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ORIGINAL ARTICLE 

A New Approach for Solving the Inverse Kinematics of Continuum Robot Based 

on Piecewise Constant Curvature Model 

Haoran Wu1 • Jingjun Yu1 • Jie Pan1• Xu Pei2*

Abstract: The inverse kinematics of continuum robot is an 

important factor to guarantee the motion accuracy. How to 

construct a concise inverse kinematics model is very 

essential for the motion control of continuum robot. In this 

paper, a new method for solving the inverse kinematics of 

continuum robot is proposed based on the geometric and 

numerical method. Assumed that the deformation of the 

continuum robot is Piecewise Constant Curvature model 

(PCC), the envelope surface of the continuum robot based 

on single-segment is modeled and calculated. The 

clustering method is used to calculate the intersection of the 

curves. Then, a distinct sequence is designed for solving the 

inverse kinematics of continuum robot, and it is also 

suitable for the multi-segment continuum robots in space. 

Finally, the accuracy of the inverse kinematics algorithm is 

verified by the simulation and numerical experiment. The 

experiment results illustrate that this algorithm is with 

higher accuracy compared with the Jacobian iterative 

algorithm. 

Keywords: Continuum robot • Constant curvature model • 

Inverse kinematics • Geometric method

1 Introduction12

Continuum robot is a new type of bionic robot with a 

continuous backbone without joints [1]. Compared with 

traditional rigid discrete robots, it can change its shape 

flexibly according to environmental obstacles and has 

strong adaptability to small environments and unstructured 

spaces [2,3]. Continuum robots have been used in 

exploration [4], medicine [5], rescue [6] and other fields [7-

9]. As a kind of hyper redundant robot, modeling and 

solving the inverse kinematics of continuum robots proves 

to be a very interesting and challenging problem. A large 

proportion of efforts in the area have focused on the 
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establishment and solution of kinematic model. 

Geometric [10] and mechanical [11] methods are widely 

applied in the modeling of continuum robots. Chen [12] 

used quadratic Bezier curve to establish the continuum 

robot model and sensor data is used to compensate error. 

Chirikjian [13] and Agrawal [14] link the shape of a 

particular mathematical curve to a high-degree-of-freedom 

(DOF) robot. Another approach is choosing an arc which 

closely matches the kinematics of continuum robots, due to 

the equal distribution of forces inherent in the design of 

continuum robot [5]. And the Piecewise Constant Curvature 

(PCC) model is also carried out by Bryan A. Jones [15] 

under this assumption, an assumption also made throughout 

this paper. Closed position and velocity kinematics [16] are 

also established on account of PCC model. Based on the 

PCC model, Zheng Li [17] used screw to build continuum 

robot kinematics model and solve its workspace. Tobias 

Mahl [18] and Sears [19] constructed Variable Constant 

Curvature (VCC) model for continuum robot with variable 

curvature, which divides each joint into multiple segments. 

The traditional method of solving the inverse kinematics 

of continuum robot is the generalized inverse method 

[20,21]. The continuum robot is transformed into rigid 

body model and solved by iteration of Jacobian inverse 

matrix. But non-convergence and singularities are also 

inevitable through this method. Neural network [22-24] is 

also used to solve the inverse solution of continuum robot, 

which is also widely used for control and modeling of 

continuum robots. However, excessive calculation may be 

existed due to the large training set when the robot has 

many degrees of freedom. Another method is to establish 

the model according to the geometric relationship, and the 

inverse kinematics can be solved by numerical iteration, 

which is also applied in this paper. Williams [25] and 

Svenja [26] analogized the movement of a snake's tail 

following the head's trajectory, and proposed a follow the-

leader (FTL) heuristic algorithm for hyper redundant robot. 

Sinivas [27] proposed a geometric algorithm to get closed-

form inverse kinematics of multi-continuum robot. Based 

on PCC model, Underwater soft manipulator designed by 

Zheyuan Gong [28] which applied the reverse constant 
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curvature model to get the inverse kinematics. However, 

few types of robots are suitable for this algorithm due to the 

limitation of the algorithm.  

Combined with geometrical and numerical, a new 

approach for solving the inverse kinematics of continuum 

robot is proposed in this paper. Based on the PCC model, 

geometrical method is used to build the model of 

continuum robot in Section 2. Furthermore, a distinct 

algorithm is proposed in Section 3 through geometrical and 

numerical. The algorithm has a wide range of applicability, 

which is fitted for multi-segment continuum robots and 

continuum robots in space. Finally, the effectiveness and 

accuracy of the algorithm are verified by numerical 

experiments and simulation in Section 4. 

