

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Simple Topographic Parameter Reveals the Along-Trench Distribution of Frictional Properties on a Shallow Plate Boundary Fault

Hiroaki Koge (≤ koge.h@aist.go.jp)

National Institute of Advanced Industrial Science and Technology https://orcid.org/0000-0002-8720-4975

Juichiro Ashi University of Tokyo

Jin-Oh Park

University of Tokyo

Ayumu Miyakawa

National Institute of Advanced Industrial Science and Technology Geological Survey of Japan

Suguru Yabe

National Institute of Advanced Industrial Science and Technology Geological Survey of Japan

Full paper

Keywords: Subduction zone, Japan Trench, Critical taper model, Frictional variation, Accretionary wedge

Posted Date: October 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-948355/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Earth, Planets and Space on April 21st, 2022. See the published version at https://doi.org/10.1186/s40623-022-01621-6.

1 Title page:

2	Title: Simple topographic parameter reveals the along-trench distribution of
3	frictional properties on a shallow plate boundary fault
4	Author #1: Hiroaki Koge ¹ , koge.h@aist.go.jp as Corresponding author
5	Author #2: Juichiro Ashi ^{2, 3} , ashi@u-tokyo.aori.ac.jp
6	Author #3: Jin-Oh Park ² , jopark@aori.u-tokyo.ac.jp
7	Author #4: Ayumu Miyakawa ¹ , miyakawa-a@aist.go.jp
8	Author #5: Suguru Yabe ¹ , s.yabe@aist.go.jp
9	
10	¹ Geological Survey of Japan, National Institute of Advanced Industrial Science and
11	Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
12	² Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5
13	Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
14	³ Department of Natural Environmental Studies Division of Environmental Studies,
15	Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha,
16	Kashiwa-shi, Chiba 277-8564, Japan

18 Abstract

19 The critical taper model of a sedimentary wedge best describes the first-order 20mechanics of a subduction zone wedge. The tapered wedge geometry, which is 21conventionally defined by two parameters, the slope angle and the basal dip angle, is 22responsible for the strength of a megathrust. By applying this theoretical model to 23subduction zones, fault frictional properties and earthquake occurrences can be 24compared among subduction zones, and within a single subduction zone, the spatial 25distribution or temporal change of fault strength can be investigated. The slope angle 26can be accurately estimated from bathymetry data, but the basal dip angle must be 27inferred from the subsurface structure, and it requires highly accurate depth-converted 28seismic reflection profiles. Thus, application of the critical taper model is often limited by a lack of a sufficient number of highly accurate profiles, and the spatial distribution 2930 of frictional coefficients must be inferred from relatively few data, generally less than a 31dozen points. To improve this situation, we revisited the theoretical formula of the 32critical taper model. We found that the effect of the décollement dip angle β on the 33 critical taper model of a sedimentary wedge is negligible when the pore fluid pressure

34	ratio is high or internal friction is small, conditions which are met in many subduction
35	zones. Therefore, this finding allows frictional variation to be approximated by using
36	only the slope angle variation obtained from the bathymetry. We applied this
37	approximation to the Japan Trench as an example of this approximation, and were able
38	to estimate the friction coefficient distribution on the shallow plate boundary fault from
39	71 data points. We found that the area where the friction coefficient was smaller than
40	the mean corresponded to the segment where a large coseismic shallow rupture
41	occurred during the 2011 Tohoku-oki earthquake (Mw 9.0). This result shows that by
42	approximating tapered wedge geometry using a simple topographic parameter that can
43	be obtained from existing global bathymetry, we can quickly estimate the distribution of
44	frictional properties on a plate boundary fault along a trench and related seismic
45	activity.

