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Abstract

Background: Majority of ALS cases are sporadic (SALS), as they lack defined genetic causes. Metabolic alterations shared
between the nervous system and skin fibroblasts have emerged in ALS. Recently, we found that a subgroup of sALS
fibroblasts (sALS1) is characterized by metabolic profiles (metabotype) distinct from other sALS cases (sALS2) and
controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside
and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the metabolome and
transcriptome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301.

Methods: Six fibroblast cell lines (3 male and 3 female subjects of similar ages) were used for each group (sALS1, SALS2,
and controls). Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Differential
gene expression (DEGs) and metabolite abundance were assessed by a Wald Test and ANOVA, respectively, with FDR
correction, and pathway analyses were performed. EH301 protection against metabolic stress was tested by thiol
depletion. Weighted gene co-expression network analysis (WGCNA) was used to investigate the association of metabolic
and clinical features and was also performed on the Answer ALS dataset from induced motor neurons (iMN). A machine
learning model based on DEGs was tested as a sALS disease progression predictor.

Results: We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression
differently in sALS1, sALS2, and controls. Furthermore, EH301 had strong protective effects against metabolic stress,
which is linked to anti-inflammatory and antioxidant pathways. WGCNA revealed that ALS functional rating scale and
metabotypes are associated with gene modules enriched for cell cycle, immunity, autophagy, and metabolism terms, which
are modified by EH301. Meta-analysis of publicly available transcriptomics data from iMNs confirmed functional
associations of genes correlated with disease traits. A small subset of genes differentially expressed in sALS fibroblasts
could be used in a machine learning model to predict disease progression.

Conclusions: Multi-omics analyses of patient-derived fibroblasts highlighted differential metabolic and transcriptomic
profiles in SALS metabotypes, which translate into differential responses to the investigational drug EH301.

Background

ALS (amyotrophic lateral sclerosis) is a rapidly progressive neurodegenerative disease involving upper and lower motor
neurons. While only 10%-15% of the total cases are associated with known genetic mutations, most ALS patients have no
familial history and no clear genetic alterations (sporadic ALS, sALS), [1]. While familial ALS-associated mutations are
found in genes involved in several key cellular mechanisms, such as RNA binding, proteostasis, mitochondrial function,
and cytoskeletal organization [2], the pathological mechanisms leading to sALS are still largely unknown. Therefore, there
is a lack of sALS biomarkers and specific therapeutic targets. Although the clinical course in sporadic and familial cases
reaches a generally predictable outcome, variability between patients has been recognized as an important factor in ALS,
whose onset and progression are probably the result of complex interactions between genome, epigenome, and
environment. Moreover, it is plausible that the disease is triggered by a variety of molecular abnormalities, ultimately
converging onto common pathogenic pathways that lead to motor neuron death. Thus, the complexity and heterogeneity
of sALS pathogenesis are probable causes for the failure of numerous clinical trials, so that currently there are only two
approved drugs, Riluzole and Edavarone, which have modest clinical effects. As sALS heterogeneity has become evident,
precision medicine approaches are gaining increasing attention. The ability to stratify ALS patients could inform the
design of more precisely targeted therapeutic approaches and increase the probability of finding effective treatments for
specific groups of patients. Understanding the differences and similarities among sALS patients at the molecular level
could also contribute to the discovery of biomarkers that would improve reliability of trial endpoints and potentially provide
a foundation for patient stratification and early intervention.
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A recurring observation in ALS patients is the dysregulation of energy metabolism, with increased energy consumption and
loss of fat mass, which sometimes even precedes disease onset [3]. In addition, increased glucose metabolism was
described in the central nervous system of ALS patients [4]. Importantly, hypermetabolism in ALS is associated with greater
functional decline and accelerated mortality [5]. Indeed, there is mounting evidence that metabolic alterations in ALS
patients are shared between affected cells of the nervous system and other cell types. Specifically, we reported aberrantly
increased energy metabolism in SALS patient-derived primary skin fibroblasts [6, 7]. Furthermore, our recent work showed
that a subset of sALS fibroblasts is characterized by a distinct metabolic profile, that we defined as “sALS1” metabotype,
which is associated with accelerated transsulfuration pathway for glutathione synthesis and glucose hypermetabolism [8].
The sALS1 metabotype was also identified based on targeted metabolomics in human plasma, indicating a direct
relationship between skin fibroblasts and systemic metabolism [8]. These observations suggest that SALS patients could
be stratified based on metabotypes, which may correspond to different pathogenic mechanisms and susceptibility to
therapeutic interventions targeting specific metabolic alterations.

