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Abstract 250 

Anorexia Nervosa (AN) is characterized by voluntary food restriction, excessive exercise and 

mortality rate surpassing that of major depression. Activity-based anorexia (ABA) is an 

animal model that captures these characteristics of AN, thus having the potential to reveal the 

neurobiology underlying individual differences in AN vulnerability. Dorsal raphe (DR) is 

known to regulate feeding but its role in ABA remains unexplored. Through chemogenetic 

activation, we investigated the role of mPFC pyramidal neurons projecting to DR 

(mPFCDR) in an animal’s decision to eat or exercise following ABA induction.  Although 

the DREADD ligand C21 could activate 44% of the mPFCDR neurons, this did not 

generate significant group mean difference in the amount of food intake, compared to control 

ABA mice without chemogenetic activation.  However, further analysis of individual 

animals’ responses to C21 revealed a significant, positive correlation between food intake 

and mPFCDR neurons that co-express cFos, a marker for neuronal activity. cFos 

expression by GABAergic interneurons (GABA-IN) in mPFC was significantly greater than 

that for the control ABA mice, indicating recruitment of GABA-IN by mPFCDR neurons. 

Electron microscopic immunohistochemistry (EM-ICC) revealed that GABAergic 

innervation is 60% greater for the PFCDR neurons than the Layer 5 pyramidal neurons 

without projections to DR. Moreover, individual differences in this innervation correlated 

negatively with food intake specifically on the day of C21 administration. We propose that 

C21 activates two antagonistic pathways: 1) PFCDR pyramidal neurons that promote food 

intake; and 2) GABA-IN in the mPFC that dampen food intake through feedback inhibition 

of mPFCDR neurons.  
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Introduction 

 Anorexia Nervosa (AN) is an eating disorder that affects approximately 2.1 million 

people (Collaborators, 2013). The characteristic symptoms of AN include voluntary food 

restriction in pursuit of thinness, compulsive and over-valued thoughts on body shape and 

weight, as well as failure in maintaining healthy body weight (Attia, 2010). AN is highly 

comorbid with anxiety and mood disorders (Hudson, Hiripi, Pope, & Kessler, 2007; 

Merikangas et al., 2010), and has a mortality rate of around 10%.  AN is still without 

approved pharmacological treatment, making AN one of the deadliest among mental illnesses 

(Arcelus, Mitchell, Wales, & Nielsen, 2011; Birmingham, Su, Hlynsky, Goldner, & Gao, 

2005). The neurobiological mechanisms and the treatment for AN remain unresolved. 

 A rodent model called Activity-Based Anorexia (ABA) captures several key 

symptoms of AN. Upon giving mice free access to running wheels prior to a few days with 

restricted food access, some but not all animals undergo voluntary hypophagia and increased 

wheel running  (Hall, Smith, Schnitzer, & Hanford, 1953). These behaviors are maladaptive, 

since hyperactivity does not improve food access, but instead causes heightened energy 

expenditure that could be lethal. The major difference between ABA and AN is that, in the 

ABA model, food restriction (FR) is initially imposed by experimenters.  However, this phase 

is followed by voluntary FR, one hallmark of AN, in that animals choose to run rather than 

eat, even during the limited hours of food availability. In sum, ABA captures the following 

essential elements of AN: Severe weight loss, extensive exercise even during the limited 

hours of food availability, and anxiety. The significance of this model lies in its potential to 

shed light on the neurobiological underpinnings of anorexia-like behaviors in rodents 

(Chowdhury et al., 2019; Chowdhury, Wable, Sabaliauskas, & Aoki, 2013; Foldi, Milton, & 

Oldfield, 2017; Santiago, Makowicz, Du, & Aoki, 2021), through which the mechanism of as 

well as the treatments for patients with AN can be enlightened.  
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 Adolescence is the period when individuals are the most susceptible to AN (Kaye, 

Fudge, & Paulus, 2009). This period is marked by significant changes in metabolism, 

endocrine system and brain development, but also by individuals’ psychological and 

sociocultural transitions (Connan, Campbell, Katzman, Lightman, & Treasure, 2003; 

Fuhrmann, Knoll, & Blakemore, 2015; Giedd et al., 1999). Those transitions, whether 

physiological or mental, could be stressful for individuals. As a result, despite an increased 

resilience to physical diseases and injuries, the mortality rate during adolescence doubles 

rather than decreases (Dahl, 2004). Therefore, the intense stress faced during this adolescent 

transition might contribute to the development of eating disorders such as AN. Indeed, 

individuals diagnosed with AN commonly report the experience of mental stress (Ball & Lee, 

2000), and AN-like behaviors could be induced by chronic stress in rats (Marti, Marti, & 

Armario, 1994). Therefore, the ability to handle stress effectively may be essential for 

protecting individuals from developing AN.  

 The neural circuits underlying stress response may be a potential neurobiological 

target for AN pathology. The dorsal raphe nucleus (DR) is an integral component of the 

serotonin (5-HT) system in the central nervous system. The DR responds potently to external 

stress, such as motion restraints and early maternal separation (Grahn et al., 1999; Hardaway, 

Crowley, Bulik, & Kash, 2015; Nichols et al., 2017; Pollano, Trujillo, & Suarez, 

2018).Furthermore, a recent study using optogenetic tools revealed a causal relationship 

between activation of the serotonergic neurons in DR and active coping under inescapable 

stress in rats and mice (Nishitani et al., 2019). Anatomically, GABAergic interneurons 

(GABA-IN) in DR receive inputs from Layer 5 pyramidal neurons in the medial prefrontal 

cortex (mPFC) (Jankowski & Sesack, 2004). mPFC is implicated in various higher-order 

cognitive functions such as learning, memory and decision-making and have we have 

previously implicated this brain region in ABA running (Santiago et al., 2021). Activation of 
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mPFC projections to DR (mPFCDR) induces active coping within adverse environments 

and challenges such as the forced swim test (Warden et al., 2012). mPFCDR also engages 

the controllability of escapable foot-shock stress, which leads to the blockade of the DR-

induced behavioral outcomes in face of inescapable stress (Amat et al., 2005). Those results 

imply that mPFCDR may mediate higher-order control of mental and starvation stress in 

AN to initiate either active or passive coping strategies such as extensive exercise versus 

feeding.  

 Beside its involvement in stress responses, another well-studied role of DR is to 

regulate feeding behaviors (Bendotti, Garattini, & Samanin, 1986; Fletcher & Davies, 1990).  

DR neurons have differential activities at different phases of feeding, and are significantly 

more active during ingestion than food searching and satiety (Takase & Nogueira, 2008). 

Similarly, while feeding increases the activity of the serotonergic neurons in DR, fasting has 

the opposite effects of reducing their activities (Nectow et al., 2017). Optogenetic activation 

of the serotonergic neurons in DR suppresses feeding, while activation of GABAergic 

interneurons in the same area increases feeding (Nectow et al., 2017). Furthermore, at the 

molecular level, deletion studies show that the 5-HT4 receptors in the mPFC-DR pathway are 

required for the development of stress-induced hypophagia (Compan, Walsh, Kaye, & 

Geliebter, 2015; Jean et al., 2017).  Interestingly, even though feeding involves various 

sensory modalities such as vision and smell, DR as a feeding regulator actually does not 

receive any direct input from the primary sensory or motor cortices (Weissbourd et al., 2014). 

This raises the possibility that the regulation of feeding by DR may involve higher-order 

controls, such as the voluntary decision-making to restrict food intake seen in individuals 

diagnosed with AN.  

Given the multiple cognitive functions of mPFC, we sought to determine whether 

mPFCDR may affect feeding in the ABA model, in which animals that exhibit anorexia-
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like behaviors make the decision to run or to eat. We report on the feeding behaviors of mice 

during the ABA schedule in response to the excitation or inhibition of mPFCDR pathway. 

We show strong correlations between the activities of the mPFCDR pyramidal neurons in 

mPFC and the food intake of mice.  We further reveal the complex local microcircuits in 

mPFC that strongly modulate the mPFCDR pathway and feeding of ABA mice. 
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Materials and Methods  

Animals 

 Eighteen female mice (wild type C57BL6/J, bred at NYU) were used in this study. 

Starting from postnatal day 26 (P26), all animals were singly housed at NYU animal facility 

under a 12:12 light/dark cycle with the light starting at 7 AM and ending at 7 PM. Water and 

food were provided ad libitum unless when specified. All of the animal handlings adhered to 

NYU protocols approved by the Institutional Animal Care and Use Committees of New York 

University (A3317-01). 

 

Surgery for transfection of the mPFC with Multiplexed-Retro DREADD     

 In this study, multiplex Designer Receptors Exclusively Activated by Designer Drugs 

(DREADDs) were used to target the group of neurons projecting from mPFC to DR. The 

chemogenetic approach resembled the methods described in another recent publication from 

this lab, except that the Multiplexed-Retro DREADD induction targeted the mPFC-to-DR, 

rather than the mPFC pyramidal neurons projecting to dorsal striatum (Santiago et al., 2021). 

At P26, animals were anesthetized with isoflurane for surgery. For the DREADD 

experimental animals (N=7, randomly selected from all of the animals used), viruses 

containing exogenous genes were transcranially injected through Nanoject II Auto-Nanoliter 

Injector (#3-000-204, Drummond) at different sites: DR was injected with a retrogradely 

transported AAV carrying a Cre-EBFP construct (AAVrg-EBFP-Cre) (Han et al., 2018; 

Tervo et al., 2016). The volume was 400-500nL, comprised of AAV-rg-pmSyn1-EBFP-Cre 

(gift from Hongkui Zeng; Addgene viral prep # 51507-AAVrg; RRID: Addgene_51507; viral 

titer of 6×10¹² vg/mL). The stereotaxic coordinates for DR were AP=0 from Lambda, ML 

+0.8 mm @15°, DV 3.3 mm (Correia, Matias, & Mainen, 2017). The same animals received 

viruses encoding Cre-dependent hM3D(Gq)-mCherry DREADDs (Gq-DREADDs) (AAV8-
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hSYN-DIO-hM3D(Gq)-mCherry,  gift from Bryan Roth, viral prep # 44361-AAV8; RRID: 

Addgene_44361; viral titer of 4×10¹² vg/mL) and Cre-dependent KORD-mCitrine 

DREADDs (KORD) (AAV1-hSYN1-dF-HA-KORD.IRES.mCitrine), a generous gift from Dr 

Shaham, Yavin of NIDA, produced by the Genetic Engineering and Viral Vector Core of 

NIDA; viral titer of 2x1012 vg/mL) simultaneously into mPFC using the stereotaxic 

coordinates of AP 1.8 mm from Bregma, ML ± 0.32 mm, DV 1.5 mm as a 50:50 mixture, 

100 nl per hemisphere. Control group was constructed by injecting viruses encoding the 

CaMKIIα-dependent-eGFP (gift from Bryan Roth; Addgene viral prep #50469-AAV8; 

RRID: Addgene_50469, 1×10¹³ vg/mL), to express GFP in CaMKII⍺+ pyramidal cells in 

mPFC without co-expression of DREADD.  Alternatively, control animals received the virus 

encoding Cre-dependent DREADDs but without the retrograde-Cre viruses in DR.  The two 

control subgroups were pooled after verifying through statistical tests that they lacked 

behavioral differences.  

