[1] Qian, Z.;Wang, H.;Bai, Y.;Wang, Y.;Tao, L.;Wei, Y.;Fan, Y.;Guo, X., and Liu, H., Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS Appl. Mater. Inter. 2020, 12, 55659-55674.
[2] Wei, S.;Xu, P.;Yao, Z.;Cui, X.;Lei, X.;Li, L.;Dong, Y.;Zhu, W.;Guo, R., and Cheng, B., A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021, 124, 205-218.
[3] Lin, S.;Zhang, Q.;Li, S.;Zhang, T.;Wang, L.;Qin, X.;Zhang, M.;Shi, S., and Cai, X., Antioxidative and Angiogenesis-Promoting Effects of Tetrahedral Framework Nucleic Acids in Diabetic Wound Healing with Activation of the Akt/Nrf2/HO‑1 Pathway. ACS Appl. Mater. Inter. 2020, 12, 11397-11408.
[4] Kasiewicz, L. N., and Whitehead, K. A., Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomater Sci 2017, 5, 1962-1975.
[5] Zhao, X.;Pei, D.;Yang, Y.;Xu, K.;Yu, J.;Zhang, Y.;Zhang, Q.;He, G.;Zhang, Y.;Li, A.;Cheng, Y., and Chen, X., Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment. Adv. Funct. Mater. 2021, 2009442.
[6] Wahlsten, A.;Rütsche, D.;Nanni, M.;Giampietro, C.;Biedermann, T.;Reichmann, E., and Mazza, E., Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 2021, 120779.
[7] Jin, J.;Saiding, Q.;Wang, X.;Qin, M.;Xiang, Y.;Cheng, R.;Cui, W., and Chen, X., Rapid Extracellular Matrix Remodeling via Gene‐Electrospun Fibers as a “Patch” for Tissue Regeneration. Adv. Funct. Mater. 2021, 31, 2009879.
[8] Xue, J.;Pisignano, D., and Xia, Y., Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Advanced Science 2020, 7, 2000735.
[9] Wang, X.;Lv, F.;Li, T.;Han, Y.;Yi, Z.;Liu, M.;Chang, J., and Wu, C., Electrospun Micropatterned Nanocomposites Incorporated with Cu2S Nanoflowers for Skin Tumor Therapy and Wound Healing. ACS Nano 2017, 11, 11337-11349.
[10] Zhang, P.;Li, Y.;Tang, Y.;Shen, H.;Li, J.;Yi, Z.;Ke, Q., and Xu, H., Copper-Based Metal–Organic Framework as a Controllable Nitric Oxide-Releasing Vehicle for Enhanced Diabetic Wound Healing. ACS Appl. Mater. Inter. 2020, 12, 18319-18331.
[11] Zhang, P.;Jiang, Y.;Liu, D.;Liu, Y.;Ke, Q., and Xu, H., A bioglass sustained-release scaffold with ECM-like structure for enhanced diabetic wound healing. Nanomedicine-UK 2020, 15, 2241-2253.
[12] Wang, Y.;Ying, T.;Li, J.;Xu, Y.;Wang, R.;Ke, Q.;Shen, S. G. F.;Xu, H., and Lin, K., Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chem. Eng. J. 2020, 402, 126273.
[13] Li, H.;Ding, Q.;Chen, X.;Huang, C.;Jin, X., and Ke, Q., A facile method for fabricating nano/microfibrous three-dimensional scaffold with hierarchically porous to enhance cell infiltration. J. Appl. Polym. Sci. 2019, 136, 47046.
[14] Kim, J. Y.;Kim, J. I.;Park, C. H., and Kim, C. S., Design of a modified electrospinning for the in-situ fabrication of 3D cotton-like collagen fiber bundle mimetic scaffold. Mater. Lett. 2019, 236, 521-525.
