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Abstract

Background: CD44 is highly expressed in many cancers, including ovarian cancer. Its interactions with
ligands are involved in tumor progression, prognosis, and metastasis. However, the function of CD44 in
the advancement of ovarian cancer remains unclear.

Methods and Results: RNA sequencing was used to investigate the possible molecules and pathways
regulated by CD44 in ovarian cancer to compare gene expression in CD44-knockdown SKOV3 cells and
control cells. Identify the differentially expressed genes and then proceed to functional enrichment
analysis. The results showed that genes differentially expressed were enriched in ECM-receptor
interaction, Protein digestion and absorption, Focal adhesion, Notch signaling pathway, microRNA in
cancer, and TGF-beta signaling pathway. Furthermore, the analysis of the proteins interaction network
revealed the interaction between CD44 and CD36 in SKOV3 cells. Further analysis showed that CD36, a
molecule that may be involved in ECM-receptor interaction, was low expressed in CD44-knockdown
SKOV3 cells. And the results showed that knockdown CD44 induces amyloid-beta degradation in ovarian
cancer cells by regulating CD36 expression. The analyses of the public database demonstrated that the
CD36 expression was related to the clinical survival of ovarian cancer.

Conclusions: Our study showed that CD44 might up-regulate the CD36 expression in ovarian cancer,
thereby exerting a cancer-promoting effect.

Introduction

Ovarian cancer is one of the malignant tumors that threaten women'’s health and its mortality rate ranks
first among the female reproductive tumors[1]. GLOBOCAN 2020 global cancer statistics show that the
mortality rate of ovarian cancer is 5.4 per 100,000, ranking eighth among the global female cancer death
rates[2]. The current standard treatment options for ovarian cancer are debulking surgery and
postoperative adjuvant chemotherapy based on platinum and paclitaxel[3]. However, 70% of patients with
ovarian cancer had already lost the chance of surgery due to extensive metastasis at the first diagnosis,
and less than 30% survived in 5 years. For those patients with ovarian cancer who received standard
treatment, the tumor progression process can be reversed, and at least 50% of patients still have
recurrence and metastasis[4, 5].

The overactivation of oncogenes and the inactivation of tumor suppressor genes are important causes of
the occurrence and development of ovarian cancer. Among these genes, CD44, as a kind of cell surface
glycoprotein, participates in the process of cell survival, proliferation, differentiation, and motility[6, 7].
Hyaluronic acid combined with CD44 activates various signal pathways involved in cell proliferation,
invasion, migration, and adhesion [7-9]. CD44 also participates in multiple essential signal pathways
regulating proliferation, invasion, metastasis, and treatment resistance of cancer and regulated by many
molecules in cancer cells[7, 10]. Recent studies indicated that CD44-positive ovarian tumor cell subsets
express stem cell markers, which can initiate tumorigenesis and promote tumor recurrence[11, 12].
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However, the role of CD44 in tumors is complex and only a few reports have systematically described the
mechanism of CD44 in the development and progression of ovarian cancer.

Therefore, the purpose of the present study is to investigate the possible molecules and pathways
regulated by CD44 in ovarian cancer.

Materials And Methods

Cell culture

The human ovarian cancer cell line SKOV3 was purchased from the ATCC and was authenticated by the
analysis of a short tandem repeat (STR). The cell was cultured in RPMI-1640 medium (Hyclone,
SH30809.01) with 10% fetal bovine serum (Tianhang, 11012-8611).

Knockdown of CD44

The lentiviruses were constructed according to the target sequence of CD44 for RNAI: 5- TTG CAG TCA
ACA GTC GAA GAA -3' and the negative control sequence: 5- TTC TCC GAA CGT GTC ACG T-3' (vector:
GV493)[13]; by Shanghai Genechem Co., LTD. (Shanghai, China). The lentiviruses (MOI=20) were added
to SKOV3 cells for transfection. Puromycin was used to screen infected cells (2.5 ug/ml). The
transfection efficiency was observed by GFP expression, and RT-qPCR and western blot determined the
knockdown of CD44.

RT-qPCR

RNA was extracted using Trizol (Beyotime, Shanghai, China) and reverse transcribed into cDNA. RT-qPCR
analysis used the StepOne™ real-time gPCR system (Applied Biosystems, USA). The primer sequences:
CD44 forward, 5-TCCCAGACGAAGACAGTCCCTGGAT-3' and reverse, 5™-
CACTGGGGTGGAATGTGTCTTGGTC-3'; B-actin forward, 5-TGTGGCATCCACGAAACTAC-3' and reverse 5™
GGAGCAATGATCTTGATCTTCA-3". The 2-AACT was used to quantified the expression.