 

ABA schedule  

The schematic illustrations for the ABA schedule are included in Fig. 1A for the first 

ABA induction (ABA1) and for the second ABA induction (ABA2, Fig. 2A).  
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Figure 1 ABA1 timeline and behavior  
Schematic illustration of the first ABA induction and the daily food restriction (FR) schedule.  
See Method section for the details of the ABA1 induction. FAA: food anticipatory activity; 
FA: food availability; PP: post prandial period. (b) individual daily wheel count (WCT); (c) 
WCT during ABA; (d) Body weight; (e) Food intake during the pre-ABA and the three days 
of FR. The average daily food intake during the two days before the onset of FR on P41 was 
used as the Pre-ABA baseline food intake. The average daily food intake during the two days 
after ABA, on P44, was used as the post-ABA food intake.  
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Figure 2 ABA2 timeline and behavior  
Schematic illustration of the second ABA induction. See Method section for 
the details of the second ABA induction. (b) WCT; (c) body weight; (d) Food 
intake during the pre-ABA and the four days of food restriction. * indicates p 
≤ 0.05.
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After ten days of recovery from surgery, at P36, an acclimation phase began, whereby 

animals had 24h/day access to a running wheel (Low-Profile Wireless Running Wheel for 

Mouse ENV-044, Med Associates, Fairfax, VA) in addition to ad libitum food and water 

(Pre1, Pre2, Pre3, Pre4, Pre5). The food was of two types: dry food pellet (LabDiet PMI 

Nutrition Int’l, Brentwood, MO’s #5001, 10% fat, 20% protein, 70% carbohydrate, 4.07 

gross energy kca./g, 3.02 metabolizable kcal/g) and wet food (Clear H2O brand DietGel 76A 

in plastic cups, 0.998 kcal/g, 4.7% protein, 17.9% carbohydrates, 1.5% fat, 73.4% moisture).  

On P41, the food was removed at 1 PM, leaving the animal only with free access to the 

running wheel (first ABA induction, ABA1), an empty food hopper and water gels (Clear 

H20 brand Hydrogels Product #70-01-5022, 0 kcal/g. In the following three days, food access 

was given only between 7 PM to 9 PM and the animals’ food intake during the two-hours of 

food availability were measured. At noon of P44, ad libitum food access was restored and the 

running wheel was removed from the cage. After six days of recovery from ABA1, starting 

on P50, the running wheel was reintroduced to the cage for four days (FR1, FR2, FR3, FR4) 

followed by a second ABA induction (ABA2) between P54 (1 PM) to P58 (1 PM).  

 ABA2 was the same as ABA1, with the following exceptions: on P55, Gq-

DREADD’s ligand Compound 21 (C21; Tocris, Cat. No. 5548, 1 mg/kg body weight, 

suspended in sterile saline from a stock solution dissolved in DMSO) was injected 

intraperitoneally at 3:30 PM and 9:30 PM; on P57, KORD-DREADD’s ligand salvinorin B 

(SalB; Cayman Chemical, Cat. No. 23582, 10 mg/kg body weight, dissolved in DMSO, then 

suspended 1:5 in sunflower oil) was injected subcutaneously at 3:30 PM and 6:30 PM. 

Starting from 1 PM on P58, the animals went through 7 days of recovery, whereby they had 

ad libitum access to food and wheel. During one of the days of recovery, C21 was injected, 

while on another of the days of recovery, SalB was injected,for assessing whether the 

DREADD ligands’ effects on behavior depended on FR. 
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Immunocytochemical verification of DREADD gene expression 

Euthanasia was achieved by anesthetizing animals deeply using urethane (1000 – 

1500 mg/kg, I.P.), then transcardially perfusing with the following solutions: 0.1 M 

phosphate buffer (PB) (pH 7.4) containing 10,000 units/500 ml of Heparin, followed 

immediately by 4% paraformaldehyde (PFA) in 0.1M PB. Brains were extracted from the 

skull, then post-fixed in 4% PFA/0.1M PB for at least three days at room temperature. Each 

brain was blocked and sectioned along the coronal plane at a thickness of 50 μm using a 

vibrating microtome. Brain sections from all DREADD experimental animals (N=7) were 

used for the following immunocytochemical processing.  

 The successful deposition of AAVrg-EBFP-Cre in DR was confirmed using a rabbit 

anti-GFP primary antibody (Invitrogen (Molecular Probes) Cat # A11122; RRID AB_221569, 

1:2000), taking advantage of its cross-reactivity for detecting EBFP, followed by the use of a 

goat anti-rabbit IgG for the secondary antibody (Vector Cat # BA-1000 lot ZA-0924, 1:200) 

and Vector’s Elite kit (PK-6100, Vector Laboratories) with VIP as the color indicator (SK-

4605, Vector Laboratories) (Fig 3 a, b). This immunocytochemical procedure also detected 

mCitrine, the reporter of KORD (not shown).  The expression of Cre-dependent Gq-

DREADD genes was verified using a rat anti-mCherry primary antibody (ThermoFisher, Cat. 

No. M11217, RRID AB_2536611,  1:1000), a biotinylated goat anti-rat IgG secondary 

antibody (Vector Laboratories Cat #BA-9400, lot Z001216, 1:200) and Vector’s Elite Kit 

with VIP as the indicator. A subset of the sections immunolabeled for mCherry were also 

immunolabeled for cFos, to verify that the pyramidal neurons with immunoreactivity to 

mCherry were activated by the DREADD ligand, C21. To this end, vibratome sections were 

co-incubated with rat anti-mCherry and rabbit anti-cFos primary antibody (Cell Signaling 

Tech, Cat. No. 5348S; RRID AB_10557109, 1:800), followed by co-incubation in 
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biotinylated goat anti-rat IgG and biotinylated goat anti-rabbit IgG (Vector Laboratories Cat# 

BA-1000, lot ZA-0924, 1:200) secondary antibodies, and visualized using the same kit as 

above. 

 Vibratome sections were first incubated for 30 min with 1% H2O2 in 0.01M phosphate 

buffer/0.9% sodium chloride (PBS), rinsed in PBS, then were blocked for 30 min in PBS 

buffer containing 1% bovine serum albumin (BSA) and 0.05% sodium azide. Incubations 

with the primary antibodies, anti-GFP and anti-mCherry occurred over a period of 1 to 3 

days, under constant agitation at room temperature. Following three rinses in PBS, sections 

were incubated with the secondary antibodies for 1 hour at room temperature, under constant 

agitations. After this step, sections were processed for the ABC-peroxidase reaction by 

following the Vector Laboratories’ User Guide. Sections were mounted on glass slides, 

coverslipped and visualized using the Echo Revolve light microscope.   

 

Immunocytochemistry for triple immunofluorescent confocal microscopy 

In order to confirm that C21 activated Gq-DREADD-transfected pyramidal neurons in 

the mPFC, and to ascertain whether the firing of pyramidal neurons increased the firing of 

GABAergic interneurons (GABA-INs) in the mPFC, animals were injected on P63 with C21 

approximately 90 minutes prior to euthanasia.  

  Intact sections that had clear cingulate cortex area, prelimbic cortex and infralimbic 

cortex (~Bregma 1.98 mm to 2.32 mm) of these experimental animals, together with 

vibratome sections prepared as described above for the control animals without DREADD 

expression (N=10) underwent the immunocytochemical procedure. After incubating sections 

for 30 min with 1% H2O2 in PBS, sections were rinsed in PBS, then were blocked for 30 min 

in PBS buffer containing 1% BSA and 0.05% sodium azide. Sections were then incubated in 

PBS-BSA-azide containing three primary antibodies:  rabbit anti-cFos antibody (Cell 
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Signaling Tech, Cat. No. 5348S; RRID AB_2536611, 1:800), rat anti-mCherry antibody 

(ThermoFisher, Cat. No. M11217, RRID AB_2536611; 1:1000), and mouse anti-glutamic acid 

decarboxylase 67 (GAD) antibody (Millipore Sigma, Cat. No. MAB5406, clone 1G10.2; 

RRID AB_2278725, 1:800). After one to three days of incubation at room temperature, brain 

sections were washed three times with PBS for ten minutes each. Sections then were 

incubated in PBS-BSA-azide buffer containing the following secondary antibodies:  goat 

anti-rat IgG antibody conjugated to Alexa Fluor 594 (Jackson ImmunoResearch, Cat. No. 

112-585-143; 1:100) to recognize anti-mCherry, Affini-pure goat anti-rabbit IgG antibody 

conjugated to Alexa Fluor 647 (Jackson ImmunoResearch, Cat. No. 111-605-144; 1:100) to 

recognize anti-cFos, and goat anti-mouse IgG antibody conjugated to DyLight 405 (Jackson 

ImmunoResearch, Cat. No. 111-475-166,1:100) to recognize anti-GAD. After an overnight 

incubation in secondary antibodies at room temperature, brain sections were washed three 

times with PBS for 10 minutes each.  

  

Controls for immunofluorescence microscopy  

We routinely conducted two types of controls. One was to stain sections singly, to 

ensure no ‘bleeding’ of fluorescent labels beyond the channel designated for the 

immunolabel. The second was to pair a primary antibody with a secondary antibody of an 

inappropriate species, to ensure absence of inter-species cross-reactivity.  

 

Confocal microscopic imaging and analysis  

The brain sections were observed under the confocal microscope Leica Confocal SP8 

with Leica’s Application Suite 2.6.0 using three channels to visualize three kinds of 

secondary antibodies separately. Multiple images at a single plane of focus were taken from 

the mPFC. ImageJ (version 1.52K; RRID: SCR_003070, National Institute of Health, USA) 
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was used to analyze the images taken from the three channels of the confocal microscope. For 

each image, a random window containing cingulate cortex area 1, prelimbic cortex and/or 

infralimbic cortex was selected and every neuron excluding those lying on the bottom or the 

right border of this window was counted and their distance to the pia surface was measured. 

Every neuron with florescence detected by the mCherry channel was treated as an mCherry+ 

(i.e., Gq-DREADD expressing) neuron. Only a substantial ring-shaped labeling detected by 

the GAD channel was categorized   as GAD+ (i.e., GABA-IN) For the cFos channel, optical 

density of the nucleus of each labeled neuron was measured. From the histogram, it was 

determined that cFos intensity greater than 25 or the ratio of cFos intensity divided by their 

mean value in a single window greater than 0.5664 was regarded to be above the threshold of 

cFos+ (i.e. activated) neuron.  

 

Immunohistochemistry and tissue processing for electron microscopy  

Brain sections from the experimental group (N=7) were gained in the same way as 

discussed above for confocal microscopy. Each section underwent freeze-thawing 

(Wouterlood & Jorritsma-Byham, 1993) to increase the permeability of cell membranes with 

minimal disturbance of membranous structures. The immunohistochemistry procedure for 

dual labeling of GAD and mCherry began by blocking nonspecific immunolabeling by 

incubating for 30 min in 0.01M PBS/0.05% azide/1% BSA.  This was followed by a three 

days’ primary antibody incubation in rat anti-mCherry antibody (ThermoFisher, Cat. No. 

M11217; RRID AB_2536611, 1:1000) and mouse anti-GAD antibody (MilliporeSigma, Cat. 

No. MAB5406; RRID AB_2278725, 1:800) dissolved in pH 7.6 PBS/1% BSA/0.05% sodium 

azide, and an overnight secondary antibody incubation in ultrasmall colloidal gold-

conjugated goat anti-rat antibody (1:100, EMSciences Hatfield, PA Cat 25181) and 

biotinylated goat anti-mouse antibody (1:200, Vector Labs BA-1000). After that, sections 
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underwent 30 minutes of incubation in avidin-biotinylated horseradish peroxidase complex 

formation (ABC, Vector’s ABC Elite kit), 15 minutes of postfixation using 2% 

glutaraldehyde, then silver intensification (KPL Silver Enhancer Kit, Cat # 5520-0021 to 

enlarge the ultrasmall colloidal gold particles conjugated to anti-rat IgG, and 3,3′- 

diaminobenzidine (DAB, Sigma Chem Cat No. 5905) substrate reaction. The EM tissue 

processing was similar to the procedure performed before (Chen et al. 2016), which consisted 

of post-fixation using 0.1% osmium tetroxide/0.1 M phosphate buffer processing for 30 min, 

followed by osmium-free tissue processing in 1% tannic acid, 1% uranyl acetate and 0.2% 

iridium tetrabromide all dissolved in maleate buffer (pH 6.0,  0.1 M), post-fixation in 1% 

uranyl acetate in 70% ethanol (EtOH) overnight, dehydration in 70%/90%/100% EtOH and 

100% acetone, infiltration in EPON 812 (EM Sciences), flat-embed between Aclar plastic 

sheets (EM Science) and capsule-embedded in BEEM capsules (EM Science). Ultrathin 

sections were prepared using the Ultracut E ultratomicrotome and collected on nickel grids 

(EM Science). Lead citrate counterstaining was omitted, so as to facilitate detection of HRP-

DAB reaction products. 

