Abbate, C., Toscano, S., Arcidiacono, R., Romano, D., Russo, A., Mazzeo, G., 2018. Induced responses of Bougainvillea glabra Choisy (Nyctaginaceae) against Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) attack: preliminary results. Arthropod. Plant. Interact. 12, 41–48. https://doi.org/10.1007/s11829-017-9550-4
Afridi, G.S., Abdul, S., Zahoor ul, H., Tariq, S.A., Muhammad, I., 2016. Exploring potential and opportunities for Pakistan’s cotton export. Pakistan J. Agric. Res. 29, 188–201.
Apel, K., Hirt, H., 2004. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Argandoña, V.H., Chaman, M., Cardemil, L., Muñoz, O., Zúñiga, G.E., Corcuera, L.J., 2001. Ethylene production and peroxidase activity in aphid-infested barley. J. Chem. Ecol. 27, 53–68. https://doi.org/10.1023/A:1005615932694
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24, 1. https://doi.org/10.1104/pp.24.1.1
Ashfaq, S., Khan, I. a L.I., Saeed, M., Ur, A., Saljoqi, R., 2011. Population Dynamics of Insect Pests of Cotton and Their Natural Enimies. Sarhad J. Agric. 27, 2009–2011.
Ashraf, M., 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Ashraf, M.A., Rasheed, R., Hussain, I., Iqbal, M., Haider, M.Z., Parveen, S., Sajid, M.A., 2015. Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch. Agron. Soil Sci. 61, 507-523. https://doi.org/10.1080/03650340.2014.938644
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205-207. https://doi.org/10.1007/BF00018060
Bhonwong, A., Stout, M.J., Attajarusit, J., Tantasawat, P., 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm helicoverpa armigera and beet armyworm spodoptera exigua. J. Chem. Ecol. 35, 28–38. https://doi.org/10.1007/s10886-008-9571-7
Bi, J.L., Felton, G.W., 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21, 1511-1530. https://doi.org/10.1007/BF02035149
Bittner, N., Trauer-Kizilelma, U., Hilker, M., 2017. Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245, 993–1007. https://doi.org/10.1007/s00425-017-2654-3
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Broz, A.K., Broeckling, C.D., De-la-Peña, C., Lewis, M.R., Greene, E., Callaway, R.M., Sumner, L.W., Vivanco, J.M., 2010. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 10, 1-14. https://doi.org/10.1186/1471-2229-10-115
Bruce, T.J.A., 2010. Tackling the threat to food security caused by crop pests in the new millennium. Food Secur. 2, 133–141. https://doi.org/10.1007/s12571-010-0061-8
Cakmak, I., Horst, W.J., 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
Cavalcanti, F.R., Santos Lima, J.P.M., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G., 2007. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J. Plant Physiol. 164, 591–600. https://doi.org/10.1016/j.jplph.2006.03.004
Chance, B., Maehly, A.C., 1955. Assay of catalases and peroxidases. Methods Enzymol. 2, 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8
Chen, Y., Ni, X., Buntin, G.D., 2009. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. J. Chem. Ecol. 35, 297–306. https://doi.org/10.1007/s10886-009-9600-1
Chen, Z., Silva, H., Klessig, D.F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 262, 1883–1886. https://doi.org/10.1126/science.8266079