RNA extraction, library construction, and sequencing

RNA was extracted. The mRNA was enriched by Oligo(dT) beads, fragmented into short fragments, and

reverse transcripted into cDNA. Then the cDNA fragments were purified, end-repaired, poly(A) added, and
ligated to Illlumina sequencing adapters. The lllumina Novaseq6000 by Gene Denovo Biotechnology Co.
(Guangzhou, China) was used to sequence.

Identification of differentially expressed genes (DEGSs)

RNAs differential expression analysis was performed by edgeR[14] between two samples. The gene
which a P value of below 0.05 and absolute fold change =1.5 was considered differentially expressed
genes.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis

DEGs were analyzed by differential RNA between 2 groups. Transcripts which a P value of below 0.05
and absolute fold change =1.5 were defined as differentially expressed. The KEGG was used to analyze
the pathway enrichment.

Protein-Protein interaction

String v10 was used to identify the network of proteins interaction[15], which defined genes as nodes and
interaction as lines in a network. Cytoscape (v3.7.1) was used to display gene biological interaction.

Immunofluorescence

Cells were plated on a 15 mm circle microsope cover glass (NEST, China) placed in the 24-well culture
plate. Cells were fixed for 15 min and blocked for 30 min. Cells were incubated with antibodies against
CD36 (1:200, Proteintech, 18836-1-AP) overnight at 4°C. CY3-Goat Anti-rabbit IgG (BOSTER, Wuhan,
China) was used as the secondary antibody. DAPI (BOSTER, Wuhan, China) was used to stain the
nucleus. Cells were observed by a Leica TCS SP8 confocal microscope (Leica Microsystems GmbH,
Mannheim, Germany).

Western blot analysis

Cells were lysed by RIPA Lysis Buffer (BOSTER, Wuhan, China). The antibodies against CD44 (1:1,000,
Proteintech, 60224-1-lg), CD36 (1: 1,000, Proteintech, 18836-1-AP), and beta-amyloid (1:50, Proteintech,
25524-1-AP) were used as primary antibodies and Actin (1:5,000, Bioss, bs-0061R) used as internal
control. Image Lab™ Software 4.1 (Bio-Rad, USA) was used to analyze the expression of proteins.

Statistical analysis

Use GraphPad Prism 8 to analyze the data. Use unpaired Student's t-test to compare the two groups, and
the results showed by mean + SEM. The in vitro experiments were repeated at least three times. A value
of P<0.05 was considered statistically significant. The progress Free Survival (PFS) and overall survival
(0S) rates in different cohorts of serous ovarian cancer patients were assessed by Kaplan-Meier plot
(http://kmplot.com/), and the databases calculated the hazard ratio (HR) and log-rank P-values. The
correlation of CD44 and CD36 expression in ovarian cancer was analyzed by The Gene Expression
Profiling Interactive Analysis database (http://gepia2.cancer-pku.cn/), while CD36 mRNA levels in
different stages were analyzed. The correlation between different genes was calculated by Pearson's
correlation coefficient.

Results

Generation of CD44-knockdown SKOV3 cells
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The Gene Expression Profiling Interactive Analysis database (http://gepia2.cancer-pku.cn/) shows that
CD44 is highly expressed in ovarian cancer (Fig. S1).To investigate the function of CD44 in ovarian
cancer cells, we constructed SKOV3 ovarian cancer cells interfered with by lentiviruses. The results
showed that the transfected SKOV3 cells expressed GFP (Fig. 1A). The western blot (Fig. 1B) and RT-
gPCR (Fig. 1C) demonstrated that CD44 expression levels in CD44 knockdown sh-CD44-SKOV3 cells were
significantly downregulated compared with control sh-NC cells. The results revealed that the sh-CD44
SKOV3 cell line was successfully constructed.

Identification of DEGs between sh-CD44 SKOV3 and sh-NC SKOV3 cells

To identify which genes are regulated by CD44, the total RNA of sh-CD44 SKOV3 cells and sh-NC SKOV3
cells were extracted for RNA-seq analysis. We compared sh-CD44 SKOV3 cells and sh-NC SKOV3 cells
and performed a global gene expression analysis, and constructed a heat map of DEGs to display genes
that expressions were changed (Fig. 2A). The volcano plot shows that 670 genes were dysregulated,
including 230 upregulated genes and 440 downregulated genes (Fig. 2B).