[15] Zhao, Q.;Wang, J.;Cui, H.;Chen, H.;Wang, Y., and Du, X., Programmed Shape-Morphing Scaffolds Enabling Facile 3D Endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.
[16] Logie, C.;van Schaik, T.;Pompe, T., and Pietsch, K., Fibronectin-functionalization of 3D collagen networks supports immune tolerance and inflammation suppression in human monocyte-derived macrophages. Biomaterials 2021, 268, 120498.
[17] Chen, S.;Wang, H.;Su, Y.;John, J. V.;McCarthy, A.;Wong, S. L., and Xie, J., Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater. 2020, 108, 153-167.
[18] Li, Y.;Liu, Y.;Xun, X.;Zhang, W.;Xu, Y., and Gu, D., Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Appl. Mater. Inter. 2019, 11, 36359-36370.
[19] Liang, W.;Jiang, M.;Zhang, J.;Dou, X.;Zhou, Y.;Jiang, Y.;Zhao, L., and Lang, M., Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing. J. Mater. Sci. Technol. 2020.
[20] Zhu, B.;Liu, X.;Li, N.;Yang, C.;Ji, T.;Yan, K.;Chi, H.;Zhang, X.;Sun, F.;Sun, D.;Chi, C.;Wang, X.;Wang, Y.;Chen, L., and Yao, L., Three-dimensional porous graphene microsphere for high-performance anode of lithium ion batteries. Surface and Coatings Technology 2019, 360, 232-237.
[21] Chen, S.;Wang, H.;McCarthy, A.;Yan, Z.;Kim, H. J.;Carlson, M. A.;Xia, Y., and Xie, J., Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. Nano Lett. 2019, 19, 2059-2065.
[22] Chen, S.;McCarthy, A.;John, J. V.;Su, Y., and Xie, J., Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior. Adv. Mater. 2020, 32, 2003754.
[23] Wu, T.;Li, H.;Xue, J.;Mo, X., and Xia, Y., Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie International Edition 2019, 58, 16416-16421.
[24] Salma-Ancane, K.;Stipniece, L.;Putnins, A., and Berzina-Cimdina, L., Development of Mg-containing porous β-tricalcium phosphate scaffolds for bone repair. Ceram. Int. 2015, 41, 4996-5004.
[25] Jiang, J.;Li, Z.;Wang, H.;Wang, Y.;Carlson, M. A.;Teusink, M. J.;MacEwan, M. R.;Gu, L., and Xie, J., Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Adv. Healthc. Mater. 2016, 5, 2993-3003.
[26] Keit, E.;Chen, S.;Wang, H., and Xie, J., Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds. Journal of Visualized Experiments 2019.
[27] Jiang, J.;Chen, S.;Wang, H.;Carlson, M. A.;Gombart, A. F., and Xie, J., CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 2018, 68, 237-248.
[28] Jiang, J.;Chen, S.;Wang, H.;Carlson, M. A.;Gombart, A. F., and Xie, J., CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 2018, 68, 237-248.
[29] Lin, X.;Mao, Y.;Li, P.;Bai, Y.;Chen, T.;Wu, K.;Chen, D.;Yang, H., and Yang, L., Ultra‐Conformable Ionic Skin with Multi‐Modal Sensing, Broad‐Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care. Advanced Science 2021, 2004627.
[30] Kong, X.;Fu, J.;Shao, K.;Wang, L.;Lan, X., and Shi, J., Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019, 100, 255-269.
[31] Martins, A. F.;Facchi, S. P.;Da Câmara, P. C. F.;Camargo, S. E. A.;Camargo, C. H. R.;Popat, K. C., and Kipper, M. J., Novel poly(ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. J. Colloid Interf. Sci. 2018, 525, 21-30.
[32] Zhao, X.;Pei, D.;Yang, Y.;Xu, K.;Yu, J.;Zhang, Y.;Zhang, Q.;He, G.;Zhang, Y.;Li, A.;Cheng, Y., and Chen, X., Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment. Adv. Funct. Mater. 2009442.