46

47 Keywords

48 Subduction zone, Japan Trench, Critical taper model, Frictional variation, Accretionary49 wedge

50 Main Text

51 **1. Introduction**

52	The first-order mechanics of a subduction zone wedge, a representative
53	feature of a fold-and-thrust belt, can be clearly explained by the critical taper model
54	(e.g., Dahlen 1990). This geomechanical model, which is based on the Mohr-Coulomb
55	failure criterion, allows frictional properties on a plate boundary fault to be determined.
56	This model is a key method for understanding megathrust earthquake mechanisms,
57	because direct measurements of plate boundary fault strength are quite rare and require
58	drilling into the deep décollement to obtain samples (e.g., Chester et al. 2013; Ujiie et al.
59	2013). According to this model, the tapered wedge geometry (slope angle α and basal
60	dip angle β) is determined by the strengths of the wedge materials and the effective
61	friction on the megathrust fault (μ_b') (Fig. 1). Thus, the critical taper model allows the
62	geomechanical condition of a subduction wedge to be determined. This information can
63	be used to compare geomechanical conditions among different subduction zones (e.g.
64	Dahlen 1990) or to examine their spatial distribution within a single subduction zone
65	(e.g., Fagereng 2011; Koge et al. 2014) or temporal changes along a single profile (e.g.,

66	Wang et al. 2010; Wang and Hu 2006). Slope angle α can be calculated from the
67	bathymetry above the subduction wedge, which is typically observed by a multi-beam
68	echosounder onboard a ship. Generally, the bathymetry is obtained with a vertical error
69	on the order of several meters, so the accuracy with which α is determined is sufficient
70	for characterizing the wedge geometry. However, the subsurface geometry parameter
71	used in critical taper model calculations, namely, the basal dip angle β , requires further
72	consideration. In a depth-converted profile of seismic reflection data, the depth to the
73	plate boundary fault depends strongly on the velocity model used, and the accuracy of
74	the depth-conversion process affects the value obtained for the topographic parameter β .
75	Therefore, unless only highly accurate depth-converted profiles are used to calculate
76	this critical taper model parameter, comparisons within and among wedges are likely to
77	be unreliable. On a scale of several kilometers, pre-stack depth migration (PSDM) data
78	or, at larger scale, a cross section of the velocity structure combined with refraction data
79	can be used for accurate determination of β for the critical taper model. However,
80	highly accurate PSDM data or seismic reflection profiles are often not available because
81	they require more processing time and are more costly to process than a simple

82	depth-converted profile. As a result, the number of accurate cross sections available for
83	a critical taper analysis is often insufficient to reveal detailed along-strike variations of
84	frictional properties in subduction zones.
85	2. Revisiting, validating, and improving critical taper theory
86	We first review formulations of Coulomb wedge/critical taper theory. All of
87	the formulas are based on a non-cohesive wedge model, which assumes non-viscosity
88	(Dahlen 1984). According to the Mohr-Coulomb failure criterion, $\tau = \sigma \cdot \tan \phi + C$,
89	where τ is shear stress, σ is vertical stress, ϕ is the internal friction coefficient (also
90	expressed as μ , the coefficient of internal friction averaged over the wedge), and C is the
91	cohesion force. Because internal friction forces are proportional to vertical stress
92	whereas cohesion forces are independent of vertical stress, the cohesion term can be
93	neglected when considering huge geological structures with large σ . Thus, the
94	noncohesive critical taper model is valid in the entire wedge.
95	Next, we theoretically verify the effect of the basal dip angle β on the
96	calculation of effective friction μ_b' and show that the effect of β becomes small when the
97	pore fluid pressure in the subduction zone is high. Hence, we propose that basal friction

98	in subduction zones can be inferred from only the slope angle α determined from the
99	bathymetry.
100	2.1 Revisiting critical taper theory: Overview of the critical taper model to obtain
101	the effective coefficient of basal friction
102	Critical taper theory (Davis et al. 1983; Dahlen 1984; Lehner 1986) is a
103	geomechanical model based on the Mohr-Coulomb failure criterion according to which
104	the wedge geometry (α and β) is constrained by the balance between wedge strength and
105	effective friction μ_b' (e.g., Adam and Reuther 2000).
106	In critical taper theory, we obtain μ_b' and the pore fluid pressure ratio (λ) in a
107	wedge by drawing cross plots between λ and μ_b' , as explained below (e.g., Adam and
108	Reuther 2000; Wang and Hu 2006; Wang et al. 2010, 2019) (Fig. 2). In the critical taper
109	theory formulation, the modified slope angle α' under subaerial conditions is formulated
110	as
111	$\alpha' = \tan^{-1}\left[\left(\frac{1-\rho_W/\rho}{1-\lambda}\right)\tan\alpha\right],$