2 Establish Continuum Robot Kinematics 
Model 

2.1 Model assumptions of continuum robot 

For the sake of analysis, the compliant deformation of a 

continuum robot can be decomposed into a constitution of 

many linkage motions. In order to emerge the movement 

adaptability of continuum robot veritably, spherical hinge is 

used to construct the model instead of Hooke, rolling pairs 

or twin-pivot joint [29,30]. A schematic diagram of two-

segment continuum robot is shown in Figure 1 (a). Based 

on Piecewise Constant Curvature model (PCC), regardless 

of the shape of the robot’s own joints and the area of the 

cross-section, the kinematics configuration of continuum 

robot can be described by the geometry of a finite arc.  

The relationship between configuration parameters of 

continuum robot and single joint is illustrated in Figure 1 

(b). The length of a single segment of continuum robot with 

n joint is l. Based on the PCC model, the bending angle is α, 
and the direction angle is θ. It is assumed that the rotation 
angle of each joint is identical, the specific relationship of 

configuration parameters is shown in Eq. (1). When the 

number of joints of a single segment continuum robot is 8 

and the bending angle range is less than π/2, the relative 
error of the length of the single segment continuum robot is 

less than 0.3%. Therefore, for the purpose of simplify the 

model, it is considered that the length of a single segment 

continuum robot remains unchanged. 

single

single

tan
2 2

n

n

l l l
n n

 
 

 

 
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        

                           (1) 

Figure 1  Single segment of Tendon-driven continuum robot          

To sum up, in order to further establish the model of 

continuum robot, the following assumptions are proposed 

based on PCC model. 

(1) The length of the single-stage continuum robot is 

constant. 

(2) Continuum robot is tangent continuous and no sudden 

change of curvature. 

(3) Continuum robot has no distortion on the Z axis. 

(4) The influence of external loads on the shape of 

continuum robot is not considered. 

2.2 Envelope line/surface of single-segment continuum 

robot 

A schematic diagram of a single-segment continuum 

robot is shown in Figure 2. According to the geometric 

continuity, the parameter equations of continuum robot can 

be derived as Eq. (2) and Eq. (3). 
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According to the geometric relationship, the envelope 

line/ surface of continuum robot can be drawn. If the 

starting point of the robot is known to be at point A, the tip 

point B must be on the envelope/surface shown in Figure 2 

below, and vice versa. By solving the intersection of two or 

more envelopes, inverse kinematics of continuum robot can 

be further obtained. 
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Figure 2  End envelope line/surface of single-segment continuum 

robot 

2.3 Tip pose of continuum robot  

Figure 3  Coordinate transformation of continuum robot 

The coordinate transformation of continuum robot in 

space and on the plane is illustrated in Figure 3. Through 

coordinate transformation, the tip pose of single-segment 

continuum robot is shown in Eq. (4). 
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(4) 

The tip pose of the two-segment continuum robot is 

illustrated in Appendix C. 

Likewise the tip pose of continuum robot on the plane 

can be obtained in Eq. (5) and Eq. (6) 
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3  Inverse Kinematics of Continuum Robot  

3.1 Inverse Kinematics of Continuum Robot on the 

Plane 

3.1.1 Inverse kinematics of two-segment continuum robot 

on the plane 

As shown in Figure 4, the bending angle of the two-

segment continuum robot in the plane are α1 and α2, 

respectively. The terminal coordinates of the continuum 

robot are B(x,y). The general steps for solving the inverse 

kinematics of continuum robot are illustrated as follows. 

(1) Solve the rotation angle range of the second curve 

In order to calculate the tip rotation angle range θ, find 

the two extreme positions where the two curves are tangent. 

(2) Find the intersection of two curves 

In the current pose, draw the first curve S1 and the 

second curve S2 of continuum robot. In the specific 

algorithm, the two curves are discretized into points. As 

illustrated in Appendix A, the clustering algorithm is used 

to solve the intersection of two curves.  

If the intersection is (x1, y1), Eq. (8) can be obtained by 

substituting Eq. (2) of the first continuum robot. 
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(3) Make auxiliary curves at the intersection 

As shown in Figure 4 (a), an auxiliary curve S1-2   is 

drawn at the intersection along the tangent direction of first 
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segment continuum robot. If there is a feasible solution, the 

tip point must pass the second curve S2 and the auxiliary 

curve S1-2 at the same time. 