 

Electron microscopic imaging and analysis 

The imaging window under the electron microscope (EM) was confined to Layer 5 of 

mPFC (PL, IL and ACA) and each window was required to contain at least two cell bodies 

with silver intensified gold particles embedded on the plasma membrane and/or in the 

cytoplasm (mCherry+ neurons). The GABAergic terminals were distinguished from the 

others based on their HRP/DAB reaction produce appearing more electron-dense than 

mitochondria and postsynaptic densities in the immediate vicinity. For each animal, 

approximately 10 mCherry+ and 10 mCherry-negative neurons were sampled and quantified. 

GABAergic terminals that were aligned in parallel with the plasma membrane of the cell 
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body were identified to be forming inhibitory synapses and measured of their lengths using 

the ImageJ’s segmented lengths tool. The lengths spanning the plasma membrane to adjacent 

GABAergic terminals were also measured using the same ImageJ software.   

 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism versions 8 or 9.2.0 

Normality tests were followed by t-tests, one-way ANOVA or nonparametric tests, and 

simple linear regressions of correlation.  
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Results 

Wheel running, food intake and body weight during ABA1 

 9 out of 18 animals increased their daily 24-hr wheel running progressively during the 

acclimation phase of ABA1, when animals had access to a wheel without food restriction 

(FR) (Pre3 to Pre1, Fig 1 a, b). Following commencement of FR on FR1, 13 out of 18 

animals increased their wheel running during the hours of 4 PM to 7 PM that preceded the 

hours of food availability (FA) of 7 PM to 9 PM. This increase during the hours of 1 PM to 7 

PM, often referred to in the literature as the food-anticipatory activity (FAA) (Hall et al., 

1953) was significantly different during ABA1, relative to values during the acclimation 

days, Pre1 and Pre2 (p= 0.0237, paired t test, Fig. 1 c). All animals survived three days of FR, 

in spite of having lost 23%, on average, of their body weight at the end of ABA1, calculated 

as follows:  Body weight on FR1, FR2 and FR3, normalized to the pre-FR body weight at 1 

PM. (Fig. 1 d). This was due to the reduction of daily food intake by 70%, calculated as the 

difference in the averaged value of food intake during two pre-FR days relative to the 

averaged value of food intake during three FR days, normalized to the averaged value of food 

intake during two pre-FR days) (shown as changes in kcal consumed in Fig. 1 e). Within 24 

hrs of having returned to ad libitum food availability, their body weights were restored to pre-

FR values (Fig. 1 d).  

 

Wheel running, food intake and body weight during ABA2 

Following ABA1, all animals were returned to an environment with ad libitum food 

availability and no wheel (P44 to P50). At the end of the recovery phase, at P50, a wheel was 

returned to each animal’s cage to allow for re-acclimation (Pre4 to Pre1). At the end of the re-

acclimation phase of ABA2, all of the animals resumed or surpassed the level of wheel 
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running observed by the end of the acclimation phase of ABA1 (Fig. 2 a, b). Following 

commencement of food restriction on FR1 of ABA2, 5 out of 18 animals increased their 

wheel running during the hours preceding the feeding hours of 7 PM to 9 PM. By FR2, this 

increase reached significance, relative to the average running during the hours of 4 PM to 7 

PM on Pre2 and Pre1 days that preceded FR (p= 0.04577, paired t test, Fig. 2 b). All animals 

survived four days of FR, in spite of having reduced food intake by 60% (expressed in kcal 

food intake in Fig. 2 d) and lost 21% of their body weight (Fig. 2 c). Within 24 hrs, their body 

weights were restored to pre-FR values (Fig. 2 c).  

 

The effect of C21/Gq-DREADD activation and SalB/KORD-DREADD inhibition of 

mPFCDR neurons on wheel running 

At 3:30 PM and 9:30 PM on FR2 of ABA2, all animals of the cohort received 1 

mg/kg of C21 by intraperitoneal injections (Fig. 2 a). Comparisons of wheel running of 

animals transfected with Gq-DREADD in mPFC versus the controls without Gq-DREADD 

transfections revealed no group difference on FR2 during the 3 hours preceding feeding 

(FAA, 4 PM-7 PM, Mann-Whitney test, p=0.4240), during the 2 hrs of food availability (FA, 

7 PM-9 PM, Welch's t test, p=0.5413), or postprandially (PP, 9 PM-1 AM, Welch's t test, 

p=0.6170) (Fig. 2 b).  The average wheel running during the 2 hrs post-injection of C21 (4 

PM-6 PM) also did not reveal any group difference (Mann-Whitney test, p=0.3247).  

At 3:30 PM and 6:30 PM on FR4 of ABA2, all animals of the cohort received 10 

mg/kg of SalB by intraperitoneal injections to suppress activity of the mPFCDR pyramidal 

neurons (Fig. 2 a). No significant difference in wheel running on FR4 was found during 3 

hours preceding feeding (FAA, 4 PM-7 PM, Mann-Whitney test, p=0.1854), during the 2 

hours following the first injection of the DREADD ligand (4 PM – 6 PM, Mann-Whitney 
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test, p=0.6907), during the 2-hrs of food availability (FA, Welch's t test, p=0.6403) or 

postprandially (9 PM-1 AM, Welch's t test, p=0.2942) (Fig. 2 b).  

 

The effect of C21/Gq-DREADD activation and SalB/KORD-DREADD inhibition of 

mPFCDR pyramidal neurons on food consumption 

Previous studies have uncovered that mPFCDR pyramidal neurons project mostly 

to the GABA-INs in DR (Jankowski & Sesack, 2004), and that direct activation of those 

inhibitory neurons in DR promotes food intake (Nectow et al., 2017). Thus, we predicted that 

C21/Gq-DREADD activation of mPFCDR neurons would promote feeding during the 

limited hours of food availability on FR2 of ABA2. Contrary to this expectation, activation of 

mPFCDR pyramidal neurons yielded no significant difference in the group mean value of  

feeding by the DREADD group, compared to the control ABA animals without activation of 

DREADDs (Welch's t test, p=0.2352) (Fig. 2 d). SalB/KORD-DREADD inhibition of 

mPFCDR neurons on FR4 of ABA2 also did not yield significant differences in the group 

mean value of  food intake across the DREADD versus control groups (Mann-Whitney test, 

p=0.4651) (Fig. 2 d). 

 

Rationale for the anatomical experiments 

Although chemogenetic modulation of the mPFCDR pyramidal neurons did not 

yield statistically significant group mean differences in wheel running or food consumption, 

relative to controls lacking the expression of DREADDs, we noted substantial individual 

differences in these behaviors. To verify that DREADD modulated neuronal activity and to 

assess whether individual differences in behavior might be related to individual differences in 

the microcircuitry of the mPFC activated by C21, we first confirmed that DREADD genes 



  23 

were expressed in mPFC pyramidal neurons, including their axon terminals of DR, then 

quantified the proportion of C21-activatable mPFC neurons by immunofluorescence.  

 

Confirmation of DREADD expression in mPFC pyramidal neurons and DR axons by 

immunocytochemistry 

Immunocytochemistry was performed to detect EBFP, the reporter protein of the 

retrogradely transported AAV expressing the Cre protein (AAVrg-EBFP-Cre, Fig 3 a and b). 

As expected, EBFP was expressed at high density within neurons located in DR, where the 

virus was injected stereotaxically (Fig 3 b). The Cre-dependent expression of  DREADD 

genes in the perikaryal cytoplasm and dendrites of mPFC pyramidal neurons was verified by 

the immunoreactivity of these cells to the reporter protein, mCitrine, of KORD (not shown) 

and of the reporter protein, mCherry of Gq-DREADD (Fig 3 c and f).  High density of axon 

terminals with immunoreactivity to mCherry were evident in DR (Fig 3 d) as were axons 

with immunoreactivity to mCitrine (not shown). As expected (Anastasiades & Carter, 2021), 

a much lower density of fine-caliber, varicose axon terminals, presumably axon collaterals of 

mPFC pyramidal neurons projecting to the pyramidal tract, were detected within the medial 

subregion (i.e., near the lateral ventricles) of dorsal striatum, among immunoreactive fiber 

bundles of the internal capsule (Fig 3 e).  
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Figure 3 Confirmation of DREADD expression in the mPFCDR neurons and representative 
triple IF confocal images of mPFC neurons 
(a) Schematic of the stereotaxic injection of AAVrg-EBFP-Cre into DR and of the cre-dependent 
DREADD-AAV into mPFC.  
(b) Verification of AAVrg-EBFP-Cre deposition into DR. Note that the region with the highest density 
of EBFP-immunoreactivity is in the DR.  ca=cerebral aqueduct;PAG=periaqueductal grey; mlf=medial 
longitudinal fasciculus. Bar =  500 µm. 
(c) Verification of Gq-DREADD-mCherry expression in Layer 5 pyramidal neurons of the mPFC.  
mCherry-immunoreactivity is prevalent within cell bodies in Layer 5, apical dendrites traversing 
across Layers 2/3 and branching in Layer 1. The section was dually labeled using anti-cFos, resulting 
in immunoreactivity of nuclei of the same population of pyramidal neurons.  Bar = 100 µm.  
d) Verification of Gq-DREADD-mCherry expression in puncta of DR. Vibratome sections containing 
DR were processed in parallel with sections containing mPFC that is shown in panel c.  Puncta 
reflecting mCherry-immunoreactive axon terminals are evident in DR, ventral (filled arrowheads) and 
lateral to the cerebral aqueduct. Nuclei immunoreactive for cFos are also evident (open arrows) in DR.  
(e) Verification of Gq-DREADD-mCherry expression in axons coursing within fiber bundles of the 
internal capsule (open arrowheads) and varicose axonal processes (filled arrowheads) in dorsal 
striatum. Calibration bar = 50 µm and applies to panels d and e.   
(f) Overview of the section showing mCherry (green), cFos (red) and GAD (blue) 
immunofluorescence. Note that most of the mCherry signals were contained in the prelimbic (PL) and 
infralimbic (ILA) areas, which constitute major parts of mPFC. ACA, anterior cingulate area; fa, 
anterior forceps. Scale bar = 170 µm. (g) Laminar distribution of mCherry, cFos and GAD 
immunolabeling. Layers were identified according to Allen Brain Atlas based on the distance to pia: 
Layer 1, 0-125 µm; Layers 2/3, 125-325 µm; Layer 5, 325-525 µm; Layer 6, >525 µm. Scale bar = 50 
µm; (h) Representative image of an mCherry+/cFos+ neuron (filled arrowhead), mCherry+/cFos-
negative neurons (open arrowheads), and an mCherry-negative/cFos+ neuron (arrow). Scale bar = 25 
µm; (i) Representative image of a GAD+/cFos+ neuron (filled arrowhead), a GAD+/cFos-negative 
neuron (open arrowhead), and an mCherry+ dendrite with spines (asterisk). Scale bar = 10 µm.  
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Validation of Gq-DREADD expression in Layer 5 of mPFC within tissue 

immunolabeled triply for mCherry, cFos and GAD 

Brain sections containing mPFC were examined under the confocal microscope after 

immunohistochemical processing. Representative images are shown in panels f through i of 

Fig 3. The expression of mCherry-tagged Gq-DREADDs in perikaryal cytoplasm was 

localized to Layer 5 and mainly confined in the prelimbic and infralimbic areas (Fig. 3 f). 