113 sediment density, ρ_w is fluid density, and λ is the pore fluid pressure ratio. Then, the

where α is a parameter obtained from the bathymetry/seismic profile, ρ is wedge

114 uniform angle between the most compressive principal stress axis σ_1 and the upper

115 slope, ψ_0 (see Fig. 1), is calculated as,

$$\psi_0 = \frac{1}{2} \sin^{-1} \left(\frac{\sin \alpha'}{\sin \phi} \right) - \frac{1}{2} \alpha'$$

116 where ϕ is the angle of internal friction within the wedge. Because along-strike stresses 117 are not considered in the critical taper model, the following simple geometric relation is 118 applicable (Fig. 1):

$$\alpha + \beta = \psi_b - \psi_0$$

119 where ψ_b is the angle between σ_1 and the basal plane. Then, the effective coefficient

120 of basal friction (μ_b) is obtained from the Mohr-Coulomb failure criterion τ and the

121 stress balance of the basal condition as

$$\mu_b' = \frac{\tan 2\psi_b}{\csc \phi \sec 2\psi_b - 1}$$

122 To draw the limb of the cross plot between μ_b' and λ , we set λ to range

123 between 0 and 1 (Fig. 2). The left limb of the critical state curve represents

124 extensionally critical states, and the right limb represents compressively critical states.

- 125 Then, under the assumption that λ is constant, we can obtain μ_b from the intersection of
- 126 λ and the critical state curve calculated earlier.

127	For example, if we assume the mean wedge parameters $\rho = 2700 \text{ k/m}^3$, $\rho_w =$
128	1000 kg/m ³ , internal friction angle $\varphi = 34^{\circ}$, and $\lambda = 0.88$ (Lallemand et al. 1994) (Fig. 2),
129	μ_b' can be determined from the intersection of $\lambda = 0.88$ with the critical state curve
130	(Wang et al. 2019). Because the prism wedge in subduction zones should be in a
131	constant compressively critical state just before failure, we focus on only the
132	intersection with the right limb (representing compressively critical states). Thus, in this
133	example, we obtain $\mu_b' = 0.06$. For more details than are provided in this simple review,
134	please see the cited studies.
135	2.2 Validation and improvement: Effects of the geometric parameters on μ_b'
135 136	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed
135 136 137	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed α and β values to investigate how their accuracy affects the estimation of μ_b '. We used
135 136 137 138	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed α and β values to investigate how their accuracy affects the estimation of μ_b '. We used the mean subduction zone parameter values in the example described in section 2.1 and
 135 136 137 138 139 	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed α and β values to investigate how their accuracy affects the estimation of μ_b '. We used the mean subduction zone parameter values in the example described in section 2.1 and changed the values of α and β to see how μ_b ' varied. The states of the frontal wedge with
 135 136 137 138 139 140 	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed α and β values to investigate how their accuracy affects the estimation of μ_b '. We used the mean subduction zone parameter values in the example described in section 2.1 and changed the values of α and β to see how μ_b ' varied. The states of the frontal wedge with $\alpha = 5^\circ$ and $\beta = 1^\circ$ or $\beta = 5^\circ$ are shown in Fig. 3A; in Fig. 3B both α and β are varied
 135 136 137 138 139 140 141 	2.2 Validation and improvement: Effects of the geometric parameters on μ_b ' In this study, we examined the sensitivity of the calculated μ_b ' to the assumed α and β values to investigate how their accuracy affects the estimation of μ_b '. We used the mean subduction zone parameter values in the example described in section 2.1 and changed the values of α and β to see how μ_b ' varied. The states of the frontal wedge with $\alpha = 5^\circ$ and $\beta = 1^\circ$ or $\beta = 5^\circ$ are shown in Fig. 3A; in Fig. 3B both α and β are varied from 1° to 5°. We allowed β to range from 1° to 5° because that range includes the basal

143 since μ_b cannot be determined when $\alpha = \beta = 0$, those results were removed.