Duan, C., Yu, J., Bai, J., Zhu, Z., Wang, X., 2014. Induced defense responses in rice plants against small brown planthopper infestation. Crop J. 2, 55-62. https://doi.org/10.1016/j.cj.2013.12.001
Duffey, S.S., Stout, M.J., 1996. Antinutritive and Toxic Components of Plant Defense Against Insects. Arch. Insect Biochem. Physiol. 32, 3–37. https://doi.org/10.1002/(SICI)1520-6327(1996)32:1<3::AID-ARCH2>3.0.CO;2-1
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309-314. https://doi.org/10.1104/pp.59.2.309
Goławska, S., Krzyzanowski, R., łukasik, I., 2010. Relationship between aphid infestation and chlorophyll content in fabaceae species. Acta Biol. Cracoviensia Ser. Bot. 52, 76–80. https://doi.org/10.2478/v10182-010-0026-4
Grieve, C.M., Grattan, S.R., 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307. https://doi.org/10.1007/BF02374789
Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G., Lee, D., 2010. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod. Plant. Interact. 4, 45–55. https://doi.org/10.1007/s11829-010-9086-3
Habib, N., Ashraf, M., Ali, Q., Perveen, R., 2012. Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. South African J. Bot. 83, 151–158. https://doi.org/10.1016/j.sajb.2012.08.005
He, J., Chen, F., Chen, S., Lv, G., Deng, Y., Fang, W., Liu, Z., Guan, Z., He, C., 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 168, 687-693. https://doi.org/10.1016/j.jplph.2010.10.009
Helmi, A., Mohamed, H.I., 2016. Biochemical and ultrastructural changes of some tomato cultivars after infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiyah, Egypt. Gesunde Pflanz. 68, 41–50. https://doi.org/10.1007/s10343-016-0361-9
Huang, J., Zhang, P.-J., Zhang, J., Lu, Y.-B., Huang, F., Li, M.-J., 2013. Chlorophyll Content and Chlorophyll Fluorescence in Tomato Leaves Infested With an Invasive Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) . Environ. Entomol. 42, 973-979. https://doi.org/10.1603/en12342
Julkunen-Tiitto, R., 1985. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food Chem. 33, 213-217. https://doi.org/10.1021/jf00062a013
Kaur, A., Grewal, S.K., Singh, R., Bhardwaj, R.D., 2017. Induced defense dynamics in plant parts is requisite for resistance to Helicoverpa armigera (Hubner) infestation in chickpea. Phytoparasitica. 45, 559–576. https://doi.org/10.1007/s12600-017-0615-9
Kaur, R., Gupta, A.K., Taggar, G.K., 2015. Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L.) following Helicoverpa armigera (Hübner) herbivory. Pest Manag. Sci. 71, 770–782. https://doi.org/10.1002/ps.3851
Kaur, R., Gupta, A.K., Taggar, G.K., 2014. Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiol. Plant. 36, 1513–1527. https://doi.org/10.1007/s11738-014-1528-6
Khattab, H., 2007. The Defense Mechanism of Cabbage Plant Against Phloem-Sucking Aphid (Brevicoryne brassicae L.). Aust. J. Basic Appl. Sci. 1, 56–62.
Khattab, H., Khattab, A.I., 2005. Responses of Eucalypt Trees to the Insect Feeding ( Gall- Forming Psyllid ). Int. J. Agric. Biol. 07, 979–984.
Kmieć, K., Kot, I., Rubinowska, K., Łagowska, B., Golan, K., Górska-Drabik, E., 2014. Physiological reaction of Phalaenopsis × hybridum “Innocence” on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Sci. Pol. Hortorum Cultus 13, 85–95.
