1. Chitre TS, Asgaonkar KD, Patil SM, Kumar S, Khedkar VM, Garud DR (2017) QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput Biol Chem 68: 211-218
2. Saul LK, Roweis ST (2003) Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J Mach Learn Res 4: 119-155. https://doi.org/10.1162/153244304322972667
3. Kausar S, Falcao AO (2019) Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling. Molecules. 24 (9): 1698. https://doi.org/10.3390/molecules24091698
4. Jolliffe IT (2002) Choosing a Subset of Principal Components or Variables. In: Principal component analysis, 2nd edn. Springer, New York, pp 111-149. https://doi.org/10.1002/0470013192.bsa501
5. Wickelmaier F (2003) An Introduction to MDS, In: Sound Quality Research Unit at Alaborg University, Denmark, pp 1-26.
6. Somervuo P, Kohonen T (1999) Self-organizing maps and learning vector quantization for feature sequences. Neural Process Lett 10 (2): 151-159. https://doi.org/10.1023/A:1018741720065
7. Agrafiotis DK, Lobanov VS (2001) Multidimensional scaling of combinatorial libraries without explicit enumeration. J Comput Chem 22 (14): 1712-1722. https://doi.org/10.1002/jcc.1126
8. Agrafiotis DK (2003) Stochastic proximity embedding. J Comput Chem 24 (10): 1215-1221
9. Low Y, Sedykh A, Fourches D, Golbraikh A, Whelan M, Rusyn I, Tropsha A (2013) Integrative
Chemical-Biological Read-Across Approach for Chemical Hazard Classification. Chem Res Toxicol 26 (8): 1199-1208
10. Gasteiger J (2003) Handbook of chemoinformatics: from data to knowledge. Wiley-VCH, Weinheim
11. Hendrickson JB (1991) Concepts and Applications of Molecular Similarity. Science 252 (5009): 1189
12. Barnard JM (1993) Substructure Searching Methods - Old and New. J Chem Inf Comp Sci 33 (4): 532-538. https://doi.org/10.1021/ci00014a001
13. Flower DR (1998) On the properties of bit string-based measures of chemical similarity. J Chem Inf Comp Sci 38 (3): 379-386. https://doi.org/10.1021/ci970437z
14. Bajusz D, Racz A, Heberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint based similarity calculations?. J Cheminformatics 7(20)
15. Tversky A (1977) Features of Similarity. Psychol Rev 84 (4): 327–352. https://doi.org/10.1037/0033-295X.84.4.327
16. Jadrich RB, Lindquist BA, Pineros WD, Banerjee D, Truskett TM (2018) Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications The Journal of Chemical Physics 149 (194110). https://doi.org/10.1063/1.5049850
17. Cuadras CM, Arenas C (1990) Distance Based Regression-Model for Prediction with Mixed Data. Commun Stat Theory 19 (6): 2261-2279. https://doi.org/10.1080/03610929008830319
18. Coates A, Lee H, Ng AY (2011) An analysis of single-layer networks in unsupervised feature learning. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR 15:215-223
19. Cullum JK, Willoughby RA (1985) Real rectangular matrices. In: Lanczos Algorithms for Large Symmetric Eigenvalue Computations (ed). Vol. II. Brikhauser, Boston, pp 273-359
20. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzynski M, Worth AP (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22 (4): 795-804. https://doi.org/10.1007/s11224-011-9757-4
21. Myint KZ, Xie X Q (2010) Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods. Int J Mol Sci 11 (10): 3846-3866
22. Racz A, Bajusz D, Heberger K (2015) Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. Sar Qsar Environ Res 26 (7-9): 683-700
23. Arthur DE, Uzairu A, Mamza P, Abechi SE, Shallangwa GJ (2020) Activity and toxicity modelling of some NCI selected compounds against leukemia P388ADR cell line using genetic algorithm-multiple linear regressions King Saud Univ Sci 32 (1): 324-331. https://doi.org/10.1016/j.jksus.2018.05.023
24. Burden FR, Ford MG, Whitley DC, Winkler DA (2000) Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J Chem Inf Comp Sci 40 (6): 1423-1430
25. Burden FR (1998) Holographic neural networks as nonlinear discriminants for chemical applications. J Chem Inf Comp Sci 38 (1): 47-53
26. Obrezanova O, Csanyi G, Gola JMR, Segall MD (2007) Gaussian processes: A method for automatic QSAR Modeling of ADME properties. J Chem Inf Model 47 (5): 1847-1857