This laminar pattern in cortex was as expected, based on the known laminar distribution of 

mPFC pyramidal neurons with projections to DR (Jankowski & Sesack, 2004)  as well as the 

targeted locations of stereotactically injected rgAAV-EBFP-Cre virus in DR and of the Cre-

dependent AAV-DREADD in cerebral cortex. At a higher magnification, the mCherry-tagged 

Gq-DREADD-expressing cells were verified to be pyramidal neurons based on their long 

singular apical dendrites spanning through Layer 2/3 and 1 of mPFC (Fig. 3 g), as well as the 

prevalence of dendritic spines (white asterisk, Fig. 3 i).  

 Besides mCherry, sections were co-labeled for the immediate early gene product, 

cFos, an indicator of neuronal firing, and glutamic acid decarboxylase (GAD), a synthetic 

enzyme for GABA and thus an indicator of GABAergic inhibitory neurons. As shown in 

Figure 3 g and h, cFos immunoreactivity was restricted to the nucleus, which conforms to the 

expression and the nuclear translocation of cFos protein upon neuronal firing (Bullitt, 1990; 

Roux et al., 1990).  GABAergic interneurons (GABA-IN) were identified by GAD-

immunoreactivity exclusively within the cytoplasm and their relatively small cell body 

diameter (Fig. 3 d).   

 

Laminar distributions of mCherry+, cFos+ and GAD+ neurons 

 The laminar distributions of mCherry+, cFos+ and GAD+ neurons (Fig. 4 a) were 

assessed quantitatively and separately by calculating the relative fraction of the indicated cell 



  27 

type within 50 µm bins centered at a position specified by its distance to the pial surface. As 

shown in Fig. 4 b, ~80% of the total mCherry+ neurons were located within 325-525 µm 

from pial surface, corresponding to Layer 5, as was expected (Jankowski & Sesack, 2004). 

  Fig 4 Laminar distributions of mCherry+, GAD+ and cFos+ neurons 
(a) The same window within ILA from a DREADD experimental animal captured by GAD, 
mCherry and cFos immunofluorescence channels, respectively. The pial surface is located at the 
very bottom of the image. Scale bars = 50 µm. (b) The fraction of mCherry+ and cFos+ neurons 
distributed along laminae for the DREADD experimental group (N=7) and the control group 
(N’=10). (c) The fraction of GAD+ neurons distributed along the laminae for the DREADD 
experimental group (N=7) and the control group (N’=4). Each data point represents the relative 
fraction of the indicated cell type within a 50 µm bin centered at the position specified by its x-
coordinate. Data are shown as mean ± SEM.  
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The cFos laminar distributions were assessed for both the DREADD experimental 

animals and the control animals without DREADD expression (Fig. 4 b). For the DREADD 

experimental group, most of the cFos+ neurons were located around 400 µm to pia, which 

coincided with the pinnacle of the distribution of mCherry+ neurons (Fig. 4 b). For the 

control group, however, cFos distribution showed a smaller fraction at around 400 µm from 

pia but a relatively greater fraction around Layer 2/3 (Fig. 4 b). This indicates that Gq-

DREADDs effectively drove neuronal firing in Layer 5, where most of the DREADDs were 

expressed. Interestingly, while less than 13% of the mCherry+ neurons were distributed at 

around 125-325 µm, corresponding to Layers 2/3, the fraction of cFos+ neurons within the 

same layer of the experimental animals accounted for as much as ~34% of the total cFos 

population (Fig. 4 b). This indicates that neurons in Layers 2/3 were also activated, although 

unlikely by direct Gq-DREADD modulation.  

 As for the GAD+ neurons, their laminar distributions in the experimental and the 

control groups were similar (Fig. 4 c): both peaked within Layer 1 and were relatively evenly 

distributed across the deeper layers.  

 

Density of cFos+ neurons is increased by C21/G1-DREADDs in Layers 5 and 2/3 

For both the experimental and the control groups, the cFos+ neuronal density in 

mPFC was calculated within 50 µm-wide windows along the laminae of mPFC and centered 

at a position specified by their distance to pial surface, as described above for the laminar 

distribution of the three cell types (Fig. 5 a). The value of cFos+ neuronal densities across at 

varying distances from pia were averaged across ~4 confocal microscope  windows for each 

animal. Across laminar distances ranging from 200-550 µm from pia (Layer 2 through the 

start of Layer 6), the cFos+ neuronal density was significantly greater for the DREADD 

experimental group than the control group, (Fig. 5 b). The cFos+ densities in Layers 2/3 and 



  29 

5 were both significantly greater for the DREADD animals than controls (Fig 5 c, Mann–

Whitney U =6.000, P =0.003085 for Layer 2/3; Mann–Whitney U =3.000, P =0.000720for 

Layer 5). These results further reveal that C21/Gq-DREADDs elevated the activities not only 

of Layer 5 neurons but also of Layer 2/3 neurons.  

  
  
Figure 5 cFos+ neuron density across the laminae 
(a) Representative confocal images showing the cFos+ neurons in PL along the laminae of a 
DREADD experimental animal and a control animal. The pia surface is located at the very bottom of 
the image. Scale bars = 50 µm. (b) The density of cFos+ neurons across the laminae. Each data point 
was represented by the density of cFos+ neurons in a 50 µm high window centered at the position 
specified by its x-coordinate. The width of the windows varied from image to image, but was 
typically around 300-400 µm, covering PL and/or ILA. Data are shown as mean  ±SEM. (c) The 
density of cFos+ neurons by layers. Layer categorization was as described in Figure 3. * p ≤ 0.05, ** 
p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 by the Mann–Whitney test.  
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Activities of GABAergic neurons 

 The cFos+ density quantification described above did not differentiate GABAergic 

versus pyramidal neurons. The activities of the GABAergic subset of neurons in mPFC were 

examined through immunofluorescence as well. For each animal, the averaged percentage of 

GAD+ neurons that co-expressed cFos (%GAD+/cFos+, Fig. 3 d) captured from all windows 

that covered mPFC layers was calculated. The %GAD+/cFos+ for the DREADD 

experimental group was significantly greater than that for the control group (Fig. 6 a; 

Welch’s t(7.407)=2.937, P=0.0205). Notably, in the mPFC of DREADD animals, 

%GAD+/cFos+ showed a positive correlation with the percentage of mCherry+ neurons that 

co-expressed cFos (%mCherry+/cFos+, Fig. 6 b). This correlation was nearly significant 

(r2=0.5507, P=0.0562).   

Laminar analysis of the cFos+/GAD+ cells revealed that Gq-DREADD activation 

increased the firing of GABA-INs across Layers 2/3 and 5 of the DREADD animals more 

than of CONs (Fig. 6 c; p=0.0203 and Mann-Whitney U=12.00 for Layers 2/3; p=0.010 and 

Mann-Whitney U = 9.5 for Layer 5).  

The great majority of the cFos+/GAD-negative cells were presumed to be pyramidal. 

This category of neurons in Layers 2/3 and 5 were also of higher density for the DREADD 

animals than for the CON animals (Fig. 6 c; p=0.0068 and Mann-Whitney U = 8.000 for 

Layers 2/3; p=0.0012 and Mann-Whitney U=4.00 for Layer 5). Moreover, among the cFos+ 

cells, those that were both GAD-negative and mCherry-negative in Layer were also more 

prevalent in the mPFC of DREADD animals than of the CON animals (p=0.0031, Mann-

Whitney U = 6.00). These were presumed to include the pyramidal neurons without 

projections to DR.  
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Overall, these observations indicate that GABA-INs, pyramidal neurons of Layers 

2/3, and pyramidal neurons in Layer 5 without projections to DR were all driven to fire more, 

via the Gq-DREADD activation of mPFCDR pyramidal neurons. 

  

Figure 6 Activation of GAD+ neurons probably driven by mCherry+ neurons 
(a) The percentage of GAD+/cFos+ neurons across all layers of the DREADD experimental group 
(N=7) and the control group (N’=10). Each data point represents the average value of an animal. Data 
are shown as mean ±SEM.  (b) Correlation between %GAD+/cFos+ and %mCherry+/cFos+ in the 
mPFC of DREADD experimental animals. Dashed line indicates correlation close to significance. (c) 
Distribution of the GAD+/cFos+ neurons across the layers (left) and of the GAD+/cFos-negative 
neurons across the layers (right). * p ≤ 0.05 and ** p ≤ 0.01 by the Mann–Whitney test.  
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Electron microscopic validation of Gq-DREADD expression in Layer 5 pyramidal 

neurons 

EM imaging combined with immunocytochemistry enabled ultrastructural 

localization of mCherry-tagged Gq-DREADDs. As shown in Fig. 7, mCherry-

immunoreactivity was on the plasma membrane and in the cytoplasm of Layer 5 mPFC 

pyramidal neurons’ cell bodies (Fig. 7 a), apical dendrites (Fig. 7 b), and spine heads forming 

excitatory synapses (Fig. 7 c). Together with Fig. 3, these results confirm the expression of 

Gq-DREADDs and their wide localizations within Layer 5 pyramidal neurons in the mPFC.  

 

Electron microscopic analysis reveals more prevalent GABAergic innervation of 

mPFC DR pyramidal cells than of neighboring Layer 5 pyramidal cells without 

projections to DR 

 GABAergic innervation of Layer 5 pyramidal neurons in the mPFC of DREADD 

experimental animals was quantified in two ways: the percentage of plasma membrane 

covered by GABAergic terminals (%GABA innervation) and the number of GABAergic 

terminals per unit plasma membrane length (GABA Terminal Density) (Fig 8 a). The 

quantification was done for both mCherry+ neurons and mCherry-negative pyramidal 

neurons in Layer 5 of mPFC. Neuronal cell bodies were verified to be pyramidal, based on 

the smooth contour of the nuclear membrane (White, 1989) and lack of GAD 

immunoreactivity. Both measurements were significantly greater for the mCherry+ pyramidal 

neurons than for the mCherry-negative pyramidal neurons within individual DREADD 

experimental animals (Fig. 8 b) (paired t test, t(6)=3.723, P=0.0098 for % GABA; paired t 

test, t(6)=6.932, P=0.0004 for GABA Terminal Density). The greater %GABA innervation of 

mCherry+ neurons was not due to differences in the lengths of individual GABAergic 
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terminals (Kolmogorov-Smirnov D=0.08214, P=0.2392), but due to a significant decrease in 

their inter-synaptic lengths (Kolmogorov-Smirnov D=0.1298, P=0.0102) (Fig. 8 c).  