144	As a result—and this might be a blind spot in previous research—we found
145	that β has little influence on the estimation of μ_b when the pore fluid pressure is high.
146	The change in β (from 1° to 5°) dominantly accounts for the change in the width of the
147	critical state curve (i.e., the angle between its limbs) between the two states illustrated in
148	Fig. 3A. When λ is high, the intersection between λ and the right limb of the critical
149	state curve is near the curve peak. Therefore, the change in the width due to a change in
150	β has only a slight effect on μ_b' . In typical subduction zones, λ is high (~0.88)
151	(Lallemand et al. 1994), so the effect of β should be regarded as a small one. Moreover,
152	this finding is also favorable in terms of the accuracy of μ_b' obtained by applying the
153	critical taper theory, because the seismic profile depth used to calculate β depends on
154	the velocity model/structure of the seismic profile, which is often not obtained with high
155	accuracy for reasons of time and money. Moreover, the number of available profiles is
156	also important to obtain the distribution of frictional properties by applying critical taper
157	theory. Thus, because β must be obtained from depth-converted profiles with low
158	accuracy, the resulting error is large (Koge et al. 2014). In contrast, α can be determined

159	with negligible error. The seafloor depth, which is used to calculate α , is mostly based
160	on multibeam data and the sound velocity profile of seawater. These can be acquired
161	with high accuracy by conductivity/temperature/depth (CTD) measuring systems, or by
162	deploying expendable bathythermograph (XBT) or XCTD instruments, which generally
163	have a vertical error on the order of several meters. Therefore, from this perspective, α
164	can be obtained with negligible error. The more significant factor influencing the error
165	of α is whether the obtained cross-section is aligned with the direction of maximum
166	slope. However, if the deviation from the maximum slope direction is no more than 18°,
167	the error in α will be less than 5% [see Additional file 1]. Therefore, α can reliably be
168	obtained with high accuracy.
169	Under high pore fluid pressure conditions such as those in the mean
170	subduction zone, the influence of β on the calculation of μ_b ' should be small enough to
171	ignore. Thus, the α variation can be used to approximate the relative along-trench
172	variation of μ_b' , and data accuracy is improved. In this first step, we considered as an
173	example the mean conditions described in section 2.1 (Fig. 3B and Table 1).
174	The next step is to determine quantitatively under what conditions β can be ignored and

175	the $\alpha - \mu_b'$ approximation can be used. We used linear multiple regression analysis, a
176	statistical method that can be used to predict the value of a variable (the response
177	variable) from the value of two or more other variables (explanatory variables), to
178	determine whether α or β affects the effective friction coefficient μ_b' . Here, we used α
179	and β as explanatory variables and μ_b ' as the response variable. We conducted this
180	analysis with the stats-model API in Python (Seabold and Perktold 2010). The obtained
181	regression equation is characterized by the coefficients of α and β (A and B,
182	respectively) and the coefficient of multiple determination R^2 . To evaluate the relative
183	influence of α and β on μ_b' , we also defined the parameter "weight of alpha" (WOA) =
184	A/(A + B). For the mean subduction zone, we obtained $R^2 = 0.99$ and WOA = 77.50%.
185	Thus, the goodness of fit of the regression equation, indicated by R^2 , was high, and the
186	contribution of α to μ_b' was also high at 77.50%.
187	Next, to determine whether β can be neglected in most subduction zones, we
188	considered potential ranges of λ and φ in nature ($\lambda = 0-1$, $\varphi = 20-39^{\circ}$), and then
189	calculated WOA and R^2 for all combinations of λ and φ in these ranges (Fig. 4, raw data
190	in Additional file 2). For example, using mean subduction wedge values of 21

192	78.02%. Of course, in some exceptional subduction zones, such as at the Sunda and
193	Makran trenches, λ is small (Wang and Hu 2006), so the appropriateness of the
194	application of the α - $\mu b'$ approximation needs to be considered carefully. For more
195	example, at the toe of the Japan Trench, Kimura et al. (2012) and Wang et al. (2019)
196	assumed the following parameters: $(\lambda, \varphi) = (0.8, 21.8^{\circ})$ and $(\lambda, \varphi) = (0.95, 36^{\circ})$,
197	respectively. Given that under these conditions, WOA = 79.86% and 88.54%,
198	respectively (Fig. 4), in the toe of the Japan Trench, the frictional variation in the wedge
199	can be roughly regarded as determined by α alone. Therefore, if the WOA of the
200	targeted subduction zone is sufficiently high, frictional conditions along the plate
201	interface can be obtained by using α alone.
202	3. Application example of the α - μ_b' approximation to the Japan Trench
203	Through our review and verification of the critical taper model, we found that
204	β can be ignored not only when λ is high but also when WOA is high, owing to either
205	high λ or low φ (Fig. 4). Thus, in our approximation, the spatial variation in the slope
206	angle α is an indicator of the variation in the effective basal friction μ_b' , and, we can use