KEGG analysis of DEGs

To further explore the related pathways involving CD44 and the functions of CD44 in ovarian cancer, we
performed the KEGG database analysis to find enriched pathways. The results of KEGG analysis of DEGs
showed that genes differentially expressed were enriched in 'ECM-receptor interaction’, 'Protein digestion
and absorption, 'Focal adhesion', 'Notch signaling pathway', 'MicroRNAs in cancer', 'TGF-beta signaling
pathway', and other signaling pathways in ovarian cancer(Fig. 2C). The genes involved in each pathway
are shown in Table 1. These pathways had been reported to play an essential role in the adhesion,
movement, metastasis, and proliferation of tumors. As one of the top 20 gene enrichment signaling
pathways, the ECM-receptor interaction pathway plays a crucial role in the adhesion, movement, and
proliferation of tumors[16-19]. Moreover, cancer cells could participate in the tumor metastasis passing
through the ECM, while the suppress factors could prevent the migration of cancer cells by interacting
with some proteins[20].

CD36 expression was decreased in CD44 knockdown SKOV3 cell

As above, CD44 might regulate the ECM-receptor interaction pathway. To identify the mechanism of CD44
in ovarian cancer progression, we further constructed a regulatory network of protein-protein interaction in
response to the knockdown of CD44 in SKOV3 cells (Fig. 3A). It was revealed that CD36, a molecule that
may interact with CD44, was downregulated in sh-CD44 SKOV3 cells(Fig. 3B). The results revealed that
CD44 might regulate CD36 expression in SKOV3 cells. Western blot was used to analyze CD36 expression
to determine further the influence of CD44 to CD36 expression in SKOV3. The results showed that CD36
expressed low when CD44 was knockdown (Fig. 3C). Then, the expression and location of CD36 in sh-
CD44 SKOV3 cells or sh-NC SKOV3 cells were observed by Immunofluorescence analysis. It found that
the CD36 protein of the sh-NC group was mainly distributed in the cell membrane and cytoplasm rather
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than the nucleus. In contrast, the CD36 protein fluorescence signal of the sh-CD44 group was weakened,
and the protein appeared in the nucleus (Fig. 3D).

CD36 promotes amyloid-beta degradation and is negatively correlated with ovarian cancer progression

Previous studies have shown that CD36 is a key mediator of amyloid aggregation [21, 22]. Hence, the
expression of amyloid-beta in sh-CD44 SKOV3 cells or sh-NC SKOV3 cells was analyzed by western blot.
The results indicated that sh-CD44 SKOV3 cells expressed lower beta-amyloid than sh-NC (Fig. 4A). The
Kaplan-Meier plots were plotted using the public database to analyze the association between CD36 level
and the five years survival in ovarian cancer. High CD36 expression was a destructive factor for ovarian
cancer PFS (HR=1.37(1.18-1.59); log-rank P=3.1x107) (Fig. 4B) and 0S (HR=1.39(1.16-1.65); log-rank
P=0.00026) (Fig. 4C). In addition, CD36 expression was no significant difference in each ovarian cancer
stage (Fig. 4D). Moreover, in the ovarian cancer samples of the Gene Expression Profiling Interactive
Analysis database, the expression of CD44 was positively correlated with CD36 (R=0.21; P=1.4x10°)(Fig.
4E). To sum up, all of these results demonstrated that CD36 might have a promoting function in ovarian
cancer progression.

Discussion

Ovarian cancer is a common and deadly malignant tumor of the female reproductive system, which
seriously threatens women's life and health[23]. It is urgent to study the pathogenesis of ovarian cancer to
find new therapeutic targets to improve the clinical outcome of patients with ovarian cancer[24]. Previous
studies indicated that CD44 might participate in cancer progression, metastasis, and resistance to
therapy[7, 13]. And CD44 has been reported to play a vital role in cancer stem cells and promote cancer
progressions involving ovarian cancer[9, 25, 26]. Hence, the exploration to understand the target genes
regulated by CD44 in ovarian cancer is necessary to support our discovery of novel treatment strategies.

To explore the function of CD44 in ovarian cancer progression, we constructed the CD44-knockdown
SKOV3 cells. RNA-seq revealed that genes relating to many pathways were significantly enriched in CD44-
knockdown SKOV3 cells, such as the ECM-receptor interaction pathway. Several studies reported that the
ECM-receptor interaction pathway is involved in cancer cell migration and tumor adhesion, movement,
and proliferation [16-20]. Furthermore, our data demonstrated that amyloid beta-related genes were
significantly enriched in CD44-knockdown SKOV3 cells, which suggests that CD44 may play a role in