  Figure 7 Electron microscopic validation of the presence of Gq-DREADDs on neurons  
(a) DREADD molecules labeled by silver intensified gold (SIG) particles were present on the plasma 
membrane (white wedges) and in the cytoplasm (need to point to it with a symbol) of Layer 5 mPFC 
pyramidal neurons’ cell body. The plasma membrane of an adjacent non-transfected pyramidal 
neuron with almost no Gq-DREADD-mCherry-immunoreactivity is shown on the right (red neuron). 
Scale bar = 500 nm. (b) SIG, reflective of Gq-DREADD/mCherry that was present on the plasma 
membrane of an apical dendrite (qA). Scale bar = 1 µm. (c) SIG reflective of Gq-DREADD/mCherry 
that was present along the plasma membrane of an dendritic spine head (white asterisk) forming an 
excitatory synapse that showed the postsynaptic density indicated by the white arrowheads. Scale bar 
= 300 nm. N, nucleus; Mito, mitochondria; G, Golgi apparatus; ER, endoplasmic reticulum; T, axon 
terminal; qA, apical dendrite.  
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Figure 8 Electron microscopic quantification of GABAergic innervation of mCherry+ and 
mCherry-negative neurons’ cell bodies in Layer 5 of mPFC 
(a)Schematic illustration for the quantification of GABAergic innervation. Left, a cartoon showing an 
mCherry+ pyramidal (Pyr) neuron labeled by silver intensified gold particles (black dots). The 
GABAergic terminals (dark triangles) from the interneurons (G-IN) are distinguished from the other 
terminals (light triangles) due to the HRP-DAB reaction product indicating the presence of GAD. The 
cartoon does not reflect the relative size of a neuron and terminals. Right, an EM image showing a 
portion of a silver intensified gold (white arrow) labeled neuron receiving inputs from GABAergic 
terminals (white asterisks) and other terminals (black asterisk). The green area covers the entire SIG-
labeled neuron, the red segments indicate the GABAergic terminals aligned with the plasma 
membrane. The expressions for % GABA innervation and the density of GABAergic terminals are 
shown on the right. Scale bar = 500 nm. (b) Comparisons of % GABA innervation (left panel), and the 
GABA terminal density (right panel), between the mCherry+ and mCherry-negative neurons. from the 
same DREADD experimental animal. (c) Comparisons and cumulative density funcions of the 
GABAergic terminal inter-synaptic lengths (right panel), and individual GABAergic terminal lengths 
(left panel) of the mCherry+ (n=69) and mCherry-negative (n=83) neurons sampled across all of the 
DREADD experimental animals (N=7). (d) Correlations between %mCherry+/cFos+ and %GABA 
innervation (left panel), or GABAergic terminal density (right panel), of mCherry+ and mCherry-
negative neurons. Each point represents the averaged quantities from an individual DREADD 
experimental animal. Significant correlation is shown with straight line together with its p-value and r-
square. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  
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Electron microscopic analysis reveals more prevalent GABAergic innervation of 

mPFC DR pyramidal cells than of neighboring Layer 5 pyramidal cells without 

projections to DR 

 GABAergic innervation of Layer 5 pyramidal neurons in the mPFC of DREADD 

experimental animals was quantified in two ways: the percentage of plasma membrane 

covered by GABAergic terminals (%GABA innervation) and the number of GABAergic 

terminal per unit plasma membrane length (GABA Terminal Density) (Fig 8 a). The 

quantification was done for both mCherry+ neurons and mCherry-negative pyramidal 

neurons in Layer 5 of mPFC. Neuronal cell bodies were verified to be pyramidal, based on 

the smooth contour of the nuclear membrane (White, 1989) and lack of GAD 

immunoreactivity. Both measurements were significantly greater for the mCherry+ pyramidal 

neurons than for the mCherry-negative pyramidal neurons within individual DREADD 

experimental animals (Fig. 8 b) (paired t test, t(6)=3.723, P=0.0098 for % GABA; paired t 

test, t(6)=6.932, P=0.0004 for GABA Terminal Density). The greater %GABA innervation of 

mCherry+ neurons was not due to differences in the lengths of individual GABAergic 

terminals (Kolmogorov-Smirnov D=0.08214, P=0.2392), but due to a significant decrease in 

their inter-synaptic lengths (Kolmogorov-Smirnov D=0.1298, P=0.0102) (Fig. 8 c).  

 

Correlations between immunofluorescently labeled cells and GABAergic innervation 

 For the DREADD experimental animals, %mCherry+/cFos+ (immunofluorescent 

data) was significantly and negatively correlated with %GABA innervation of mCherry+  

pyramidal cells (EM data) (r2=0.5912, P=0.0434) but not with the values of %GABA 

innervation of mCherry-negative neurons (Fig. 8 d). This indicates that those individuals with 

relatively stronger GABAergic innervation of mPFCDR pyramidal neurons exhibited 

greater suppression of the mPFCDR pathway.  In contrast, the correlation of the GABA 
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terminal density with %mCherry+/cFos+ was not significant (Fig. 8 d). This indicates that the 

percent coverage of the pyramidal neurons’ cell bodies played a more significant role than the 

number of GABAergic terminals in modulating neuronal activity and that this GABAergic 

modulation was specific to the subpopulation of Layer 5 pyramidal neurons with projections 

to DR and driven by C21.   

 

Correlation analysis of immunocytochemical data to feeding behaviors during FR 

 To address whether the circuits involving the mPFCDR were related to the feeding 

behaviors of mice undergoing ABA, correlation analyses of data obtained by EM (%GABA 

innervation of mCherry+ and mCherry-negative pyramidal cells), immunofluorescence 

(%mCherry+/cFos+, %GAD+/cFos+) and food intake of the DREADD experimental animals 

were performed. As shown in Fig. 9, food intake on FR days of ABA1 did not correlate with 

EM or immunofluorescence data.  

During ABA2, %mCherry+/cFos+ correlated significantly and positively with food 

intake on FR2, the day when C21 was injected to activate the mPFCDR pathway 

(r2=0.6091, P=0.0384) (Fig. 10 a). These variables showed no correlation on FR1, FR3 or 

FR4 (Fig. 10 a). The positive correlation conforms to the previous literature regarding DR’s 

roles in feeding (Bendotti et al., 1986; Fletcher & Davies, 1990; Nectow et al., 2017) as well 

as the connectivity between mPFC and DR (Jankowski & Sesack, 2004).  

While %GAD+/cFos+ appeared to be unrelated to feeding on FR2 (Fig. 10 b), 

%GABA innervation only of mCherry+ (Fig. 10 c) (i.e., not the mCherry-negative pyramidal 

neurons in Layer 5, Fig. 10 d) exhibited a very significant negative correlation with the food 

intake specifically on FR2, when C21 was administered (r2=0.8429, P=0.0035).  
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Fig 9 Correlations of feeding behaviors during ABA1 with the IF and EM data Correlations 
between the food intake during the first ABA and %mCherry+cFos+ (a), %GAD+cFos+ (b), 
%GABA of mCherry+ neurons (c) and %GABA of mCherry-negative neurons (d).   

 



  38 

 

  
 Fig 10  Feeding behavior during ABA2 and their correlations with the IF and EM data (C) 
Correlations between the food intake during the second ABA and %mCherry+/cFos+ (a), 
%GAD+/cFos+ (b), %GABA innervation of mCherry+ neurons (c) and %GABA innervation of 
mCherry-negative neurons (d). Significant correlations were indicated by straight lines together with 
their p-values and r-squares. Correlation close to significance was indicated by dashed line.  
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Discussion 

This project combined chemogenetic stimulation with confocal and EM imaging to 

elucidate the connectivity of mPFCDR pyramidal neurons and their roles in regulating 

feeding behaviors of mice in the ABA model. Contrary to our initial expectation, direct 

activation or inhibition of the mPFCDR pathway by DREADDs did not yield an effect that 

could be detected as a group mean difference, relative to control animals’ behavior without 

chemogenetic modulation.  Closer inspection revealed that this was due to the wide variance 

in behavior that obscured the neuromodulatory effects of DREADDs upon individuals. By 

pursuing correlative analysis of confocal data of individual animals, we revealed that 

individuals with greater DREADD-mediated activation of mPFCDR pyramidal cells also 

exhibited greater food consumption (Fig 10) and activation of GABA-INs (Fig 6). Moreover, 

analysis of the EM data on GABAergic axo-somatic innervation, relative to food intake 

revealed a strong negative correlation: the more prevalent the GABAergic innervation of 

mPFCDR pyramidal neurons, the more suppressed were an individual’s food intake. These 

findings, together, reveal that mPFC does modulate feeding behavior within the context of 

ABA, with stronger GABAergic inhibition of the corticofugal pathway projecting to the DR 

resulting in reduced feeding.  

 

The mPFC microcircuit activated by chemogenetic modulation of the mPFCDR 

pyramidal neurons 

Previous studies successfully modulated the mPFCDR pathway through two 

approaches: Injecting currents into the DR-projecting pyramidal neurons in the mPFC 

(Celada, Puig, Casanovas, Guillazo, & Artigas, 2001), or optogenetically stimulating axons 

within DR with cell bodies of origin in the mPFC (Warden et al., 2012). The chemogenetic 

modulation of the mPFCDR pathway was like the approach of Celada et al. (Celada et al., 
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2001) in having a greater chance of recruiting other neurons within mPFC as well as other 

brain regions.  Indeed, in our study, we showed that the direct chemogenetic activation of the 

DR-projecting pyramidal neurons in Layer 5 of mPFC also significantly boosted the activities 

of Layer 2/3 neurons, which were GABAergic and pyramidal (Fig. 5 c). This means that 

microcircuits from DR-projecting Layer 5 pyramidal neurons feed back to Layers 2/3 of 

mPFC, in addition to the canonical cortical circuit with projections from Layers 2/3 

pyramidal neurons to Layer 5 pyramidal neurons (Dhruv, 2015).While this type of feedback 

pathway from deeper to superficial layers as well as their functional implications are well-

studied in the visual cortex (reviewed in (Capone et al., 2016)), such circuits are less studied 

in the mPFC. At least some of the activated neurons in Layers 2/3 were pyramidal neurons 

which, in turn, are known to project to dorsal and ventral striatum (Jankowski & Sesack, 

2004) and enhance wheel running during FR within the context of ABA (Santiago et al., 

2021). Those activities may exert complicated effects that were intermingled with the roles of 

the DR-projecting neurons in regulating feeding of our ABA animals.  

 If the correlation between %GAD+/cFos+ and %mCherry+/cFos+ had been negative, 

this would have implied that firing of GABA-INs controlled excitability of mPFCDR 

pyramidal cells. Instead, the correlation between these two variables was positive (Fig. 6 c). 

This supports an alternative view – namely that firing of GABA-INs was driven by the 

mPFCDR neurons. The idea that DR-projecting pyramidal neurons drive the GABA-INs 

across layers in mPFC conforms to the previous findings of local GABAergic microcircuits 

in mPFC (Sun et al., 2019). Activation of GABA-INs upon DREADD stimulation of the 

mPFCDR pathway might be a way for the animals to avoid hyperactivity and 

excitotoxicity.  

The current study showed that the overall activity of DR-projecting neurons could be 

affected significantly and negatively by the extent of GABAergic innervation that they 
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received (Fig. 8 d).  This illustrates a strong link between pyramidal neurons’ firing and their 

ultrastructure – specifically, the axo-somatic synapses supporting negative feedback. Since 

greater firing of GABA-INs did not result in suppression of mPFCDR pyramidal neurons, 

these findings, together, reveal that excitability of Layer 5 pyramidal neurons is dictated more 

by ultrastructure of axo-synaptic inputs formed by GABAergic axon terminals than by the 

firing properties of the GABA-INs.  

 

A novel synaptic feature of mPFCDR pyramidal neurons is revealed by EM-ICC: 

Prevalent GABAergic innervation 

 The EM-immunocytochemical approach enabled us to distinguish the DR-projecting 

versus non-DR-projecting pyramidal neurons in Layer 5 of mPFC based on the 

immunoreactivity of pyramidal cell bodies to mCherry. Previous studies had shown that ABA 

could cause an enlargement in the GABAergic coverage of the Layer 5 pyramidal neurons in 

mPFC (Chen, Wable, Chowdhury, & Aoki, 2016). The current study extends that finding by 

showing that the DR-projecting neurons receive more GABAergic innervation than other 

pyramidal neurons in Layer 5 of mPFC that do not project to DR (Fig. 8 b). This could mean 

that the enlargement of GABAergic terminals in the mPFC of ABA animals revolves the DR-

projecting subgroup, especially. It is also likely that the DR-projecting neurons are more 

resistant to the chemogenetic stimulation due to the stronger inhibitory feedback that they 

receive.  