representative trenches (Lallemand et al. 1994), $(\lambda, \varphi) = (0.88, 34^{\circ})$, and WOA =

207	only bathymetry data to obtain the distribution of the friction coefficient within a single
208	subduction zone. Here, we apply this approximation to the Japan Trench. The Japan
209	Trench is suitable for the application of this method because, as shown in section 2.2,
210	WOA is high in the toe portion of the wedge and the friction coefficient along the plate
211	interface can thus be estimated from only α , as well as because a rupture occurred near
212	the trench axis during the 2011 Tohoku-Oki earthquake (Mw 9.0). Therefore, by
213	comparing the distribution of α which should reflect that of μ_b' in Japan Trench, the
214	question of why such coseismic rupture occurred in specific area can be addressed.
215	To apply our approximation model to the Japan Trench, we used the 250-m
216	grid data of Kishimoto (2000), focusing on the shallow portion within a horizontal
217	distance of 25 km from the trench axis, and obtained the distribution of α , interpreted as
218	the relative friction distribution, on the shallow megathrust (Fig. 5, Table 2). As a result,
219	using bathymetric profiles and slope angles obtained by modifying GMT/MATLAB
220	code as described by Wessel and Luis (2017), we accurately obtained the along-strike
221	distribution of μ_b on the shallow plate boundary fault at 71 points (instead of at only a
222	dozen points or less, as is typical in applications of critical taper theory).

223	The low- α segment (low- μ_b ' segment), located at approximately 36°–39°N,
224	corresponds to the coseismic slip distribution of the 2011 Tohoku-Oki earthquake
225	(Chester et al. 2013). This result suggests large fault rupture in the low- α segment have
226	occurred, causing the slip to propagate to the shallow portion of the plate boundary fault,
227	because of the low friction there. And it lead to the huge tsunami (e.g. Ide et al., 2011).
228	In contrast, the south and north ends of the coseismic slip zone are relatively
229	high-friction areas. As a result, the slip could not propagate to these other segments
230	because the high friction acted as a barrier. Therefore, the low friction in the shallow
231	area can be considered to be the cause of the huge tsunami. In addition, the low- α
232	segment identified here approximately corresponds to the central segment along the
233	Japan Trench (~37°–39°N) inferred from the distribution of seismic activity detected by
234	the S-net ocean-bottom seismograph network (Nishikawa et al. 2019).
235	Low-friction conditions might prevail generally along the Japan Trench
236	margin, except in regions of high friction caused by the recent subduction of a seamount
237	(Mochizuki et al. 2008) or the presence of petit-spot volcanoes (Hirano et al. 2006).
238	Because μ_b' depends on both λ and φ , it is not possible to determine whether variation in

239	α (i.e., relative μ_b) is due to a change in physical properties or to a change in pore fluid
240	pressure. Although here we cannot separate the effect of physical properties from that of
241	pore fluid pressure on α , both effects are reflected in the strength of the megathrust.
242	4. Conclusion
243	We presented an approach to the application of the critical taper model that,
244	intriguingly, has the potential to advance our ability to characterize basal friction along
245	the shallow plate interface in subduction zones. First, we reviewed the critical taper
246	model formulas used for calculating the effective coefficient of basal friction μ_b '. We
247	found that in most subduction zones, the effect of β on basal friction can be regarded as
248	slight, especially when WOA is high, which occurs when λ is high or φ is low. The
249	spatial variation of α can be easily obtained with high accuracy from bathymetry data
250	obtained by multi-beam observation. Even in areas where observation is difficult, there
251	are ETOPO1 (Amante and Eakins 2009) or other global datasets obtained by the
252	satellites, most of which are free to access and also have a vertical error of only a few
253	tens of meters (Varga and Bašić 2015). Note that these global data set based on
254	satellite observations, so the vertical error order is a little larger. Therefore, by applying

this approximation, the frictional distribution in subduction zones can now easily beevaluated.