27. Schwaighofer A, Schroeter T, Mika S, Laub J, ter Laak A, Sulzle D, Ganzer U, Heinrich N, Muller KR (2007) Accurate solubility prediction with error bars for electrolytes: A machine learning approach. J Chem Inf Model 47 (2): 407-424
28. Kohonen T (1990) The Self-Organizing Map. IEEE 78 (9): 1464-1480
29. Chiorboli C, Piazza R, Carassiti V, Passerini L, Tosato ML (1993) Application of Chemometrics to the Screening of Hazardous Substances Part II. Advances in the multivariate characterization and reactivity Modeling of Haloalkanes. Chemom Intell Lab Syst 19 (3): 331-336
30. Baroni M, Clementi S, Cruciani G, Kettaneh-Wold N, Wold S (1993) D-Optimal Designs in Qsar. Quant Struct-Act Rel 12: 225-231
31. Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling. J Chem Inf Comp Sci 44 (5): 1794-1802
32. Hudson BD, Hyde RM, Rahr E, Wood J (1996) Parameter based methods for compound selection from chemical databases. Quant Struct-Act Rel 15 (4): 285-289. https://doi.org/10.1002/qsar.19960150402
33. Gobbi A, Lee ML (2003) DISE: Directed Sphere Exclusion. J Chem Inf Comp Sci 43 (1): 317-323
34. Kennard RW, Stone LA (1969) Computer Aided Design of Experiments. Technometrics 11: 137-148. https://doi.org/10.1080/00401706.1969.10490666
35. Snarey M, Terrett NK, Willett P, Wilton DJ (1997) Comparison of algorithms for dissimilarity-based compound selection. J Mol Graph Model 15 (6): 372-385
36. Cho M, Yoon H, Park M, Kim YH, Lim Y (2014) Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships. Phytomedicine 21 (4):560-569
37. Türkmenoğlu B, Yılmaz H, Su EM, Alp Tokat T, Güzel Y (2017) 4D-QSAR Study of Flavonoid Derivatives with MCET Method. International Journal of Chemistry and Technology 1: 14-23. https://doi.org/10.32571/ijct.338920
38. Türkmenoğlu B, Güzel Y (2018) Molecular docking and 4D-QSAR studies of metastatic cancer inhibitör thiazoles. Computational Biology and Chemistry 76: 327-337
39. Su EM, Turkmenoglu B, Guzel Y (2016) 3D Biostructure Visualisation Using 4D-QSAR Model for Substitute Ureas Binding at the Raf-1 Kinase Receptor Site. International Journal of Innovative Studies in Sciences and Engineering Technology 2 (12): 67-75
40. Yilmaz H, Boz M, Turkmenoglu B, Guzel Y (2014) Pharmacophore and Functional Group Identification of 4,4 '-dihydroxydiphenylmethane as Bisphenol-A (BSA) Derivative. Trop J Pharm Res 13 (1): 117-126. http://dx.doi.org/10.4314/tjpr.v13i1.17
41. Turkmenoglu B, Guzel Y, Su EM, Kizilcan DS (2020) Investigation of inhibitory activity of monoamine oxidase A with 4D-QSAR using Fukui indices identifier. Mater Today Commun 25. https://doi.org/10.1016/j.mtcomm.2020.101583
42. Tokat TA, Turkmenoglu B, Guzel Y, Kizilcan DS (2019) Investigation of 3D pharmacophore of Nbenzyl benzamide molecules of melanogenesis inhibitors using a new descriptor Klopman index: uncertainties in model. Journal of Molecular Modeling 25 (8). https://doi.org/10.1007/s00894-019-4120-6
43. Kizilcan DS, Turkmenoglu B, Guzel Y (2020) The use of the Klopman index as a new descriptor for pharmacophore analysis on strong aromatase inhibitor flavonoids against estrogen-dependent breast cancer. Struct Chem 31 (4): 1339-1351. https://doi.org/10.1007/s11224-020-01498-9
44. Guzel Y, Aslan E, Turkmenoglu B, Su EM (2018) 4D-QSAR Studies Using a New Descriptor of the Klopman Index: Antibacterial Activities of Sulfone Derivatives Containing 1, 3, 4-Oxadiazole Moiety Based on MCET Model. Curr Comput-Aid Drug 14 (3): 207-220. https://doi.org/10.2174/1573409914666180514093543
45. Griffiths M, Niblett SP, Wales DJ (2017) Optimal Alignment of Structures for Finite and Periodic Systems. J Chem Theory Comput 13 (10): 4914-4931
46. Holland JH (1973) Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on Computing 2: 88-105. https://doi.org/10.1137/0202009
47. Tóth Z (2003) A graphical user interface for evolutionary algorithms. Acta Cybernetica 16 (2): 337-365
48. Goldberg DE, Holland JH (1988) Genetic Algorithms and Machine Learning. Mach Learn 3: 95-99. https://doi.org/10.1023/A:1022602019183
49. Baskin II (2016) Dimensionality Reduction in Chemoinformatics. Generative 1 Topographic Mapping. In: International School-Seminar on Computer-Aided Molecular Designed. Kazan, Russia