(4) Find a feasible solution and check the continuity of the 

solution 

As illustrated in Figure 4 (a), repeat step (2) and (3), a 

series of curves are drawn within the rotation angle range 

of the second curve. Then check the continuity of the 

solution until a feasible solution is found. A feasible 

solution of continuum robot is presented in Figure 4 (b). 

Figure 4   Inverse kinematics of two-segment continuum robot        

3.1.2 Inverse kinematics of multi-segment continuum robot 

on the plane 

(1) Three-segment continuum robot, giving the tip pose 

Similar to the method of solving two-segment continuum 

robot, the rotation angle range of the second curve can be 

obtained. Within the rotation angle range, a series of curves 

are made to solve the intersection of curves and auxiliary 

curves are produced at the intersection as illustrated by 

Figure 5 (b). A feasible solution is found as shown in Figure 

5 (c). 

(2) Multi-segment continuum robot, giving certain 

constraints 

There may be many inverse kinematics for multi-

segment continuum robots, which need to be solved under 

certain restricted conditions. Thus, this article will not 

discuss them. 

3.2 Inverse Kinematics of Continuum Robot in Space 

3.2.1 Inverse kinematics of two-segment continuum robot in 

space  

As shown in Figure 6, the bending angle of the two-

segment continuum robot in space are α1 and α2

respectively and the direction angle are θ1 and θ2 respectively. 

The terminal coordinates of the continuum robot are B (x, y, 

z). The general steps for solving the inverse kinematics of 

continuum robot are illustrated as follows. 

Figure 5  Inverse kinematics of multi-segment continuum 

robot    

(1) Find the intersection of two curves 

The first curve V1 is generated at the origin and the 

second curve V2 is made at point C along the tip pose as 

illustrated in Figure 6. In the specific algorithm, the two 

curves are discretized into points, and a series of planes 

parallel to the OXY plane are used to intercept the two 

curves. Points less than a certain threshold from the 

intercept plane are projected onto the plane. The problem of 

solving the intersection of surfaces can be transformed into 

a problem of solving the intersection of curves on plane. 

And more details can be found in Appendix C. 

(2) Make auxiliary curves at line of intersection 

In the current tangent plane, an auxiliary curve V1-2 is 

made at the intersection. As shown in Figure 6 (a), if there 

is a feasible solution at this position, the tip point must be 

on both the curve V2 and the curve V1-2. As illustrated in 

Figure 6 (b), the auxiliary curve is not at the tip point, so 

there is no feasible solution. 

(3) Solve feasible solutions 

If there is a feasible solution, and the intersection point is 

(x1, y1, z1). Substitute the coordinates of the intersection 

obtained into Eq. (6). 
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
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           (9) 

Substitute α1 and θ1 into Eq. (6) , Eq. (10) can be 

obtained as follows. 
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It can be solved by combining the above Eq. (10). 
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(4) Further solve the exact solution 

On the basis of the solution obtained, the sampling rate is 

increased, and the angle range of the curve is determined 

and reduced. Repeat the above steps until a required 

accuracy is achieved. 

Figure 6 Inverse kinematics of two-segment continuum robot in 

space  

3.2.2 Inverse kinematics of multi-segment continuum robot 

in space 

The inverse kinematics of a three-segment continuum 

robot in space is illustrated in Figure 7. The position and tip 

pose of the continuum robot and the bending angle of the 

first segment of the continuum robot are known. As shown 

in Figure 7 (a), the second curve is made on the intersection 

S1, and the third curve is made according to the tip pose. 

Using the same method above, the intersection S2 of the two 

curves is solved. Take a point on the intersection S2 as the 

auxiliary curve S2-3. Repeat the above steps until the 

feasible solution is found. A feasible solution of continuum 

robot in this pose is shown in Figure 7 (b). 

3.2.3 General steps for solving the inverse kinematics of 

continuum robot 

The distinct sequence for solving the inverse kinematics 

of continuum robot is illustrated in Figure 8. The 

approximate range of the solution can be solved by using 

the above method. Increase the sampling rate and narrow 

the angle interval until a more accurate solution is obtained 

Figure 7  Inverse kinematics of three-segment continuum robot in 

space 

Figure 8 General steps for solving the inverse kinematics of 

continuum robot 

4  Comparison and Simulation Verification of 
Inverse Kinematics Algorithms 

4.1 Comparison of graphical method and Jacobian 

method  

In order to verify the accuracy of the algorithm, the 

Jacobian iterative method is used for comparison [20,21]. 
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The iterative relationship of this method is shown in Eq. 