257	The approximated critical taper model proposed in this study can improve the
258	resolution of the along-trench distribution of μ_b' determined on a shallow megathrust.
259	By applying our approach to the Japan Trench, we showed that the seafloor slope angle
260	(relative μ_b) is systematically smaller within the area of large coseismic shallow slip
261	during the 2011 Tohoku-Oki earthquake than it is in areas to the south and north, where
262	little coseismic slip has been imaged. In the future, a global study is needed to examine
263	the correlation between frictional conditions along the plate interface as revealed by the
264	seafloor topography and seismicity and improve our understanding of the connection
265	between earthquake physics and tectonics. Our critical taper results are given in
266	Additional file 3, attached. By referring to this file, the coefficient of effective friction
267	on the plate boundary fault can be determined if the geomechanical parameters λ , φ , α ,
268	and β of the subduction zone are known.
269	

270 Declarations: Not applicable

271	Consent for publication: <i>Not applicable</i>
272	Availability of data and materials
273	All data are available in the main text or in the supplementary materials.
274	Competing interests
275	Authors declare no competing interests.
276	Funding
277	HK was supported by JSPS KAKENHI Grant Number JP17K05687. JA
278	and JP are supported by JSPS KAKENHI Grant Number JP18H03732.
279	AM is supported by JSPS KAKENHI (Grant-in-Aid for Scientific
280	Research on Innovative Areas) Grant Number JP17H05321. SY is
281	supported by JSPS KAKENHI Grant Number 21H01189.
282	Authors' contributions
283	H. Koge mainly contributed to conceptualization, data curation,
284	methodology, visualization, and writing of the original draft. J. Ashi and
285	JO. Park conducted fundamental research on the geological settings of
286	subduction zones and contributed to the discussion. A. Miyakawa and S.

287	Yabe contributed to the methodology and discussion. All authors helped
288	to write, review, and edit the paper.
289	Acknowledgements and Endnotes
290	A. Yamaguchi, G. Kimura, and A. Noda provided advice on
291	fundamental research about frontal prisms. We acknowledge
292	anonymous reviewers for their thoughtful reviews.
293	
294	References
295	Adam J, & Reuther C D (2000) Crustal dynamics and active fault mechanics during
296	subduction erosion. Application of frictional wedge analysis on to the North Chilean
297	Forearc. Tectonophysics, 321, 297–325. doi:10.1016/S0040-1951(00)00074-3
298	Amante C, & Eakins B W (2009) ETOPO1 1 Arc-Minute Global Relief Model:
299	Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
300	NGDC-24, 19. doi:10.1594/PANGAEA.769615
301	Chester F M, Rowe C, Ujiie K, et al. (2013) Structure and composition of the
302	plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science, 342, 1208-

- 303 1211. doi:10.1126/science.1243719
- 304 Dahlen F A (1984) Noncohesive Critical Coulomb Wedges: an Exact Solution. Journal
- 305 of Geophysical Research, 89, 10125–10133. doi:10.1029/JB089iB12p10125
- 306 Dahlen F (1990) Critical Taper Model Of Fold-And-Thrust Belts And Accretionary
- 307 Wedges. Annual Review of Earth and Planetary Sciences, 18, 55–99.
- 308 doi:10.1146/annurev.earth.18.1.55
- 309 Davis D, Suppe J, & Dahlen F A (1983) Mechanics of fold-and- thrust belts and
- accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.
- 311 doi:10.1029/JB088iB02p01153
- 312 Fagereng A (2011) Wedge geometry, mechanical strength, and interseismic coupling of
- the Hikurangi subduction thrust, New Zealand. Tectonophysics, 507, 26–30.
- 314 doi:10.1016/j.tecto.2011.05.004
- Hirano N, Takahashi E, Yamamoto J, et al. (2006) Volcanism in response to plate
- 316 flexure. Science, 313, 1426–1428. doi:10.1126/science.1128235
- 317 Ide S, Baltay A, Beroza, GC (2011) Shallow dynamic overshoot and energetic deep
- rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 332(6036), 1426-1429.