Energy metabolism alterations are often accompanied by oxidative stress and modification of the redox state of the cell,
which is largely controlled by the levels of nicotinamide adenine dinucleotide (NAD). NAD functions as an electron carrier
in many redox reactions and as a co-substrate for poly (ADP-ribose) polymerase (PARPs), ADP-ribosyl cyclases, and
sirtuins. Therefore, NAD is a crucial element in the coordinated signaling between DNA, proteins, and metabolism [9]. NAD
declines with age [10] and there is evidence of NAD metabolism imbalance in ALS patients and animal models [11].
Boosting NAD availability is considered a viable approach to restore or sustain cell metabolism, and it has been shown to
be protective in in vitro [12] and in vivo ALS models [11]. In particular, the NAD precursor nicotinamide riboside (NR) has
been deemed safe and effective in increasing circulating NAD levels in humans [13].

In addition to boosting NAD levels, another approach to modulate metabolism is through administration of polyphenols, a
class of molecules with known antioxidant properties and protective effects against diseases associated with aging [14].
Pterostilbene (PT) is a polyphenol analog of resveratrol, but with improved bioavailability [15], which was shown to be
protective in animal models of metabolic diseases [16] and neurodegeneration [17].

Recently, it was shown that the combination of NR and PT increases survival and delays motor neuron degeneration in the
SOD1G93A mouse model of familial ALS [18]. Further, the therapeutic potential of a NR and PT combination (EH301) was
suggested by a pilot clinical study, showing slower decline and improved muscle function in a small cohort of ALS patients
[19]. Based on these promising early results, a larger two-dose, randomized, double-blind one-year trial has been initiated
(The NO-ALS Study: A Trial of Nicotinamide Riboside/Pterostilbene Supplement in ALS [20]).

In this study, to better understand the molecular bases of SALS metabotypes and the impact of EH301 on sALS
metabolism, we analyzed the metabolome and transcriptome of fibroblasts from patients with different sALS metabotypes
and control individuals, before and after treatment with EH301. Furthermore, we performed weighted gene co-expression
network analysis (WGCNA) in transcriptomic data from sALS fibroblasts. These analyses identified specific gene modules
that correlated with clinical features and were modified by EH301 treatment. To confirm the fibroblasts results in cell types
affected by the disease, we performed WGCNA in a publicly available transcriptomic dataset from induced motor neurons
(iMNs). Lastly, we performed a proof-of-concept experiment to test the ability of a machine learning model to predict
disease progression based on the expression of a few genes differentially expressed in sALS fibroblasts.

Methods
Cell culture

A total of eighteen primary fibroblasts lines derived from healthy donors or ALS patients (Table 1) were maintained in
culture as previously reported [7]. sALS subclasses (SALS1 and sALS2) were defined based on previously published
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metabolic profiles [8]. For experiments, cells were plated in Dulbecco’s modified Eagle's medium (DMEM) medium
containing 5 mM glucose and 2 mM glutamine, 10% FBS,1% of 100x antibiotic/anti-mycotic (sterile filtered 10,000 units
penicillin, 10 mg streptomycin and 25 pg amphotericin B per mL, and 2.5 pg/ml Plasmocin). Methionine and cystine
depleted DMEM contained 10 mM glucose and 2 mM glutamine, 10% FBS, 1% of 100x antibiotic/anti-mycotic (sterile
filtered 10,000 units penicillin, 10 mg streptomycin and 25 pg amphotericin B per mL, and 2.5 pg/ml Plasmocin). Cells were
assessed at comparable passage number. EH301 was defined as the combination of 1 mM nicotinamide riboside (NR) and
10uM pterostilbene (PT) for the time specified in the text and figure legends.