(12). 

        -1

1

T T

i i i i i i f i
q q J q J q J q x k q      (12) 

In Eq. (12), qi is the configuration parameter of robotic 

arm in i - th iteration process. xf is the target position that 

the robot arm needs to reach, k(qi) is the forward 

kinematics of robot arm and ρ is the step length of each 

iteration. J # (q) is the pseudo-inverse of the Jacobian 

matrix. 

       -1# T T

i i i i
J q J q J q J q (13) 

As shown in Figure 9 (a), the single-segment continuum 

robot is transformed into a rigid manipulator model 

[15][17]. The relationship between the configuration 

parameters of the rigid manipulator arms the single-

segment continuum robot is illustrated in Eq. (14). 
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                 (14) 

As shown in Figure 9 (b), MATLAB Robotics Toolbox 

(RTB9.10, Petercorke, AUS) & (MATLAB, R2019b, 

MathWorks.Inc, US) is used to build the robot model and 

solve the inverse kinematics. Two segment continuum 

robot is used to carry out simulation, and the length of each 

segment is 10 units. 500 sets of tip points in the space are 

randomly selects in this article, the Jacobian iteration 

method and the geometric method in this paper are used to 

solve the inverse kinematics of continuum robot. And the 

error distribution of Jacobian method and geometric 

method are illustrated in Figure 10 and Figure 11 

respectively. By fitting the error data, it can be found that 

the error of the inverse solution approximately obeys the γ 
distribution. 

Figure 9  Solving inverse kinematics of continuum robot with 

MATLAB Robotics toolbox 

Figure 10 Error distribution of the inverse kinematics of 

continuum robot with Jacobian method 

Figure 11 Error distribution of the inverse kinematics of 

continuum robot with graphical method 

The average error of the two methods is shown in Table 

1. Comparing the solution results of the two methods, the 

geometric method has higher accuracy. Singular poses may 

exist when Jacobi pseudo-inverse method is used to solve 

inverse kinematics. So, a small part of the inverse solution 
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may have relatively large errors. 

Table 1 Comparison of the error average of the two methods

4.2 Simulation verification of the algorithm 

To further verify the accuracy of the algorithm, the 

model of the continuum robot is imported into ADAMS 

(ADAMS, 2017, MSC Inc., US) for kinematic simulation. 

Based on PCC model, the continuum robot can be divided 

into two segments. As shown in Figure 11, continuum robot 

moves from pose 1 to pose 2. Actuators are added at the 

joints of the model to measure the robot's terminal posture. 

Fifth-order polynomial curve is used to change the 

configuration of the continuum robot. In order to solve the 

inverse kinematics of continuum robot, the geometric 

method is used according to the tip pose of the robot. 

Figure 12  Simulation of continuum robot based on ADAMS 

The simulation and calculated values of the configuration 

parameters during the robot movement are shown in Figure 

12. And the absolute error of configuration parameters is 

illustrated in Figure 13. In addition to the relatively large 

errors that may exist in individual special positions, the 

simulated results agree well with the calculated results. 

Figure 13  The simulation and calculated values of configuration 

parameters 

Figure 14  Absolute error of configuration parameters 

5  Discussion  

Our algorithm successfully settles the problem of inverse 

kinematics for multi-segment continuum robot. Due to the 

definite geometric meaning of the algorithm, it is 

convenient to understand and use. However, there are still 

several features and limited needed to be noted: 

(1) Since K-means clustering method is used to solve the 

intersection of two curves/surfaces, and the initial 

location of the cluster center is randomly generated 

based on the given data. Therefore, within the 

allowable error range, subtle difference may be existed 

in each calculation. 

(2) In essence, the algorithm is a numerical algorithm 

combining numbers and shapes by discretizing surfaces 

or curves into points. Therefore, the accuracy of the 

algorithm largely lies in the sampling accuracy of 

curves and surfaces. In consequence, the selection of 

the sampling rate needs to be determined according to 

the actual calculation accuracy requirements and 

computational efficiency.   

