid-85-->asparagine, initiated in the unprotonated Schiff base state. Proc. Natl. Acad. Sci. 92, 11519–11523.
Druckmann, S., Ottolenghi, M., Pande, A., Pande, J., and Callender, R.H. (1982). Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry 21, 4953–4959.
Ernst, O.P., Lodowski, D.T., Elstner, M., Hegemann, P., Brown, L.S., and Kandori, H. (2014). Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163.
Fahmy, K., Weidlich, O., Engelhard, M., Tittor, J., Oesterhelt, D., and Siebert, F. (1992). Identification of the proton acceptor of Schiff base deprotonation in bacteriorhodopsin: A Fourier-transform-infrared study of the mutant Asp85 → Glu in its natural lipid environment. Photochem. Photobiol. 56, 1073–1083.
Fenno, L., Yizhar, O., and Deisseroth, K. (2011). The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412.
Friedrich, D., Brünig, F.N., Nieuwkoop, A.J., Netz, R.R., Hegemann, P., and Oschkinat, H. (2020). Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun. Biol. 3, 4.
Garczarek, F., Wang, J., El-Sayed, M.A., and Gerwert, K. (2004). The Assignment of the Different Infrared Continuum Absorbance Changes Observed in the 3000–1800-cm−1 Region during the Bacteriorhodopsin Photocycle. Biophys. J. 87, 2676–2682.
Garczarek, F., Brown, L.S., Lanyi, J.K., and Gerwert, K. (2005). Proton binding within a membrane protein by a protonated water cluster. Proc. Natl. Acad. Sci. 102, 3633–3638.
Ge, X., and Gunner, M.R. (2016). Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin: Proton translocation in bacteriorhodopsin. Proteins Struct. Funct. Bioinforma. 84, 639–654.
Gerwert, K., Hess, B., Soppa, J., and Oesterhelt, D. (1989). Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. 86, 4943–4947.
Gerwert, K., Souvignier, G., and Hess, B. (1990). Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc. Natl. Acad. Sci. 87, 9774–9778.
Glynn, C., and Rodriguez, J.A. (2019). Data-driven challenges and opportunities in crystallography. Emerg. Top. Life Sci. ETLS20180177.
Govindjee, R., Balashov, S.P., and Ebrey, T.G. (1990). Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 58, 597–608.
Govindjee, R., Misra, S., Balashov, S.P., Ebrey, T.G., Crouch, R.K., and Menick, D.R. (1996). Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Biophys. J. 71, 1011–1023.
Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., and Henderson, R. (1996). Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.
Hackett, N.R., Stern, L.J., Chao, B.H., Kronis, K.A., and Khorana, H.G. (1987). Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J. Biol. Chem. 262, 9277–9284.
Henderson, R., and Unwin, P.N.T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32.
Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.
Henry, E.R., and Hofrichter, J. (1992). Singular value decomposition: Application to analysis of experimental data. In Numerical Computer Methods, (Academic Press), pp. 129–192.
Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature 211, 969–970.
Jung, Y.O., Lee, J.H., Kim, J., Schmidt, M., Moffat, K., Šrajer, V., and Ihee, H. (2013). Volume-conserving trans–cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat. Chem. 5, 212–220.
Kahan, A., Nahmias, O., Friedman, N., Sheves, M., and Ruhman, S. (2007). Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J. Am. Chem. Soc. 129, 537–546.
Kandori, H. (2015). Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2.
Kobayashi, T., Saito, T., and Ohtani, H. (2001). Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414, 531–534.
Kovacs, G.N., Colletier, J.-P., Grünbein, M.L., Yang, Y., Stensitzki, T., Batyuk, A., Carbajo, S., Doak, R.B., Ehrenberg, D., Foucar, L., et al. (2019). Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177.
Lanyi, J.K., and Schobert, B. (2007). Structural changes in the L photointermediate of bacteriorhodopsin. J. Mol. Biol. 365, 1379–1392.
Lewis, A., Spoonhower, J., Bogomolni, R.A., Lozier, R.H., and Stoeckenius, W. (1974). Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc. Natl. Acad. Sci. 71, 4462–4466.