Kurepin, L. V., Ivanov, A.G., Zaman, M., Pharis, R.P., Hurry, V., Hüner, N.P.A., 2017. Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress, Photosynthesis: Structures, Mechanisms, and Applications. https://doi.org/10.1007/978-3-319-48873-8_9
Lawrence, P.K., Koundal, K.R., 2002. Plant protease inhibitors in control of phytophagous insects. Electron. J. Biotechnol. 5, 93–109. https://doi.org/10.2225/vol5-issue1-fulltext-3
Li, J. yu, Shi, M. zhu, Fu, J. wei, He, Y. chao, Perović, D.J., Wang, T., 2018. Physiological and biochemical responses of Camellia sinensis to stress associated with Empoasca vitis feeding. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-017-9554-0
Liu, F. hua, Kang, Z. wei, Tan, X. ling, Fan, Y. liang, Tian, H. gang, Liu, T. xian, 2020. Physiology and defense responses of wheat to the infestation of different cereal aphids. J. Integr. Agric. 19, 1464–1474. https://doi.org/10.1016/S2095-3119(19)62786-3
Maffei, M.E., Mithöfer, A., Arimura, G.I., Uchtenhagen, H., Bossi, S., Bertea, C.M., Cucuzza, L.S., Novero, M., Volpe, V., Quadro, S., Boland, W., 2006. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol. 140, 1022–1035. https://doi.org/10.1104/pp.105.071993
Mahawar, L., Shekhawat, G.S., 2019. EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region. Physiol. Mol. Biol. Plants. 25, 895-904. https://doi.org/10.1007/s12298-019-00663-7
Mai, V.C., Bednarski, W., Borowiak-Sobkowiak, B., Wilkaniec, B., Samardakiewicz, S., Morkunas, I., 2013. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry. 93, 49–62. https://doi.org/10.1016/j.phytochem.2013.02.011
Mehdy, M.C., 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. https://doi.org/10.1104/pp.105.2.467
Mithöfer, A., Schulze, B., Boland, W., 2004. Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett. 566, 1–5. https://doi.org/10.1016/j.febslet.2004.04.011
Mitra, S., Mobarak, S.H., Karmakar, A., Barik, A., 2019. Activities of antioxidant enzymes in three species of Ludwigia weeds on feeding by Altica cyanea. J. King Saud Univ. - Sci. https://doi.org/10.1016/j.jksus.2019.04.008
Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
Moloi, M.J., van der Westhuizen, A.J., 2006. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 163, 1118–1125. https://doi.org/10.1016/j.jplph.2005.07.014
Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Sarath, G., Klucas, R., Baxendale, F., 2009. Oxidative Responses of Resistant and Susceptible Cereal Leaves to Symptomatic and Nonsymptomatic Cereal Aphid (Hemiptera: Aphididae) Feeding. J. Econ. Entomol. 94, 743-751. https://doi.org/10.1603/0022-0493-94.3.743
O’Brien, J.A., Daudi, A., Butt, V.S., Bolwell, G.P., 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 236, 765-779. https://doi.org/10.1007/s00425-012-1696-9
Orozco-Cardenas, M., Ryan, C.A., 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 6553–6557. https://doi.org/10.1073/pnas.96.11.6553
Palial, S., Kumar, S., Sharma, S., 2018. Biochemical changes in the Brassica juncea-fruticulosa introgression lines after Lipaphis erysimi (Kaltenbach) infestation. Phytoparasitica. 46, 499-509. https://doi.org/10.1007/s12600-018-0686-2
Rani, P.U., Jyothsna, Y., 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol. Plant. 32, 695–701. https://doi.org/10.1007/s11738-009-0449-2
Rasheed, R., Yasmeen, H., Hussain, I., Iqbal, M., Ashraf, M.A., Parveen, A., 2020. Exogenously applied 5-aminolevulinic acid modulates growth, secondary metabolism and oxidative defense in sunflower under water deficit stress. Physiol. Mol. Biol. Plants. 1-11. https://doi.org/10.1007/s12298-019-00756-3
Rathinam, M., Mishra, P., Mahato, A.K., Singh, N.K., Rao, U., Sreevathsa, R., 2019. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol. Biol. 101, 163–182. https://doi.org/10.1007/s11103-019-00899-7
Raychaudhuri, S. Sen, Deng, X.W., 2000. The role of superoxide dismutase in combating oxidative stress in higher plants. Bot. Rev. 66, 89–98. https://doi.org/10.1007/bf02857783