Whether the greater GABAergic innervation is an intrinsic property of the DR-

projecting neurons or reflects plastic change caused by the Gq-DREADD-induced 

hyperactivity remains to be investigated. We think the former is more likely.  This thought is 

based on an earlier observation that Layer 5 pyramidal neurons of mPFC without projections 

to dorsal striatum (DS) exhibited greater GABAergic innervation than the corticostriatal 
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neurons (CSt)  labeled retrogradely from DS, even though these mPFCDR pyramidal cells 

were not designed to be modulated by DREADD ligands (Santiago et al., 2021). This 

suggests that there are innate differences in GABAergic innervation across subpopulations of 

Layer 5 pyramidal neurons depending on their projection patterns. Although both the PT 

(pyramidal tract) and IT (intratelencephalic) subpopulations of Layer 5 neurons in motor and 

somatosensory cortex project to DS and are thus considered CSt (Reiner, Jiao, Del Mar, 

Laverghetta, & Lei, 2003; Shepherd, 2013), the extent of mPFC’s PT collaterals to DS 

(which would include the mPFCDR pyramidal cells studied here) is much less than for the 

mPFC’s IT subpopulation of CSt pyramidal cells (Anastasiades & Carter, 2021). Both our 

previous (Santiago et al., 2021) and current ultrastructural analyses indicate that the 

mPFCDR/PT cells of Layer 5 belong to the subpopulation of neurons in Layer 5 of mPFC 

with greater GABAergic innervation. This agrees with electrophysiological studies indicating 

that the PT subpopulation of CSt in Layer 5 of mPFC are more strongly inhibited than are the 

IT-CSt neurons in Layer 5 (Anastasiades & Carter, 2021; Lee et al., 2014). 

 

Chemogenetic modulation of the mPFCDR pathway enhances food intake 

 Although activation or inhibition of the mPFC-DR pathway by DREADDs did not 

significantly alter the group mean average of food intake of mice in the ABA model 

compared to control animals lacking DREADD gene expression (Fig. 2 d), correlation 

analysis performed for the experimental animals showed that individuals with greater 

activities among the DR-projecting pyramidal neurons exhibited greater food intake. Notably, 

the correlation between food intake and neuronal firing of mPFCDR pyramidal neurons 

appeared only on FR2 of ABA2, and not FR1, 3 or 4 (Fig. 10 a). Considering that C21 was 

injected only on FR2 to activate the mPFCDR pathway, the following explanation is 

proposed: On FR2, activity of the mPFCDR pathway may already have been very high due 
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to animals’ active coping with starvation stress (Amat et al., 2005). Under this circumstance, 

activation of the excitatory DREADDs by C21 may not have been able to boost the activity 

of the mPFCDR pyramidal neurons any further. Instead, C21 could have generated 

differential activities of the DR-projecting pyramidal neurons (%mCherry+/cFos+) through 

differential GABAergic inhibition. However, %GAD+/cFos+ did not correlate with food 

intake on any day of ABA2, even on FR2 when C21 was injected. (Fig. 10 b). This is 

probably because individual differences in the inhibitory effects caused by the activation of 

the GABA-INs in mPFC following C21 injection was not specific to the DR-projecting 

neurons, but acted on a wide range of neurons. 

 

Individual differences in food intake is influenced by ultrastructural differences in 

GABAergic axo-somatic synapses on mPFCDR pyramidal neurons more than by 

GABA neuronal firing  

   Importantly, the differential GABAergic inhibition appears to have resulted from 

differential levels in GABAergic neurons’ axonal structure – i.e., the extent of axo-somatic 

innervation of mPFCDR pyramidal neurons, rather than differential firing of GABA-INs. 

This idea is derived from the observation that correlation was evident between food intake 

and the extent of GABAergic innervation (%GABA), specifically of pyramidal neurons with 

projections to DR (Fig. 10 c) and not the pyramidal neurons lacking projections to DR (Fig. 

10 d), further supporting the idea that the mPFCDR pathway is involved especially in the 

feeding behaviors of mice.  The contrasting lack of correlation between the %GAD+/cFos+ 

and food intake is indication that the strength of GABAergic inhibition is influenced more by 

axonal structure than by the firing pattern of GABAergic neurons.  

 The correlation between %GABA innervation of mCherry+ pyramidal neurons and 

food intake is negative (Fig. 10 c), while the correlation between mCherry+/cFos+ and food 
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intake is positive (Fig. 10 a). These two correlations with opposite valences agree with the 

notion that excitatory outflow from the mPFC to DR stimulates feeding and that synaptic 

plasticity underlying the gain of resilience to ABA (measured based on increased food intake) 

may be the retraction of GABAergic innervation of mPFCDR pyramidal neurons.  

Since activation of serotonergic neurons in the DR suppresses feeding (Nectow et al., 

2017), the dominant targets of mPFCDR in DR may be the GABA-IN that inhibit firing of 

the serotonergic neurons. Such direct pathway from pyramidal neurons in mPFC to GABA-

IN in DR has been elucidated by EM (Jankowski & Sesack, 2004), this may be an alternative 

or additional site of synaptic plasticity of animals that gain resilience following ABA 

induction. Further analysis of the activity of GABA-INs in the DR following chemogenetic 

activation of the mPFCDR pyramidal neurons promises to yield data testing this 

hypothesis. 

 

Lack of effect of SalB/KORD  

  If the ceiling effect was accountable for our observation of food intake on FR2, then 

SalB injection on FR4 should have significantly decreased the activity of the mPFCDR 

pathway and thus decreased the food intake of mice. However, this was not observed. A 

possible explanation for this is that further decrease in food intake on FR4 when the animals 

had already been food restricted for three days and had lost a significant amount of body 

weight would put them under severe danger of starving to death. Under this circumstance, 

other players such as the mPFClateral hypothalamus pathway which is also capable of 

regulating feeding (Petrovich, Holland, & Gallagher, 2005) may have interfered with SalB 

modulation, thereby saving the animals from death.  

 

Conclusion 
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 We dissected the circuits in mPFC that involved the DR-projecting pyramidal neurons 

in Layer 5 through immunofluorescence and EM immunocytochemistry. Summarized in Fig. 

11, we show that mPFCDR pyramidal neurons send outputs not only to DR but also to 

Layers 2/3 pyramidal neurons and GABA-INs across layers. Thus, DREADD ligands 

modulate activity of a multi-synaptic mPFC circuitry rather than a single population of 

neurons. Through correlation analysis, we have gathered data supporting the hypothesis that 

the mPFCDR pathway is a high-order regulator of feeding for ABA mice and possibly also 

for AN patients, favoring them to overcome the maladaptive behavior of FR, when activated. 

Conversely, stronger the inhibition of this pathway, the more food restrictive individuals may 

become.  This finding differs sharply from another recent finding from our lab, demonstrating 

that activation of pyramidal neurons of the mPFC projecting to dorsal striatum (mPFCDS) 

exacerbates the food restriction-evoked wheel running of ABA mice (Santiago et al., 2021). 

On the question of whether the mPFC is the site for generating the decision to eat (i.e., 

adaptive for survival) or to run (i.e., maladaptive for mice in captivity), one factor influencing 

this decision may be the ratio of GABAergic innervations across the two parallel pathways.   

Within Layer 5 of ABA mice, the mPFCDR pyramidal neurons receive more GABAergic 

innervation than do the neurons projecting elsewhere, presumably including the mPFCDS 

pyramidal neurons. This GABAergic innervation pattern may underlie individual differences 

in vulnerability to ABA, defined both as heightened wheel running (due to weaker inhibition 

of the mPFCDS pathway) and stronger suppression of feeding (due to the stronger 

inhibition of the mPFCDR pathway). For animals that have experienced ABA, our findings 

predict that suppression of GABAergic activity in the mPFC would reduce ABA 

vulnerability. This idea is undergoing testing through chemogenetic modulation of GABA-

INs in the mPFC.     
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Figure 11 Summary of the proposed microcircuits in mPFC that involve the DR-projecting 
pyramidal neurons in this study 
The DR-projecting neurons (green) are distinguished from the others because of the mCherry-tagged 
DREADDs on their membranes (black dots). While those neurons project to DR, they may also send 
outputs to the Layer 2/3 pyramidal neurons and the GABAergic neurons across layers in mPFC. Those 
DR-projecting neurons receive greater GABAergic innervation than other Layer 5 pyramidal neurons, 
which could make them more resistant to the chemogenetic excitation. Pyr, pyramidal neuron; G-IN, 
GABAergic interneuron; DRNGABA, GABAergic neurons in DR; DRN5-HT, serotonergic neuron in DR.  
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 Research on AN has uncovered the complexity of this mental illness at both the 

biological (Bulik, Slof-Op't Landt, van Furth, & Sullivan, 2007) and the socio-cultural 

(Garner & Garfinkel, 1980; Polivy & Herman, 2002) levels. Though AN is not a purely 

monogenic mental illness such as Huntington's Disease, modern studies provide substantial 

evidence pointing to the genetic risk factors involved in it. For example, AN tends to 

aggregate in families (Holland, Sicotte, & Treasure, 1988; Strober, Freeman, Lampert, 

Diamond, & Kaye, 2000), and an AN-susceptibility gene is proposed to be located on 

chromosome 1 (Grice et al., 2002). Besides, AN tends to affect females more than males 

(Smink, van Hoeken, Oldehinkel, & Hoek, 2014; Timko, DeFilipp, & Dakanalis, 2019), 

suggesting the involvement of sex steroids or chromosomes in the development of AN  

(Wable, Chen, Rashid, & Aoki, 2015). The sex difference could also be due to greater socio-

cultural stressors placed on female adolescents, versus male (Collison & Barnier, 2019; 

Garner & Garfinkel, 1980; Polivy & Herman, 2002; Thompson & Stice, 2001).  Furthermore, 

recent research could even trace the etiology of AN to an epigenetic level (Hubel, Marzi, 

Breen, & Bulik, 2019). In addition to the biological risk factors, profound familial influences 

and socio-cultural factors such as the culture of abundance and peer influences also 

contribute to the cause of AN. The central role played by structural differences in 

GABAergic axonal arbors in generating individual differences in resilience/vulnerability to 

ABA highlight the importance of probing for genes linked to the GABAergic system and for 

designing pharmacological treatments that target GABA receptor activity for the treatment of 

AN. 
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Figure Legends 
 
 
 
Figure 1 ABA1 timeline and behavior  

(a) Schematic illustration of the first ABA induction and the daily food restriction (FR) 

schedule.  See Method section for the details of the ABA1 induction. FAA: food anticipatory 

activity; FA: food availability; PP: post prandial period. (b) individual daily wheel count 

(WCT); (c) WCT during ABA; (d) Body weight; (e) Food intake during the pre-ABA and the 

three days of FR. The average daily food intake during the two days before the onset of FR 

on P41 was used as the Pre-ABA baseline food intake. The average daily food intake during 

the two days after ABA, on P44, was used as the post-ABA food intake.  

 

Figure 2 ABA2 timeline and behavior  

(a) Schematic illustration of the second ABA induction. See Method section for the details of 

the second ABA induction. (b) WCT; (c) body weight; (d) Food intake during the pre-ABA 

and the four days of food restriction. * indicates p ≤ 0.05. 

 
 
Figure 3 Confirmation of DREADD expression in the mPFCDR neurons and 

representative triple IF confocal images of mPFC neurons 

(a) Schematic of the stereotaxic injection of AAVrg-EBFP-Cre into DR and of the cre-

dependent DREADD-AAV into mPFC.  

(b) Verification of AAVrg-EBFP-Cre deposition into DR. Note that the region with the highest 

density of EBFP-immunoreactivity is in the DR.  ca=cerebral aqueduct;PAG=periaqueductal 

grey; mlf=medial longitudinal fasciculus. Bar =  500 µm. 

(c) Verification of Gq-DREADD-mCherry expression in Layer 5 pyramidal neurons of the 

mPFC.  mCherry-immunoreactivity is prevalent within cell bodies in Layer 5, apical 
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dendrites traversing across Layers 2/3 and branching in Layer 1. The section was dually 

labeled using anti-cFos, resulting in immunoreactivity of nuclei of the same population of 

pyramidal neurons.  Bar = 100 µm. 

(d) Verification of Gq-DREADD-mCherry expression in puncta of DR. Vibratome sections 

containing DR were processed in parallel with sections containing mPFC that is shown in 

panel c.  Puncta reflecting mCherry-immunoreactive axon terminals are evident in DR, 

ventral (filled arrowheads) and lateral to the cerebral aqueduct. Nuclei immunoreactive for 

cFos are also evident (open arrows) in DR.  

