1. Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med. 2017 Dec 6;15(1).
2. Ziegler R, Neu A. Diabetes in childhood and adolescence - A guideline-based approach to diagnosis, treatment, and follow-up. Dtsch Arztebl Int. 2018 Mar 2;115(9):146–56.
3. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Vol. 60, Diabetologia. Diabetologia; 2017. p. 769–77.
4. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2009;10(SUPPL. 12):33–42.
5. Bacon S, Kyithar MP, Rizvi SR, Donnelly E, McCarthy A, Burke M, et al. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A–MODY cohort. Diabet Med. 2016 Jul 1;33(7):976–84.
6. Peixoto-Barbosa R, Reis AF, Giuffrida FMA. Update on clinical screening of maturity-onset diabetes of the young (MODY). Vol. 12, Diabetology and Metabolic Syndrome. Diabetol Metab Syndr; 2020.
7. Ajjan RA, Owen KR. Glucokinase MODY and Implications for Treatment Goals of Common Forms of Diabetes. Vol. 14, Current Diabetes Reports. Current Medicine Group LLC 1; 2014. p. 1–7.
8. Glotov OS, Serebryakova EA, Turkunova ME, Efimova OA, Glotov AS, Barbitoff YA, et al. Whole-exome sequencing in Russian children with non-type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY-related and unrelated genes. Mol Med Rep. 2019;20(6):4905.
9. Anik A, Çatli G, Abaci A, Böber E. Maturity-onset diabetes of the young (MODY): An update. J Pediatr Endocrinol Metab. 2015;28(3–4):251–63.
10. Kleinberger JW, Pollin TI. Undiagnosed MODY: Time for Action. Vol. 15, Current Diabetes Reports. Current Medicine Group LLC 1; 2015. p. 110.
11. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia. 2010 Dec;53(12):2504–8.
12. ENCODE: Encyclopedia of DNA Elements – ENCODE [Internet]. [cited 2021 Jun 8]. Available from: https://www.encodeproject.org/
13. Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Vol. 7, Annual Review of Genomics and Human Genetics. Annu Rev Genomics Hum Genet; 2006. p. 29–59.
14. Spitz F, Furlong EEM. Transcription factors: From enhancer binding to developmental control. Vol. 13, Nature Reviews Genetics. Nat Rev Genet; 2012. p. 613–26.
15. Lee H, Huang AY, Wang L kai, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020 Mar 1;22(3):490–9.
16. Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, et al. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism. 2015 Apr 15;6(1).
17. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017 Jun 12;8.
18. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008 Mar;26(3):317–25.
19. Kulkarni MM. Digital multiplexed gene expression analysis using the nanostring ncounter system. Curr Protoc Mol Biol. 2011;Chapter 25(SUPPL.94).
20. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. 2015 Aug 22;8(1).
21. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020 May 1;38(5):586–99.
22. Hyeon J, Cho SY, Hong ME, Kang SY, Do I, Im YH, et al. NanoString nCounter® approach in breast cancer: A comparative analysis with quantitative real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry. J Breast Cancer. 2017 Sep 1;20(3):286–96.
23. Goytain A, Ng T. NanoString nCounter Technology: High-Throughput RNA Validation. In: Methods in Molecular Biology. Methods Mol Biol; 2020. p. 125–39.
24. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan 1;43(Suppl 1):S14–31.
25. Liu Y, Xie Z, Sun X, Wang Y, Xiao Y, Luo S, et al. A new screening strategy and whole-exome sequencing for the early diagnosis of maturity-onset diabetes of the young. Diabetes Metab Res Rev. 2020;e3381.
26. Brunerova L, Rahelić D, Ceriello A, Broz J. Use of oral antidiabetic drugs in the treatment of maturity-onset diabetes of the young: A mini review. Vol. 34, Diabetes/Metabolism Research and Reviews. John Wiley and Sons Ltd; 2018.
27. Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, et al. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am J Hum Genet. 2019 Mar 7;104(3):466–83.
28. Klopocki E, Mundlos S. Copy-number variations, noncoding sequences, and human phenotypes. Vol. 12, Annual Review of Genomics and Human Genetics. Annu Rev Genomics Hum Genet; 2011. p. 53–72.
29. Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Vol. 10, Nature Reviews Genetics. Nat Rev Genet; 2009. p. 57–63.
30. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017 Apr 19;9(386).
31. Elsaid MF, Chalhoub N, Ben-Omran T, Kumar P, Kamel H, Ibrahim K, et al. Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia. Ann Neurol. 2017 Jan 1;81(1):68–78.
32. KD F, NE B, AB M, SJ S, FCC K, A S, et al. Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder. Am J Hum Genet. 2017 Dec 7;101(6):965–76.
33. Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006 Apr 16;8(5):516–23.
34. Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007 Nov 2;282(44):32280–7.
35. Prudente S, Jungtrakoon P, Marucci A, Ludovico O, Buranasupkajorn P, Mazza T, et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am J Hum Genet. 2015;97(1):177–85.
36. Ivanoshchuk DE, Shakhtshneider E V., Rymar OD, Ovsyannikova AK, Mikhailova S V., Orlov PS, et al. Analysis of appl1 gene polymorphisms in patients with a phenotype of maturity onset diabetes of the young. J Pers Med. 2020 Sep 1;10(3):1–9.
37. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J Clin Invest. 2001 Aug 1;108(3):457–65.
38. Van Hove EC, Hansen T, Dekker JM, Reiling E, Nijpels G, Jørgensen T, et al. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility: The DAMAGE study. Diabetes. 2006 Nov;55(11):3193–6.
39. Pedersen HK, Gudmundsdottir V, Brunak S. Pancreatic islet protein complexes and their dysregulation in type 2 diabetes. Front Genet. 2017 Apr 20;8(APR).
40. Yang Y, Chang BHJ, Chan L. Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. EMBO Mol Med. 2013 Jan;5(1):92–104.
41. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, et al. The cell cycle control gene ZAC/PLAGL1 is imprinted - A strong candidate gene for transient neonatal diabetes. Hum Mol Genet. 2000 Feb 12;9(3):453–60.
42. Boonen SE, Mackay DJG, Hahnemann JMD, Docherty L, Gronskov K, Lehmann A, et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci. Diabetes Care. 2013 Mar;36(3):505–12.
43. Yorifuji T, Higuchi S, Hosokawa Y, Kawakita R. Chromosome 6q24-related diabetes mellitus. Vol. 27, Clinical Pediatric Endocrinology. Clin Pediatr Endocrinol; 2018. p. 59–65.
44. Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17(5):611–9.
45. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452.