[33] Yan, L.;Han, K.;Pang, B.;Jin, H.;Zhao, X.;Xu, X.;Jiang, C.;Cui, N.;Lu, T., and Shi, J., Surfactin-reinforced gelatin methacrylate hydrogel accelerates diabetic wound healing by regulating the macrophage polarization and promoting angiogenesis. Chem. Eng. J. 2021, 414, 128836.
[34] Zandi, N.;Dolatyar, B.;Lotfi, R.;Shallageh, Y.;Shokrgozar, M. A.;Tamjid, E.;Annabi, N., and Simchi, A., Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomater. 2021, 124, 191-204.
[35] Chen, C.;Tang, J.;Gu, Y.;Liu, L.;Liu, X.;Deng, L.;Martins, C.;Sarmento, B.;Cui, W., and Chen, L., Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Adv. Funct. Mater. 2019, 29, 1806899.
[36] Wang, C.;Wu, T.;Liu, G.;Cheng, R.;Fei, J.;Song, X.;Chai, Y.;Fan, C.;Liu, X.;Cui, W., and Liu, S., Promoting coagulation and activating SMAD3 phosphorylation in wound healing via a dual-release thrombin-hydrogel. Chem. Eng. J. 2020, 397, 125414.
[37] Jiang, J.;Chen, S.;Wang, H.;Carlson, M. A.;Gombart, A. F., and Xie, J., CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 2018, 68, 237-248.
[38] Zhu, X.;Cui, W.;Li, X., and Jin, Y., Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Biomacromolecules 2008, 9, 1795-1801.
[39] Yao, Q.;Cosme, J. G. L.;Xu, T.;Miszuk, J. M.;Picciani, P. H. S.;Fong, H., and Sun, H., Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017, 115, 115-127.
[40] Sun, X.;Lang, Q.;Zhang, H.;Cheng, L.;Zhang, Y.;Pan, G.;Zhao, X.;Yang, H.;Zhang, Y.;Santos, H. A., and Cui, W., Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Adv. Funct. Mater. 2017, 27, 1604617.
[41] Wang, P.;Peng, L.;Lin, J.;Li, Y.;Luo, Q.;Jiang, S.;Tian, H.;Zhang, Y.;Liu, X., and Liu, J., Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chem. Eng. J. 2021, 415, 128901.
[42] Kim, J., and Boutin, M., Deriving Nutrition Information Using Mathematical Estimation: The Example of Phenylalanine in Sweets with Gelatin. J. Acad. Nutr. Diet. 2015, 115, 1384-1386.
[43] Feng, L.;Li, W.;Liu, Y.;Jiang, W.;Kuang, S.;Jiang, J.;Tang, L.;Wu, P.;Tang, W.;Zhang, Y., and Zhou, X., Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules. Fish Shellfish Immun. 2015, 45, 495-509.
[44] Zhao, X.;Sun, X.;Yildirimer, L.;Lang, Q.;Lin, Z. Y. W.;Zheng, R.;Zhang, Y.;Cui, W.;Annabi, N., and Khademhosseini, A., Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66-77.
[45] Saraiva, S. M.;Miguel, S. P.;Ribeiro, M. P.;Coutinho, P., and Correia, I. J., Synthesis and characterization of a photocrosslinkable chitosan–gelatin hydrogel aimed for tissue regeneration. RSC Adv. 2015, 5, 63478-63488.
[46] Zhu, J.;Li, F.;Wang, X.;Yu, J., and Wu, D., Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS Appl. Mater. Inter. 2018, 10, 13304-13316.
[47] Lou, Z., Commentary to “Epidermal growth factor on the healing of human subacute tympanic membrane perforation”. Am. J. Otolaryng. 2020, 41, 102400.
[48] Ying, H.;Zhou, J.;Wang, M.;Su, D.;Ma, Q.;Lv, G., and Chen, J., In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Materials Science and Engineering: C 2019, 101, 487-498.