- 319 doi:10.1126/science.1207020
- 320 Kimura G, Hina S, Hamada Y, et al. (2012) Runaway slip to the trench due to rupture of
- 321 highly pressurized megathrust beneath the middle trench slope: The tsunamigenesis of
- 322 the 2011 Tohoku earthquake off the east coast of northern Japan. Earth and Planetary
- 323 Science Letters, 339–340, 32–45. doi:10.1016/j.epsl.2012.04.002
- 324 Kishimoto K (2000) Combined Bathymetric and Topographic Mesh Data: Japan 250m
- 325 Grid. Open File Rep. 353, 1-CD-ROM.
- 326 Koge H, Hamahashi M, Kimura G, et al. (2014) Friction properties of the plate
- 327 boundary megathrust beneath the frontal wedge near the Japan Trench: An inference
- 328 from topographic variation Multidisciplinary. Earth, Planets and Space, 66, 1–10.
- 329 doi:10.1186/s40623-014-0153-3
- 330 Lallemand S E, Schnürle P, & Malavieille J (1994) Coulomb theory applied to
- 331 accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or
- frontal accretion. Journal of Geophysical Research: Solid Earth, 99, 12033–12055.
- 333 doi:10.1029/94jb00124
- Lehner F K (1986) Comments on "Noncohesive critical Coulomb wedges: An exact

- solution" by F. A. Dahlen. Journal of Geophysical Research, 91, 793.
- 336 doi:10.1029/jb091ib01p00793
- 337 Mochizuki K, Yamada T, Shinohara M, et al. (2008) Weak interplate coupling by
- seamounts and repeating M ~ 7 earthquakes. Science, 321, 1194–1197.
- 339 doi:10.1126/science.1160250
- 340 Nishikawa T, Matsuzawa T, Ohta K, et al. (2019) The slow earthquake spectrum in the
- Japan Trench illuminated by the S-net seafloor observatories. Science, 365, 808–813.
- 342 doi:10.1126/science.aax5618
- 343 Seabold, Skipper, Josef Perktold. "statsmodels: Econometric and statistical modeling
- with python." Proceedings of the 9th Python in Science Conference. 2010.,
- 345 https://www.statsmodels.org/stable/index.html
- Ujiie K, Tanaka H, Saito T, Tsutsumi A, Mori J, Kameda J, Brodsky E, Chester FM,
- 347 Eguchi N, Toczko S, Expedition 343 and 343T Scientists (2013) Low coseismic shear
- 348 stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science,
- 349 342, 1211–1214. doi:10.1126/science.1243485
- 350 Varga M, & Bašić T (2015) Accuracy validation and comparison of global digital

- elevation models over Croatia. International Journal of Remote Sensing, 36, 170–189.
- 352 doi:10.1080/01431161.2014.994720
- 353 Wang K, & Hu Y (2006) Accretionary prisms in subduction earthquake cycles: The
- theory of dynamic Coulomb wedge. Journal of Geophysical Research: Solid Earth,
- 355 111, . doi:10.1029/2005JB004094
- 356 Wang K, Brown L, & Hu Y (2019) Stable Forearc Stressed by a Weak Megathrust :
- 357 Mechanical and Geodynamic Implications of Stress Changes Caused by the M = 9
- 358 Tohoku Oki Earthquake Journal of Geophysical Research : Solid Earth, 6179–6194.
- 359 doi:10.1029/2018JB017043
- 360 Wang K, Hu Y, von Huene R, et al. (2010) Interplate earthquakes as a driver of shallow
- 361 subduction erosion. Geology, 38, 431–434. doi:10.1130/G30597.1
- 362 Wessel P, Luis J F (2017) The GMT/MATLAB Toolbox. Geochemistry, Geophysics,
- 363 Geosystems, 18, 811–823. doi:10.1002/2016GC006723
- 364
- 365

