1. Bernava, G. et al. Direct thromboaspiration efficacy for mechanical thrombectomy is related to the angle of interaction between the aspiration catheter and the clot. J. NeuroInterventional Surg. 12, 396–400 (2020).
2. Bernava, G. et al. Experimental evaluation of direct thromboaspiration efficacy according to the angle of interaction between the aspiration catheter and the clot. J. NeuroInterventional Surg. neurintsurg-2020-016889 (2021) doi:10.1136/neurintsurg-2020-016889.
3. Campbell, B. C. V. et al. Safety and Efficacy of Solitaire Stent Thrombectomy: Individual Patient Data Meta-Analysis of Randomized Trials. Stroke 47, 798–806 (2016).
4. Hofmeister, J. et al. The Catch Mini stent retriever for mechanical thrombectomy in distal intracranial occlusions. J. Neuroradiol. J. Neuroradiol. 45, 305–309 (2018).
5. Hofmeister, J. et al. Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke. Stroke 51, 2488–2494 (2020).
6. Machi, P., Luft, A., Winklhofer, S., Anagnostakou, V. & Kulcsár, Z. Endovascular treatment of acute ischemic stroke. J. Neurosurg. Sci. (2020) doi:10.23736/S0390-5616.20.05109-7.
7. Machi, P. et al. Solitaire FR thrombectomy system: immediate results in 56 consecutive acute ischemic stroke patients. J. Neurointerventional Surg. 10, i27–i32 (2018).
8. Maus, V. et al. Intracranial mechanical thrombectomy of large vessel occlusions in the posterior circulation using SAVE. BMC Neurol. 19, 197 (2019).
9. Mokin, M. et al. Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. J. NeuroInterventional Surg. 11, 215–220 (2019).
10. Kim, Y., Kim, K. & Park, Y. Measurement Techniques for Red Blood Cell Deformability: Recent Advances. in Blood Cell - An Overview of Studies in Hematology (ed. Moschandreou, T.) (InTech, 2012). doi:10.5772/50698.
11. Gunning, G. M. et al. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J. NeuroInterventional Surg. 10, 34–38 (2018).
12. Litvinov, R. I. & Weisel, J. W. Fibrin mechanical properties and their structural origins. Matrix Biol. 60–61, 110–123 (2017).
13. Madjidyar, J., Pineda Vidal, L., Larsen, N. & Jansen, O. Influence of Thrombus Composition on Thrombectomy: ADAPT vs. Balloon Guide Catheter and Stent Retriever in a Flow Model. RöFo - Fortschritte Auf Dem Geb. Röntgenstrahlen Bildgeb. Verfahr. 192, 257–263 (2020).
14. Sanchez, S. et al. ANCD thrombectomy device: in vitro evaluation. J. NeuroInterventional Surg. 12, 77–81 (2020).
15. Staessens, S. et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 105, 498–507 (2020).
16. Boodt, N. et al. Mechanical Characterization of Thrombi Retrieved With Endovascular Thrombectomy in Patients With Acute Ischemic Stroke. Stroke 52, 2510–2517 (2021).
17. Chernysh, I. N. et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci. Rep. 10, 5112 (2020).
18. Tomaiuolo, M., Litvinov, R. I., Weisel, J. W. & Stalker, T. J. Use of electron microscopy to study platelets and thrombi. Platelets 31, 580–588 (2020).
19. Autar, A. S. A. et al. High‐Resolution Imaging of Interaction Between Thrombus and Stent‐Retriever in Patients With Acute Ischemic Stroke. J. Am. Heart Assoc. 7, (2018).
20. van Es, A. C. G. M. et al. Imaging stent–thrombus interaction in mechanical thrombectomy. Neurology 88, 216–217 (2017).
21. Ahn, S. H. et al. Histologic features of acute thrombi retrieved from stroke patients during mechanical reperfusion therapy. Int. J. Stroke 11, 1036–1044 (2016).
22. Weisel, J. W. & Litvinov, R. I. Visualizing thrombosis to improve thrombus resolution. Res. Pract. Thromb. Haemost. rth2.12469 (2021) doi:10.1002/rth2.12469.
23. Cines, D. B. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123, 1596–1603 (2014).
24. Peshkova, A. et al. Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH Open 02, e104–e115 (2018).
25. Tutwiler, V. et al. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 8, 17907 (2018).
26. Tutwiler, V. et al. Blood clot contraction differentially modulates internal and external fibrinolysis. J. Thromb. Haemost. 17, 361–370 (2019).
27. Xu, R.-G. & Ariëns, R. A. S. Insights into the composition of stroke thrombi: heterogeneity and distinct clot areas impact treatment. Haematologica 105, 257–259 (2020).
28. Duffy, S. et al. Per-Pass Analysis of Thrombus Composition in Patients With Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Stroke 50, 1156–1163 (2019).
29. Ye, G. et al. Association Between Thrombus Density and Reperfusion Outcomes Using Different Thrombectomy Strategies: A Single-Center Study and Meta-Analysis. Front. Neurol. 10, 843 (2019).
30. Maekawa, K. et al. Erythrocyte-Rich Thrombus Is Associated with Reduced Number of Maneuvers and Procedure Time in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Cerebrovasc. Dis. Extra 8, 39–49 (2018).
31. Moftakhar, P. et al. Density of Thrombus on Admission CT Predicts Revascularization Efficacy in Large Vessel Occlusion Acute Ischemic Stroke. Stroke 44, 243–245 (2013).