High explosive (HE) detonations reach pressures and temperatures that extend beyond normal environmental conditions, thereby permitting access to various carbon and metal allotropes of different morphologies, sizes and surface structures. The products of HE detonations are dependent on multiple parameters, including the chemical and physical properties of the starting material and atmospheric conditions (i.e. oxygen). One important factor is the HE oxygen balance, which is the extent to which the material can be oxidized. Insensitive HEs are designed to resist external stimuli that would cause detonation in conventional HEs. The insensitive HEs are negatively oxygen balanced and therefore produce not only gaseous species but solid carbon products during detonation. Insensitive HEs were studied, Composition B-3 and PBX 9501, with steady and overdriven geometries in an oxygen-free atmosphere that reached different pressure and temperature regimes. Small angle x-ray scattering provided the size and surface structure of the resulting particulates. Composition B-3 primary particles were 157.0 ± 0.3 Å and 199.5 ± 0.3 Å for steady and overdriven detonations; where PBX 9501 primary particles were larger than Composition B-3 at 300 ± 6 Å and 334.5 ± 0.3 Å for steady and overdriven detonations. The two compounds formed contrasting primary particles with different cluster structures, in the Composition B-3 steady detonation the particles were agglomerated into a surface fractal with rough surfaces where as the PBX 9501 was a mass fractal cluster with smooth surface primary particles. In the overdriven detonation the primary particles were reversed, Composition B-3 was agglomerated into a mass fractal structure with smooth surfaces and PBX 9501 had a surface fractal structure with a rough surface primary particles. Scanning electron microscopy provided a snapshot of the morphology of the materials on the micron length scale, supporting the observation of x-ray scattering that the Composition B-3 particulates/agglomerates are smaller than the PBX 9501. Raman spectroscopy provided information as to the carbon bonding of the detonation soot, showing significantly more product variation in Composition B-3 than PBX 9501, likely due the poor oxygen balance of Composition B-3 leading to more complex carbon bonding formations. Finally, x-ray photoelectron spectroscopy showed how the difference in the oxygen balance of the HE fuel directly relates to the amount of carbon-oxygen bonding that is present in the final products, where PBX 9501 had significantly more oxygen on the surface of the particulates. We used two HEs to understand the detonation pathways for both synthesis and atmospheric processes; where the chemical constituents of the particulates can promote processes such as self-lofting and aerosol-cloud interactions after the particles are launched into the troposphere or stratosphere during detonation.