the amyloid-beta of ovarian cancer cells. Most studies found that many cancer types are intrinsically
associated with specific types of amyloidosis, in which amyloid is accumulated locally inside tumors or
systemically. Usually, this condition relates to the hyperproduction of specific amylogenic proteins[27-30].
And studies reveal that amyloid precursor protein affects migration and invasion in ovarian cancer[31,
32]. Studies have revealed that CD36 is a key molecule involved in the endocytosis of oxidized
phospholipids, apoptosis, and many biological processes of amyloid[33-35]. CD36 increases amyloid
clearance in the Alzheimer's disease animal models [21]. In the tumor microenvironment, increased lipid
deposition and inflammatory factors may change the expression and distribution of CD36, which may
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promote metastasis[36]. The amyloid precursor protein is a transmembrane glycoprotein that could be
post-translationally processed to create the amyloid-beta peptides eventually. Amyloid precursor protein
was crucial to neurotransmission and neuronal homeostasis and development. The protein highly
expresses in the brain and other organs and is over-expressed in various cancers[37]. Our data
demonstrated that CD36 is lowly expressed in CD44-knockdown SKOV3 cells and knockdown CD44
induces amyloid-beta degradation in ovarian cancer cells by regulating CD36 expression. The result
suggests that there might be CD44-CD36 interaction in ovarian cancer to accelerate tumor development.

In conclusion, compared with wild-type SKOV3 cells, DEGs were identified in CD44 knockdown SKOV3
cells by RNA-Seq analysis. The KEGG pathway analysis was used to initially explore the function of CD44
in ovarian cancer. The use of bioinformatics analysis proved that CD44 is related to the ECM-receptor
interaction pathway. In addition, it has been confirmed that CD36 expression is related to amyloid
aggregation[21], while this study found that CD36 and beta-amyloid expression can both be upregulated
by CD44. Hence, this study displays new insights into the cancer-promoting function of CD44 in ovarian
cancer, showing that CD44 might participate in the procession of ovarian cancer by regulating the
expression of CD36 and beta-amyloid.
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Pathway Pvalue Up_genes Down_genes
ECM-receptor 0.007004 LAMAS, THBS1, CD44, CD36, ITGB6, ITGB7
interaction AMC2
Protein digestion and 0.005628 - CPA3, CPB2, KCNE3, SLC7A9
absorption
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Figure 1

The generation of CD44-knockdownSKOV3 cells (A) SKOV3 cells were transfected by lentiviruses, and the
bright field and GFP expression were observed in fluorescence microscopy. Scale bar, 200 ym. (B, C) WB
(B) and RT-qPCR (C) analysis of the mRNA and protein expression of CD44 in control(sh-NC) and CD44
knockdown(sh-CD44) SKOV3 cells. Student’s t-test, mean + SD (n = 3), **P < 0.01.
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Figure 2

Identification of DEGs between sh-CD44 SKOV3 and sh-NC SKOV3 cells (A) Hot map of the differentially
expressed genes between sh-CD44 SKOV3 cells and sh-NC SKOV3 cells. (B) The volcano plot of the
differentially expressed genes. Each point represents a gene. FC >1.5. (C)Top 20 significantly enriched
KEGG pathways of DEGs associated with CD44 regulation. Each point represents a KEGG signaling
pathway. Gene ratio reflects the enrichment level of DEGs enriched in the pathway. Round size represents
the gene count of each pathway, and the color represents the significance level.
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Figure 3

CD44 regulates the CD36 expression (A)The DEG proteins reconstructed the network of proteins
interaction in response to CD44 knockdown in SKOV3 cells, such as CD36. (B) Hot map of the
differentially expressed genes between sh-CD44 SKOV3 cells and sh-NC SKOV3 cells. CD36 was included
in the downregulated genes. (C) WB analysis detects the protein levels of CD36. (D) Immunofluorescence

staining showed the expression and location of CD36 in sh-CD44 SKOV3 cells or sh-NC SKOV3 cells.
Scale bar, 10 pm.
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Figure 4

CD36 is related to ovarian cancer progression (A) WB analysis detects the protein levels of beta-amyloid.
(B) Kaplan-Meier survival curves for PFS in ovarian cancer patients that CD36 expression was high or
low. n=1,104. HR=1.37(1.18-1.59); log-rank P=3.1x10-5. (C) Kaplan-Meier survival curves for OS in ovarian
cancer patients that CD36 expression was high or low.n=1,207. HR=1.39(1.16-1.65); log-rank P=0.00026.
(D) CD36 mRNA levels in each stage of ovarian cancer. (E) The expression of CD44 was positively
correlated with CD36 in the public database. Pearson's correlation coefficient, P=1.4x10-6, R=0.21.
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