[49] Guo, X.;Liu, Y.;Bera, H.;Zhang, H.;Chen, Y.;Cun, D.;Foderà, V., and Yang, M., α-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring. ACS Appl. Mater. Inter. 2020, 12, 45702-45713.
[50] Flora, T.;González De Torre, I.;Alonso, M., and Rodríguez-Cabello, J. C., Use of proteolytic sequences with different cleavage kinetics as a way to generate hydrogels with preprogrammed cell-infiltration patterns imparted over their given 3D spatial structure. Biofabrication 2019, 11, 35008.
[51] Desai, R. A.;Gao, L.;Raghavan, S.;Liu, W. F., and Chen, C. S., Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 2009, 122, 905-911.
[52] Vestweber, D., VE-Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology 2008, 28, 223-232.
[53] Huang, M. T.;Mason, J. C.;Birdsey, G. M.;Amsellem, V.;Gerwin, N.;Haskard, D. O.;Ridley, A. J., and Randi, A. M., Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood 2005, 106, 1636-1643.
[54] Sakabe, M.;Fan, J.;Odaka, Y.;Liu, N.;Hassan, A.;Duan, X.;Stump, P.;Byerly, L.;Donaldson, M.;Hao, J.;Fruttiger, M.;Lu, Q. R.;Zheng, Y.;Lang, R. A., and Xin, M., YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proceedings of the National Academy of Sciences 2017, 114, 10918-10923.
[55] Anquetil, T.;Solinhac, R.;Jaffre, A.;Chicanne, G. T.;Viaud, J.;Darcourt, J.;Orset, C.;Geuss, E.;Kleinschnitz, C.;Vanhaesebroeck, B.;Vivien, D.;Hnia, K.;Larrue, V.;Payrastre, B., and Gratacap, M., PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep. 2021, 22, e51299.
[56] Shiekh, P. A.;Singh, A., and Kumar, A., Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials 2020, 249, 120020.
[57] Shi, J.;Ma, X.;Su, Y.;Song, Y.;Tian, Y.;Yuan, S.;Zhang, X.;Yang, D.;Zhang, H.;Shuai, J.;Cui, W.;Ren, F.;Plikus, M. V.;Chen, Y.;Luo, J., and Yu, Z., MiR-31 Mediates Inflammatory Signaling to Promote Re-Epithelialization during Skin Wound Healing. J. Invest. Dermatol. 2018, 138, 2253-2263.
[58] Oda, Y.;Hu, L.;Nguyen, T.;Fong, C.;Zhang, J.;Guo, P., and Bikle, D. D., Vitamin D Receptor Is Required for Proliferation, Migration, and Differentiation of Epidermal Stem Cells and Progeny during Cutaneous Wound Repair. J. Invest. Dermatol. 2018, 138, 2423-2431.
[59] Ranjbar Mohammadi, M.;Kargozar, S.;Bahrami, S. H., and Rabbani, S., An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym. Degrad. Stabil. 2020, 174, 109105.
[60] Silva, I. R. D.;Tiveron, L. C. R. D.;Da Silva, M. V.;Peixoto, A. B.;Carneiro, C. A. X.;Reis, M. A. D.;Furtado, P. C.;Rodrigues, B. R.;Rodrigues, V., and Rodrigues, D. B. R., In Situ Cytokine Expression and Morphometric Evaluation of Total Collagen and Collagens Type I and Type III in Keloid Scars. Mediat. Inflamm. 2017, 2017, 1-11.
[61] Wells, A.;Nuschke, A., and Yates, C. C., Skin tissue repair: Matrix microenvironmental influences. Matrix Biol. 2016, 49, 25-36.
[62] Lai, H.;Kuan, C.;Wu, H.;Tsai, J.;Chen, T.;Hsieh, D., and Wang, T., Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014, 10, 4156-4166.