366 Figure legends

368	Figure 1. Schematic illustration of the critical taper model. A Cross section of the
369	forearc wedge in the Japan Trench (modified from Kimura et al. 2012). α : slope angle,
370	β : basal dip angle β , μ_b' effective friction on the megathrust fault. The frontal wedge
371	area is between the blue broken lines. B Diagram showing the self-similar growth of a
372	bulldozer wedge (modified from Dahlen 1990).
373	
374	Figure 2. Cross plot between the pore fluid pressure ratio λ and basal friction μ_b
375	in the wedge. All extensionally critical states form the left limb of the critical state
376	curve, and all compressively critical states form the right limb. The stable region is
377	under the curve (white). The straight-line intersecting the critical state curve represents
378	constant λ .
379	
380	Figure 3. Considering the weight of β . A The mechanically critical value of a frontal
381	wedge is controlled by the fluid pressure ratio within the prism (λ) and the effective
382	basal friction (μ_b). The solid and broken lines represent the critical state curve for

383	different values of β . B Variation in μ_b ' when α and β are varied from 1° to 5°, assuming
384	mean subduction wedge conditions.
385	
386	Figure 4. Heat map for weight of alpha (WOA). The closer WOA is to 100%, the
387	more friction can be considered in terms of seafloor topography alone, because μ_b ' can
388	be determined from α alone. Conditions in the Japan Trench according to Kimura et al.
389	(2012) and Wang et al. (2019) are shown by the two white squares.
390	
391	Figure 5. Comparison of the spatial variation of slope angle α in the Japan Trench
392	and the coseismic slip distribution. A Compiled coseismic slip along the Japan Trench
393	(red contours). The epicenter of the Tohoku-Oki earthquake is shown by a yellow star,
394	and the red lines show the positions of bathymetric profiles used to obtain α . B The
395	distribution of α along the Japan Trench. The red area corresponds to the coseismic slip
396	area in the map in A (Chester et al. 2013). The orange bar indicates the peak of the α
397	distribution histogram.
308	

399	Tables
400	
401	Table 1. Values of μ_b ' obtained by varying α and β from 1° to 5°. The left table was
402	calculated by assuming mean subduction wedge conditions. The right table was
403	calculated using conditions in the outer wedge of the Japan Trench.
404	
405	Table 2 Slopes measured along bathymetric profiles on the landward side of the
406	Japan Trench.
407	
408	Additional files
409	Additional file 1: Supplemental text.pdf
410	Additional file 2: result_ols.csv; raw data for WOA plot (Fig. 4)
411	Additional file 3: result_ct.csv; raw results for critical taper parameters.

Figure 1

Schematic illustration of the critical taper model. A Cross section of the forearc wedge in the Japan Trench (modified from Kimura et al. 2012). α : slope angle, β : basal dip angle β , μ b' effective friction on the megathrust fault. The frontal wedge area is between the blue broken lines. B Diagram showing the self-similar growth of a bulldozer wedge (modified from Dahlen 1990).

Cross plot between the pore fluid pressure ratio λ and basal friction μ b' in the wedge. All extensionally critical states form the left limb of the critical state curve, and all compressively critical states form the right limb. The stable region is under the curve (white). The straight-line intersecting the critical state curve represents constant λ .

Considering the weight of β . A The mechanically critical value of a frontal wedge is controlled by the fluid pressure ratio within the prism (λ) and the effective basal friction (μ b'). The solid and broken lines represent the critical state curve for different values of β . B Variation in μ b' when α and β are varied from 1° to 5°, assuming mean subduction wedge conditions.

Heat map for weight of alpha (WOA). The closer WOA is to 100%, the more friction can be considered in terms of seafloor topography alone, because μ b' can be determined from α alone. Conditions in the Japan Trench according to Kimura et al. (2012) and Wang et al. (2019) are shown by the two white squares.

Comparison of the spatial variation of slope angle α in the Japan Trench and the coseismic slip distribution. A Compiled coseismic slip along the Japan Trench (red contours). The epicenter of the Tohoku-Oki earthquake is shown by a yellow star, and the red lines show the positions of bathymetric profiles used to obtain α . B The distribution of α along the Japan Trench. The red area corresponds to the

coseismic slip area in the map in A (Chester et al. 2013). The orange bar indicates the peak of the α distribution histogram.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureABSTRUCT.jpg
- Supplementarytext.pdf
- resultols.csv
- resultct.csv