Li, Y.-T., Tian, Y., Tian, H., Tu, T., Gou, G.-Y., Wang, Q., Qiao, Y.-C., Yang, Y., and Ren, T.-L. (2018). A review on bacteriorhodopsin-based bioelectronic devices. Sensors 18, 1368.
Liebschner, D., Afonine, P.V., Baker, M.L., Bunkóczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. Struct. Biol. 75, 861–877.
Lorenz-Fonfria, V.A., Saita, M., Lazarova, T., Schlesinger, R., and Heberle, J. (2017). pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin. Proc. Natl. Acad. Sci. 114, E10909–E10918.
Lozier, R.H., Bogomolni, R.A., and Stoeckenius, W. (1975). Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys. J. 15, 955–962.
Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J.K. (1999a). Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911.
Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J.K. (1999b). Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–260.
Luecke, H., Schobert, B., Cartailler, J.-P., Richter, H.-T., Rosengarth, A., Needleman, R., and Lanyi, J.K. (2000). Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J. Mol. Biol. 300, 1237–1255.
Marti, T., Otto, H., Mogi, T., Rösselet, S.J., Heyn, M.P., and Khorana, H.G. (1991). Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J. Biol. Chem. 266, 6919–6927.
Marx, D., Tuckerman, M.E., Hutter, J., and Parrinello, M. (1999). The nature of the hydrated excess proton in water. Nature 397, 601–604.
Mathias, G., and Marx, D. (2007). Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc. Natl. Acad. Sci. 104, 6980–6985.
McCarty, C.G. (1970). Chapter 9 syn-anti isomerizations and rearrangements. In The Chemistry of the Carbon-Nitrogen Double Bond, (John Wiley & Sons, Ltd), p. 363.
Moffat, K. (1989). Time-Resolved Macromolecular Crystallography. Annu. Rev. Biophys. Biophys. Chem. 18, 309–332.
Moffat, K. (2001). Time-resolved biochemical crystallography: A mechanistic perspective. Chem Rev 101, 1569–1582.
Mogi, T., Stern, L.J., Marti, T., Chao, B.H., and Khorana, H.G. (1988). Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. 85, 4148–4152.
Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., Tanaka, T., Tono, K., Song, C., Tanaka, R., et al. (2016). A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557.
Nogly, P., Weinert, T., James, D., Carbajo, S., Ozerov, D., Furrer, A., Gashi, D., Borin, V., Skopintsev, P., Jaeger, K., et al. (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, eaat0094.
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P., and Landau, E.M. (1997). X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.
Ren, Z. (2013a). Reaction trajectory revealed by a joint analysis of Protein Data Bank. PLoS ONE 8, e77141.
Ren, Z. (2013b). Reverse engineering the cooperative machinery of human hemoglobin. PLoS ONE 8, e77363.
Ren, Z. (2016). Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase. Nucleic Acids Res. 6, 1–13.
Ren, Z. (2019). Ultrafast structural changes decomposed from serial crystallographic data. J. Phys. Chem. Lett. 10, 7148–7163.
Ren, Z. (2021). Photoinduced isomerization sampling of retinal in bacteriorhodopsin. BioRxiv doi:10.1101/2021.09.16.460656.
Ren, Z., Perman, B., Srajer, V., Teng, T.-Y., Pradervand, C., Bourgeois, D., Schotte, F., Ursby, T., Kort, R., Wulff, M., et al. (2001). A molecular movie at 1.8 Å resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry 40, 13788–13801.
Ren, Z., Chan, P.W.Y., Moffat, K., Pai, E.F., Royer, W.E., Šrajer, V., and Yang, X. (2013). Resolution of structural heterogeneity in dynamic crystallography. Acta Cryst D69, 946–959.
Ren, Z., Ren, P.X., Balusu, R., and Yang, X. (2016). Transmembrane helices tilt, bend, slide, torque, and unwind between functional states of rhodopsin. Sci. Rep. 6, 34129.