(e) Verification of Gq-DREADD-mCherry expression in axons coursing within fiber bundles 

of the internal capsule (open arrowheads) and varicose axonal processes (filled arrowheads) 

in dorsal striatum. Calibration bar = 50 µm and applies to panels d and e.   

(f) Overview of the section showing mCherry (green), cFos (red) and GAD (blue) 

immunofluorescence. Note that most of the mCherry signals were contained in the prelimbic 

(PL) and infralimbic (ILA) areas, which constitute major parts of mPFC. ACA, anterior 

cingulate area; fa, anterior forceps. Scale bar = 170 µm. (g) Laminar distribution of mCherry, 

cFos and GAD immunolabeling. Layers were identified according to Allen Brain Atlas based 

on the distance to pia: Layer 1, 0-125 µm; Layers 2/3, 125-325 µm; Layer 5, 325-525 µm; 

Layer 6, >525 µm. Scale bar = 50 µm; (h) Representative image of an mCherry+/cFos+ 

neuron (filled arrowhead), mCherry+/cFos-negative neurons (open arrowheads), and an 

mCherry-negative/cFos+ neuron (arrow). Scale bar = 25 µm; (i) Representative image of a 

GAD+/cFos+ neuron (filled arrowhead), a GAD+/cFos-negative neuron (open arrowhead), 

and an mCherry+ dendrite with spines (asterisk). Scale bar = 10 µm.  

 
Fig 4 Laminar distributions of mCherry+, GAD+ and cFos+ neurons 
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(a) The same window within ILA from a DREADD experimental animal captured by GAD, 

mCherry and cFos immunofluorescence channels, respectively. The pial surface is located at 

the very bottom of the image. Scale bars = 50 µm. (b) The fraction of mCherry+ and cFos+ 

neurons distributed along laminae for the DREADD experimental group (N=7) and the 

control group (N’=10). (c) The fraction of GAD+ neurons distributed along the laminae for 

the DREADD experimental group (N=7) and the control group (N’=4). Each data point 

represents the relative fraction of the indicated cell type within a 50 µm bin centered at the 

position specified by its x-coordinate. Data are shown as mean ± SEM.  

 
Figure 5 cFos+ neuron density across the laminae 

(a) Representative confocal images showing the cFos+ neurons in PL along the laminae of a 

DREADD experimental animal and a control animal. The pia surface is located at the very 

bottom of the image. Scale bars = 50 µm. (b) The density of cFos+ neurons across the 

laminae. Each data point was represented by the density of cFos+ neurons in a 50 µm high 

window centered at the position specified by its x-coordinate. The width of the windows 

varied from image to image, but was typically around 300-400 µm, covering PL and/or ILA. 

Data are shown as mean  ±SEM. (c) The density of cFos+ neurons by layers. Layer 

categorization was as described in Figure 3. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 

0.0001 by the Mann–Whitney test.  

 
Figure 6 Activation of GAD+ neurons probably driven by mCherry+ neurons 

(a) The percentage of GAD+/cFos+ neurons across all layers of the DREADD experimental 

group (N=7) and the control group (N’=10). Each data point represents the average value of 

an animal. Data are shown as mean ±SEM.  (b) Correlation between %GAD+/cFos+ and 

%mCherry+/cFos+ in the mPFC of DREADD experimental animals. Dashed line indicates 

correlation close to significance. (c) Distribution of the GAD+/cFos+ neurons across the 
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layers (left) and of the GAD+/cFos-negative neurons across the layers (right). * p ≤ 0.05 and 

** p ≤ 0.01 by the Mann–Whitney test.  

 
 
Figure 7 Electron microscopic validation of the presence of Gq-DREADDs on neurons  

(a) DREADD molecules labeled by silver intensified gold (SIG) particles were present on 

the plasma membrane (white wedges) and in the cytoplasm (need to point to it with a 

symbol) of Layer 5 mPFC pyramidal neurons’ cell body. The plasma membrane of an 

adjacent non-transfected pyramidal neuron with almost no Gq-DREADD-mCherry-

immunoreactivity is shown on the right (red neuron). Scale bar = 500 nm. (b) SIG, 

reflective of Gq-DREADD/mCherry that was present on the plasma membrane of an apical 

dendrite (qA). Scale bar = 1 µm. (c) SIG reflective of Gq-DREADD/mCherry that was 

present along the plasma membrane of an dendritic spine head (white asterisk) forming an 

excitatory synapse that showed the postsynaptic density indicated by the white arrowheads. 

Scale bar = 300 nm. N, nucleus; Mito, mitochondria; G, Golgi apparatus; ER, endoplasmic 

reticulum; T, axon terminal; qA, apical dendrite.  

 

Figure 8 Electron microscopic quantification of GABAergic innervation of mCherry+ 

and mCherry-negative neurons’ cell bodies in Layer 5 of mPFC 

(a) Schematic illustration for the quantification of GABAergic innervation. Left, a cartoon 

showing an mCherry+ pyramidal (Pyr) neuron labeled by silver intensified gold particles 

(black dots). The GABAergic terminals (dark triangles) from the interneurons (G-IN) are 

distinguished from the other terminals (light triangles) due to the HRP-DAB reaction product 

indicating the presence of GAD. The cartoon does not reflect the relative size of a neuron and 

terminals. Right, an EM image showing a portion of a silver intensified gold (white arrow) 

labeled neuron receiving inputs from GABAergic terminals (white asterisks) and other 
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terminals (black asterisk). The green area covers the entire SIG-labeled neuron,  the red 

segments indicate the GABAergic terminals aligned with the plasma membrane. The 

expressions for % GABA innervation and the density of GABAergic terminals are shown on 

the right. Scale bar = 500 nm. (b) Comparisons of % GABA innervation (left panel), and the 

GABA terminal density (right panel), between the mCherry+ and mCherry-negative neurons. 

from the same DREADD experimental animal. (c) Comparisons and cumulative density 

funcions of the GABAergic terminal inter-synaptic lengths (rightpanel), and individual 

GABAergic terminal lengths (left panel) of the mCherry+ (n=69) and mCherry-negative 

(n=83) neurons sampled across all of the DREADD experimental animals (N=7). (d) 

Correlations between %mCherry+/cFos+ and %GABA innervation (left panel), or 

GABAergic terminal density (right panel), of mCherry+ and mCherry-negative neurons. 

Each point represents the averaged quantities from an individual DREADD experimental 

animal. Significant correlation is shown with straight line together with its p-value and r-

square. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  

 
 

Fig 9 Correlations of feeding behaviors during ABA1 with the IF and EM data 

Correlations between the food intake during the first ABA and %mCherry+cFos+ (a), 

%GAD+cFos+ (b), %GABA of mCherry+ neurons (c) and %GABA of mCherry-negative 

neurons (d).   

 
Fig 10  Feeding behavior during ABA2 and their correlations with the IF and EM data 

(C) Correlations between the food intake during the second ABA and %mCherry+/cFos+ (a), 

%GAD+/cFos+ (b), %GABA innervation of mCherry+ neurons (c) and %GABA innervation 

of mCherry-negative neurons (d). Significant correlations were indicated by straight lines 
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together with their p-values and r-squares. Correlation close to significance was indicated by 

dashed line.  

 
Figure 11 Summary of the proposed microcircuits in mPFC that involve the DR-

projecting pyramidal neurons in this study 

The DR-projecting neurons (green) are distinguished from the others because of the 

mCherry-tagged DREADDs on their membranes (black dots). While those neurons project to 

DR, they may also send outputs to the Layer 2/3 pyramidal neurons and the GABAergic 

neurons across layers in mPFC.  Those DR-projecting neurons receive greater GABAergic 

innervation than other Layer 5 pyramidal neurons, which could make them more resistant to 

the chemogenetic excitation. Pyr, pyramidal neuron; G-IN, GABAergic interneuron; 

DRNGABA, GABAergic neurons in DR; DRN5-HT, serotonergic neuron in DR.  

  



  54 

REFERENCES 
 
  
Amat, J., Baratta, M. V., Paul, E., Bland, S. T., Watkins, L. R., & Maier, S. F. (2005). Medial prefrontal 

cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. 
Nat Neurosci, 8(3), 365-371. doi: 10.1038/nn1399 

Anastasiades, P. G., & Carter, A. G. (2021). Circuit organization of the rodent medial prefrontal 
cortex. Trends Neurosci, 44(7), 550-563. doi: 10.1016/j.tins.2021.03.006 

Arcelus, J., Mitchell, A. J., Wales, J., & Nielsen, S. (2011). Mortality rates in patients with anorexia 
nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry, 
68(7), 724-731. doi: 10.1001/archgenpsychiatry.2011.74 

Attia, E. (2010). Anorexia nervosa: current status and future directions. Annu Rev Med, 61, 425-435. 
doi: 10.1146/annurev.med.050208.200745 

Ball, K., & Lee, C. (2000). Relationships between psychological stress, coping and disordered eating: 
A review. Psychol Health, 14(6), 1007-1035. doi: 10.1080/08870440008407364 

Bendotti, C., Garattini, S., & Samanin, R. (1986). Hyperphagia caused by muscimol injection in the 
nucleus raphe dorsalis of rats: its control by 5-hydroxytryptamine in the nucleus accumbens. 
J Pharm Pharmacol, 38(7), 541-543. doi: 10.1111/j.2042-7158.1986.tb04634.x 

Birmingham, C. L., Su, J., Hlynsky, J. A., Goldner, E. M., & Gao, M. (2005). The mortality rate from 
anorexia nervosa. Int J Eat Disord, 38(2), 143-146.  

Bulik, C. M., Slof-Op't Landt, M. C., van Furth, E. F., & Sullivan, P. F. (2007). The genetics of anorexia 
nervosa. Annu Rev Nutr, 27, 263-275.  

Bullitt, E. (1990). Expression of c-fos-like protein as a marker for neuronal activity following noxious 
stimulation in the rat. J Comp Neurol, 296(4), 517-530. doi: 10.1002/cne.902960402 

Capone, F., Paolucci, M., Assenza, F., Brunelli, N., Ricci, L., Fiorio, L., & Di Lazzaro, V. (2016). 
Canonical cortical circuits: current evidence and theoretical implications. Neuroscience and 
Neuroeconomics, 5, 1-8. doi: https://doi.org/10.2147/NAN.S70816 

Celada, P., Puig, M. V., Casanovas, J. M., Guillazo, G., & Artigas, F. (2001). Control of dorsal raphe 
serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, 
GABA(A), and glutamate receptors. J Neurosci, 21(24), 9917-9929.  