Rehman, A., Jingdong, L., Chandio, A.A., Hussain, I., Wagan, S.A., Memon, Q.U.A., 2019. Economic perspectives of cotton crop in Pakistan: A time series analysis (1970–2015) (Part 1). J. Saudi Soc. Agric. Sci. 18, 49–54. https://doi.org/10.1016/j.jssas.2016.12.005
Rehman, A., Jingdong, L., Shahzad, B., Chandio, A.A., Hussain, I., Nabi, G., Iqbal, M.S., 2015. Economic perspectives of major field crops of Pakistan: An empirical study. Pacific Sci. Rev. B Humanit. Soc. Sci. 1, 145–158. https://doi.org/10.1016/j.psrb.2016.09.002
Saed-Moucheshi, A., Pakniyat, H., Pirasteh-Anosheh, H., Azooz, M.M., 2014a. Role of ROS as Signaling Molecules in Plants, in: Oxidative Damage to Plants: Antioxidant Networks and Signaling. Academic Press. https://doi.org/10.1016/B978-0-12-799963-0.00020-4
Saed-Moucheshi, A., Shekoofa, A., Pessarakli, M., 2014b. Reactive Oxygen Species (ROS) Generation and Detoxifying in Plants. J. Plant Nutr. 37, 1573-1585. https://doi.org/10.1080/01904167.2013.868483
Saleem, M., Hussain, D., Ghouse, G., Abbas, M., Fisher, S.W., 2016. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Prot. 79, 177–184. https://doi.org/10.1016/j.cropro.2015.08.024
Scheler, C., Durner, J., Astier, J., 2013. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16, 534-539. https://doi.org/10.1016/j.pbi.2013.06.020
Sharma, H.C., Sujana, G., Manohar Rao, D., 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod. Plant. Interact. 3, 151–161. https://doi.org/10.1007/s11829-009-9068-5
Tan, W., Meng, Q. wei, Brestic, M., Olsovska, K., Yang, X., 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168, 2063-2071. https://doi.org/10.1016/j.jplph.2011.06.009
Tian, Y., Zhao, Y., Zhang, L., Mu, W., Zhang, Z., 2018. Morphological, Physiological, and Biochemical Responses of Two Tea Cultivars to Empoasca onukii (Hemiptera: Cicadellidae) Infestation. J. Econ. Entomol. 111, 899-908. https://doi.org/10.1093/jee/toy011
Timbó, R.V., Hermes-Lima, M., Silva, L.P., Mehta, A., Moraes, M.C.B., Paula, D.P., 2014. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS One. 9, e109735. https://doi.org/10.1371/journal.pone.0109735
Usha Rani, P., Pratyusha, S., 2013. Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J. Asia. Pac. Entomol. 16, 131–136. https://doi.org/10.1016/j.aspen.2013.01.001
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 151, 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
Vijaya, M., Rani, P.U., 2017. Defensive responses in Capsicum annuum (L) plants, induced due to the feeding by different larval instars of Spodoptera litura (F). Arthropod. Plant. Interact. 11, 193–202. https://doi.org/10.1007/s11829-016-9479-z
Walling, L.L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19, 195–216. https://doi.org/10.1007/s003440000026
War, A.R., Paulraj, M.G., Ignacimuthu, S., Sharma, H.C., 2013. Defensive Responses in Groundnut Against Chewing and Sap-Sucking Insects. J. Plant Growth Regul. 32, 259–272. https://doi.org/10.1007/s00344-012-9294-4
War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2012a. Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiol. Plant. 34, 343–352. https://doi.org/10.1007/s11738-011-0833-6
War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2012b. Differential defensive response of groundnut germplasms to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Plant Interact. 7, 45–55. https://doi.org/10.1080/17429145.2011.587898
War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2011. Jasmonic Acid-Mediated-Induced Resistance in Groundnut (Arachis hypogaea L.) Against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Plant Growth Regul. 30, 512–523. https://doi.org/10.1007/s00344-011-9213-0
Zhang, S.Z., Hua, B.Z., Zhang, F., 2008. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod. Plant. Interact. 2, 209–213. https://doi.org/10.1007/s11829-008-9044-5
Zhang, Y., Fu, Y., Fan, J., Li, Q., Francis, F., Chen, J., 2019. Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC Plant Biol. 19, 547. https://doi.org/10.1186/s12870-019-2148-5
Zhu-Salzman, K., Luthe, D.S., Felton, G.W., 2008. Arthropod-inducible proteins: Broad spectrum defenses against multiple herbivores. Plant Physiol. 146, 852–858. https://doi.org/10.1104/pp.107.112177