Ren, Z., Ayhan, M., Bandara, S., Bowatte, K., Kumarapperuma, I., Gunawardana, S., Shin, H., Wang, C., Zeng, X., and Yang, X. (2018). Crystal-on-crystal chips for in situ serial diffraction at room temperature. Lab. Chip 18, 2246–2256.
Richter, H.T., Needleman, R., and Lanyi, J.K. (1996). Perturbed interaction between residues 85 and 204 in Tyr-185-->Phe and Asp-85-->Glu bacteriorhodopsins. Biophys. J. 71, 3392–3398.
Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E.M., and Neutze, R. (2000). Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.
Sass, H.J., Büldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, R., Berendzen, J., and Ormos, P. (2000). Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653.
Schaffer, J.E., Kukshal, V., Miller, J.J., Kitainda, V., and Jez, J.M. (2021). Beyond X-rays: an overview of emerging structural biology methods. Emerg. Top. Life Sci. ETLS20200272.
Schmidt, M., Rajagopal, S., Ren, Z., and Moffat, K. (2003). Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys. J. 84, 2112–2129.
Schmidt, M., Graber, T., Henning, R., and Srajer, V. (2010). Five-dimensional crystallography. Acta Crystallogr. A 66, 198–206.
Sheves, M., Albeck, A., Friedman, N., and Ottolenghi, M. (1986). Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. Proc. Natl. Acad. Sci. 83, 3262–3266.
Shin, H., Ren, Z., Zeng, X., Bandara, S., and Yang, X. (2019). Structural basis of molecular logic OR in a dual-sensor histidine kinase. Proc. Natl. Acad. Sci. 116, 19973–19982.
Šrajer, V., Ren, Z., Teng, T.-Y., Schmidt, M., Ursby, T., Bourgeois, D., Pradervand, C., Schildkamp, W., Wulff, M., and Moffat, K. (2001). Protein conformational relaxation and ligand migration in myoglobin: A nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40, 13802–13815.
Stoeckenius, W. (1999). Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps. Protein Sci. 8, 447–459.
Stoeckenius, W., Lozier, R.H., and Bogomolni, R.A. (1979). Bacteriorhodopsin and the purple membrane of halobacteria. Biochim. Biophys. Acta BBA - Rev. Bioenerg. 505, 215–278.
Su, T., and Purohit, P.K. (2009). Mechanics of forced unfolding of proteins. Acta Biomater. 5, 1855–1863.
Takahashi, H., Rico, F., Chipot, C., and Scheuring, S. (2018). α-Helix Unwinding as Force Buffer in Spectrins. ACS Nano 12, 2719–2727.
Takeda, K., Matsui, Y., Kamiya, N., Adachi, S., Okumura, H., and Kouyama, T. (2004). Crystal structure of the M intermediate of bacteriorhodopsin: Allosteric structural changes mediated by sliding movement of a transmembrane helix. J. Mol. Biol. 341, 1023–1037.
Ursby, T., and Bourgeois, D. (1997). Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr. A 53, 564–575.
Wang, J., and El-Sayed, M.A. (2001). Time-Resolved Fourier Transform Infrared Spectroscopy of the Polarizable Proton Continua and the Proton Pump Mechanism of Bacteriorhodopsin. Biophys. J. 80, 961–971.
Weinert, T., Skopintsev, P., James, D., Dworkowski, F., Panepucci, E., Kekilli, D., Furrer, A., Brünle, S., Mous, S., Ozerov, D., et al. (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65.
Wickstrand, C., Dods, R., Royant, A., and Neutze, R. (2015). Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim. Biophys. Acta 1850, 536–553.
Yang, X., Ren, Z., Kuk, J., and Moffat, K. (2011). Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. Nature 479, 428–432.
Zhong, Q., Ruhman, S., Ottolenghi, M., Sheves, M., Friedman, N., Atkinson, G.H., and Delaney, J.K. (1996). Reexamining the primary light-induced events in bacteriorhodopsin using a synthetic C13=C14-locked chromophore. J Am Chem Soc 118, 12828–12829.
Zimanyi, L., Varo, G., Chang, M., Ni, B., Needleman, R., and Lanyi, J.K. (1992). Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31, 8535–8543.