α1/(°) θ1/(°) α2/(°) θ2/(°) terminal error 

Jacobian 1.72 5.09 6.87 2.46 0.17 

Graphical 0.28 0.35 3.5 0.167 0.073 
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(3) Faced with the problem of solving the inverse 

kinematics of multi-segment continuum robot, large 

amount of calculation may be required by applying this 

algorithm to obtain an accurate solution. However, the 

approximate value can still be obtained by using this 

method, and it can be combined with other heuristic 

algorithms to obtain more accurate results.   

6  Conclusion 

A new method for solving the inverse kinematics of 

continuum robot is proposed in this paper. Based on 

Piecewise Constant Curvature model (PCC), the envelope 

surface and tip pose of the continuum robot is modeled and 

calculated. The clustering and iteration method is used to 

calculate the intersection of the curves. Combined with 

geometric and numerical method, a distinct sequence is 

proposed in this paper, which is well fitted for two 

segments continuum robots in space. Finally, the accuracy 

of the algorithm is verified through simulation and 

numerical experiment. Compared with Jacobi pseudo-

inverse algorithm, this algorithm has higher precision and 

no non-convergent or singular solution. As this algorithm is 

capable of definite geometric meaning, so it is easy to be 

accepted and applied. Therefore, the graphical method 

provides a new scheme for the motion control of two-stage 

and even multi-stage continuous robots. 
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Appendix 

Appendix A 

Table 2 Clustering algorithm to find the intersection                

of two curves 

Algorithm 1 Clustering algorithm to find the 

 intersection of two curves

Input: , ,x y 
Output:    0 10 10 1 20 20, , ,P x y P x y

1: cal  1 2,S S 
2: cal 

1 max 1 max 2 max 2 max, , , ,P x y x y   

3: set 
 
 

10 1 min 1 max 1 min

10 1 min 1 max 1 min

x x x x rand

y y y y rand

  

  

   

   

4: set  
 

20 2 min 2 max 2 min

20 2 min 2 max 2 min

x x x x rand

y y y y rand

  

  

   

   

5: set 0flag 

6: while 0flag 

7: while i<n  

8:     cal ( ) ( )

1 2
,i i

dis dis

9: if ( ) ( )

1 2

i idis dis
10:       set ( ) 1i

indix 

11:       set . ( )

1 1 1
var var

i
dis  . 

12:       set 
1 1

1num num 
13: else 

14:       set 
( )

2
i

indix 
15:       set ( )

2 2 2var var idis 
16:       set 

2 2 1num num 
17:     end if 

18:     cal 
1 2 1 2, , ,x x y ytotal total total total   

19:     set
10 1 1 10 1 1,x yx total num y total num  

20:     set 
20 2 2 20 2 2,x yx total num y total num  

21: if 
1var  ＆

2
var 

22: 1flag 
23:     end if 

24:   end while 

mailto:peixu@buaa.edu.cn
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25: end while 

26: return    0 10 10 1 20 20, , ,P x y P x y

Appendix B 

Table 3 Solve the inverse kinematics of continuum robot 

Algorithm 2 Solve the intersection of two curves in space  

Input: , ,x y 
Output: , 
1: cal ,left right  using Dichotomy 

2: set right left
d   

3: for : :
left right

d   

4:     cal  1 2,S S 

5:     cal    10 10 20 20
, , ,x y x y  using Algorithm 1

6:     cal  1 2 1 2 1 2, ,a bS S dis S    

7: if  1 2
dis S  

8:        cal    1 1 2 2
, , ,   

9: end if  

10: end for 

11: return  , 

Appendix C 

1 2

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

r r r r

r r r r
T T T

r r r r

 
 
   
 
 
 

1 2 1 1 211
r c c c s s     

1 2 2 1 1 2 1 2 1 212
r c c c s s s s c c s          

2 1 2 1 2 2 2 1 2 213
r c s s c c s s c s s           

1 2 1 1 221
r c s c c s     

1 2 1 2 1 1 2 2 1 222
r c c c c c s s c s s          

2 1 1 1 1 2 2 2 1 223
r c c s c c c s s s s           

1 231
r s s 

2 2 1 1 232
r c c s c s      

1 2 2 1 233
r c c c s s     

    
1 1 2 1 2 1 1 2 2 1 11 2 2

14

1 2

1 1l s c l s c c c s c l s s s
r

          

 

   
 

    
1 1 2 1 2 1 1 2 2 1 11 2 2

24

1 2

1 1l c c l s c c c c c l s s c
r

          

 

   
 

 
2 1 2 1 21

2 21

34

1 2

1l s c l c s cl s
r

    

 

 
 
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