Chen, Y. W., Wable, G. S., Chowdhury, T. G., & Aoki, C. (2016). Enlargement of Axo-Somatic 
Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal 
Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with 
Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based 
Anorexia. Cereb Cortex, 26(6), 2574-2589. doi: 10.1093/cercor/bhv087 

Chowdhury, T. G., Wable, G. S., Chen, Y. W., Tateyama, K., Yu, I., Wang, J. Y., . . . Aoki, C. (2019). 
Voluntary Wheel Running Exercise Evoked by Food-Restriction Stress Exacerbates Weight 
Loss of Adolescent Female Rats But Also Promotes Resilience by Enhancing GABAergic 
Inhibition of Pyramidal Neurons in the Dorsal Hippocampus. Cereb Cortex, 29(10), 4035-
4049. doi: 10.1093/cercor/bhy283 

Chowdhury, T. G., Wable, G. S., Sabaliauskas, N. A., & Aoki, C. (2013). Adolescent female C57BL/6 
mice with vulnerability to activity-based anorexia exhibit weak inhibitory input onto 
hippocampal CA1 pyramidal cells. Neuroscience, 241, 250-267. doi: 
10.1016/j.neuroscience.2013.03.020 

Collaborators, G. B. o. D. S. (2013). Global, regional, and national incidence, prevalence, and years 
lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–
2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 
386(9995). doi: 10.1016/S0140-6736(15)60692-4 

Collison, J., & Barnier, E. (2019). Eating disorders, body dysmorphic disorder, and body image 
pathology in female Australian models. Clinical Psychologist, 24, 155-165. doi: 
10.1111/cp.12208 



  55 

Compan, V., Walsh, B. T., Kaye, W., & Geliebter, A. (2015). How Does the Brain Implement Adaptive 
Decision Making to Eat? J Neurosci, 35(41), 13868-13878. doi: 10.1523/JNEUROSCI.2602-
15.2015 

Connan, F., Campbell, I. C., Katzman, M., Lightman, S. L., & Treasure, J. (2003). A 
neurodevelopmental model for anorexia nervosa. Physiol Behav, 79(1), 13-24. doi: 
10.1016/s0031-9384(03)00101-x 

Correia, P. A., Matias, S., & Mainen, Z. F. (2017). Stereotaxic Adeno-associated Virus Injection and 
Cannula Implantation in the Dorsal Raphe Nucleus of Mice. Bio Protoc, 7(18), e2549. doi: 
10.21769/BioProtoc.2549 

Dahl, R. E. (2004). Adolescent brain development: a period of vulnerabilities and opportunities. 
Keynote address. Ann N Y Acad Sci, 1021, 1-22. doi: 10.1196/annals.1308.001 

Dhruv, N. T. (2015). Rethinking canonical cortical circuits. Nat Neurosci, 18(11), 1538. doi: 
10.1038/nn1115-1538 

Fletcher, P. J., & Davies, M. (1990). Dorsal raphe microinjection of 5-HT and indirect 5-HT agonists 
induces feeding in rats. Eur J Pharmacol, 184(2-3), 265-271. doi: 10.1016/0014-
2999(90)90618-g 

Foldi, C. J., Milton, L. K., & Oldfield, B. J. (2017). The Role of Mesolimbic Reward Neurocircuitry in 
Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats. 
Neuropsychopharmacology, 42(12), 2292-2300. doi: 10.1038/npp.2017.63 

Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a Sensitive Period of Brain 
Development. Trends Cogn Sci, 19(10), 558-566. doi: 10.1016/j.tics.2015.07.008 

Garner, D. M., & Garfinkel, P. E. (1980). Socio-cultural factors in the development of anorexia 
nervosa. Psychol Med, 10(4), 647-656. doi: 10.1017/s0033291700054945 

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., . . . Rapoport, J. 
L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. 
Nat Neurosci, 2(10), 861-863. doi: 10.1038/13158 

Grahn, R. E., Will, M. J., Hammack, S. E., Maswood, S., McQueen, M. B., Watkins, L. R., & Maier, S. 
F. (1999). Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats 
exposed to an uncontrollable stressor. Brain Res, 826(1), 35-43. doi: 10.1016/s0006-
8993(99)01208-1 

Grice, D. E., Halmi, K. A., Fichter, M. M., Strober, M., Woodside, D. B., Treasure, J. T., . . . Berrettini, 
W. H. (2002). Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am 
J Hum Genet, 70(3), 787-792. doi: 10.1086/339250 

Hall, J. F., Smith, K., Schnitzer, S. B., & Hanford, P. V. (1953). Elevation of activity level in the rat 
following transition from ad libitum to restricted feeding. J Comp Physiol Psychol, 46(6), 
429-433.  

Han, W., Tellez, L. A., Perkins, M. H., Perez, I. O., Qu, T., Ferreira, J., . . . de Araujo, I. E. (2018). A 
Neural Circuit for Gut-Induced Reward. Cell, 175(3), 887-888. doi: 10.1016/j.cell.2018.10.018 

Hardaway, J. A., Crowley, N. A., Bulik, C. M., & Kash, T. L. (2015). Integrated circuits and molecular 
components for stress and feeding: implications for eating disorders. Genes Brain Behav, 
14(1), 85-97. doi: 10.1111/gbb.12185 

Holland, A. J., Sicotte, N., & Treasure, J. (1988). Anorexia nervosa: evidence for a genetic basis. J 
Psychosom Res, 32(6), 561-571. doi: 10.1016/0022-3999(88)90004-9 

Hubel, C., Marzi, S. J., Breen, G., & Bulik, C. M. (2019). Epigenetics in eating disorders: a systematic 
review. Mol Psychiatry, 24(6), 901-915. doi: 10.1038/s41380-018-0254-7 

Hudson, J. I., Hiripi, E., Pope, H. G., Jr., & Kessler, R. C. (2007). The prevalence and correlates of 
eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry, 61(3), 348-
358. doi: 10.1016/j.biopsych.2006.03.040 

Jankowski, M. P., & Sesack, S. R. (2004). Prefrontal cortical projections to the rat dorsal raphe 
nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric 
acid neurons. J Comp Neurol, 468(4), 518-529. doi: 10.1002/cne.10976 



  56 

Jean, A., Laurent, L., Delaunay, S., Doly, S., Dusticier, N., Linden, D., . . . Compan, V. (2017). 
Adaptive Control of Dorsal Raphe by 5-HT4 in the Prefrontal Cortex Prevents Persistent 
Hypophagia following Stress. Cell Rep, 21(4), 901-909. doi: 10.1016/j.celrep.2017.10.003 

Kaye, W. H., Fudge, J. L., & Paulus, M. (2009). New insights into symptoms and neurocircuit 
function of anorexia nervosa. Nat Rev Neurosci, 10(8), 573-584. doi: 10.1038/nrn2682 

Lee, A. T., Gee, S. M., Vogt, D., Patel, T., Rubenstein, J. L., & Sohal, V. S. (2014). Pyramidal neurons 
in prefrontal cortex receive subtype-specific forms of excitation and inhibition. Neuron, 
81(1), 61-68. doi: 10.1016/j.neuron.2013.10.031 

Marti, O., Marti, J., & Armario, A. (1994). Effects of chronic stress on food intake in rats: influence of 
stressor intensity and duration of daily exposure. Physiol Behav, 55(4), 747-753. doi: 
10.1016/0031-9384(94)90055-8 

Merikangas, K. R., He, J. P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., . . . Swendsen, J. 
(2010). Lifetime prevalence of mental disorders in U.S. adolescents: results from the 
National Comorbidity Survey Replication--Adolescent Supplement (NCS-A). J Am Acad 
Child Adolesc Psychiatry, 49(10), 980-989. doi: 10.1016/j.jaac.2010.05.017 

Nectow, A. R., Schneeberger, M., Zhang, H., Field, B. C., Renier, N., Azevedo, E., . . . Friedman, J. M. 
(2017). Identification of a Brainstem Circuit Controlling Feeding. Cell, 170(3), 429-442 e411. 
doi: 10.1016/j.cell.2017.06.045 

Nichols, I. S., Jones, M. I., Okere, C., Ananaba, G., Bush, B., Gray, C., . . . Paul, K. (2017). Nitrergic 
neurons of the dorsal raphe nucleus encode information about stress duration. PLoS One, 
12(11), e0187071. doi: 10.1371/journal.pone.0187071 

Nishitani, N., Nagayasu, K., Asaoka, N., Yamashiro, M., Andoh, C., Nagai, Y., . . . Kaneko, S. (2019). 
Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable 
stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology, 44(4), 721-
732. doi: 10.1038/s41386-018-0254-y 

Petrovich, G. D., Holland, P. C., & Gallagher, M. (2005). Amygdalar and prefrontal pathways to the 
lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci, 
25(36), 8295-8302. doi: 10.1523/JNEUROSCI.2480-05.2005 

Polivy, J., & Herman, C. P. (2002). Causes of eating disorders. Annu Rev Psychol, 53, 187-213. doi: 
10.1146/annurev.psych.53.100901.135103 

Pollano, A., Trujillo, V., & Suarez, M. M. (2018). How does early maternal separation and chronic 
stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal 
raphe nucleus? Stress, 21(1), 59-68. doi: 10.1080/10253890.2017.1401062 

Reiner, A., Jiao, Y., Del Mar, N., Laverghetta, A. V., & Lei, W. L. (2003). Differential morphology of 
pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and 
their intrastriatal terminals in rats. J Comp Neurol, 457(4), 420-440. doi: 10.1002/cne.10541 

Roux, P., Blanchard, J. M., Fernandez, A., Lamb, N., Jeanteur, P., & Piechaczyk, M. (1990). Nuclear 
localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals. Cell, 63(2), 
341-351. doi: 10.1016/0092-8674(90)90167-d 

Santiago, A. N., Makowicz, E. A., Du, M., & Aoki, C. (2021). Food Restriction Engages Prefrontal 
Corticostriatal Cells and Local Microcircuitry to Drive the Decision to Run versus Conserve 
Energy. Cereb Cortex, 31(6), 2868-2885. doi: 10.1093/cercor/bhaa394 

Shepherd, G. M. (2013). Corticostriatal connectivity and its role in disease. Nat Rev Neurosci, 14(4), 
278-291. doi: 10.1038/nrn3469 

Smink, F. R., van Hoeken, D., Oldehinkel, A. J., & Hoek, H. W. (2014). Prevalence and severity of 
DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord, 47(6), 610-
619. doi: 10.1002/eat.22316 

Strober, M., Freeman, R., Lampert, C., Diamond, J., & Kaye, W. (2000). Controlled family study of 
anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of 
partial syndromes. Am J Psychiatry, 157(3), 393-401. doi: 10.1176/appi.ajp.157.3.393 



  57 

Sun, Q., Li, X., Ren, M., Zhao, M., Zhong, Q., Ren, Y., . . . Luo, Q. (2019). A whole-brain map of long-
range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat 
Neurosci, 22(8), 1357-1370. doi: 10.1038/s41593-019-0429-9 

Takase, L. F., & Nogueira, M. I. (2008). Patterns of fos activation in rat raphe nuclei during feeding 
behavior. Brain Res, 1200, 10-18. doi: 10.1016/j.brainres.2008.01.036 

Tervo, D. G., Hwang, B. Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K. D., . . . Karpova, A. Y. 
(2016). A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. 
Neuron, 92(2), 372-382. doi: 10.1016/j.neuron.2016.09.021 

Thompson, J. K., & Stice, R. (2001). Thin-ideal internalization: Mounting evidence for a new risk 
factor for body-image disturbance and eatng pathology. Current Directions in Psychological 
Science, 10(5).  

Timko, C. A., DeFilipp, L., & Dakanalis, A. (2019). Sex Differences in Adolescent Anorexia and 
Bulimia Nervosa: Beyond the Signs and Symptoms. Curr Psychiatry Rep, 21(1), 1. doi: 
10.1007/s11920-019-0988-1 

Wable, G. S., Chen, Y. W., Rashid, S., & Aoki, C. (2015). Exogenous progesterone exacerbates 
running response of adolescent female mice to repeated food restriction stress by changing 
alpha4-GABAA receptor activity of hippocampal pyramidal cells. Neuroscience, 310, 322-
341. doi: 10.1016/j.neuroscience.2015.09.006 

Warden, M. R., Selimbeyoglu, A., Mirzabekov, J. J., Lo, M., Thompson, K. R., Kim, S. Y., . . . 
Deisseroth, K. (2012). A prefrontal cortex-brainstem neuronal projection that controls 
response to behavioural challenge. Nature, 492(7429), 428-432. doi: 10.1038/nature11617 

Weissbourd, B., Ren, J., DeLoach, K. E., Guenthner, C. J., Miyamichi, K., & Luo, L. (2014). 
Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron, 83(3), 
645-662. doi: 10.1016/j.neuron.2014.06.024 

White, E. L. (1989). Cortical circuits: synaptic organization of the cerebral cortex - structure, function, 
and theory: Birkhouser. 

Wouterlood, F. G., & Jorritsma-Byham, B. (1993). The anterograde neuroanatomical tracer 
biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin 
in preparations for electron microscopy. J Neurosci Methods, 48(1-2), 75-87. doi: 
10.1016/s0165-0270(05)80009-3 

 