Characteristics of sALS andT(?:rlw(:rll subjects at time of biopsy.
ID Ageat Sex Disease duration at time of skin ALSFRS-R total Rate of ALSFRS-R FVC
biopsy biopsy (months) at biopsy decline* %
Control 1 62 F
2 63 M
3 53 F
4 79 M
5 60 F
6 73 M
SALS1 7 67 F 24 34 0.58 97
8 73 M 10 24 2.4 38
9 67 F 14 35 0.93 78
10 64 M 24 38 0.42 55
11 66 F 5 40 1.6 118
12 56 M 34 39 0.26 81
SALS2 13 72 M 12 39 0.75 105
14 73 F 6 39 1.5 59
15 66 F 11 43 0.45 102
16 68 M 32 32 0.5 78
17 69 F 15 29 1.27 96
18 55 M 10 33 1.5 116
* % Calculated as ((48 - ALSFRS at Skin BX) / Disease Duration at Skin BX)

RNAseq and Quantitative Expression Analysis

500ng of total RNA extracted with TRIzol (Invitrogen) were used by the Weill Cornell Genomics Resources Core Facility to
prepare 3'RNAseq libraries using the Lexogen QuantSeq 3 mRNA-Seq Library Prep Kit FWD for lllumina. The libraries were
quantified on a Molecular Devices Spectra Max M2 plate reader (with the intercalating dye QuantiFluor) and pooled
accordingly for maximum evenness. The pool was quantified by digital PCR and sequenced on 1 lane of an lllumina
NextSeq500 sequencer, single end 1x86bp, and de-multiplexed based upon six base i7 indices using lllumina bcl2fastq2
software (version 2.18; lllumina, Inc., San Diego, CA).
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lllumina adapters were removed from the de-multiplexed fastq files using Trimmomatic version 0.36 [21]. The trimmed
reads were aligned to the human genome assembly GRCh38.p13 using the STAR aligner version 2.7.0f [22]. The output
SAM files were converted to BAM using SAMtools version 1.8 [23], and the number of reads overlapping each gene in the
gff3 file on the forward strand were counted using HTSeg-count version 0.6.1 [24]. The R package DESeq2 version 1.24.0
[25] was used to obtain both normalized and variance stabilized counts and to identify genes that were differentially
expressed between controls and sALS lines. Genes with less than 10 total raw reads were filtered out before running the
DESeg2 model, and all other filtering parameters were kept as DESeq2’s defaults. Pathway analysis was performed with
the free web tool WebGestalt [26] and the gprofiler2 package [27], and the cutoff for significance was a FDR corrected p-
value < 0.05.

Metabolomics

Targeted metabolomics was performed by the Proteomics and Metabolomics Core Facility at Weill Cornell Medicine in New
York. Metabolites were rapidly extracted in 80% ice-cold methanol; samples were cleared by centrifugation at 14,000 x g for
20 min at 4°C and stored at -80°C until analysis. Total protein was used for normalization, and relative abundance data
were normalized with a log transformation and analyzed with the free online tool MetaboAnalyst 5.0 [28].

Cell viability

To measure viability, cells were plated in methionine and cystine depleted medium on 96 well glass bottom plates (Cellvis).
After 72h, cells were stained with HOECHST 33342 (Invitrogen), Calcein AM (Invitrogen), Propidium lodide (Invitrogen) for
30 minutes at 37C. Fluorescence was acquired with the ImageXpress Pico Automated Imaging System. Viability threshold
was determined by a combination of calcein and propidium iodide signals as previously reported [29].

Weighted gene co-expression network analysis (WGCNA)

WGCNA has been previously described [30, 31]. In brief, we used normalized gene expression data from DESEQ2 as input
for the functions included in the WGCNA package available from CRAN. iMN data was additionally normalized to remove
batch effects using the limma:removeBatchEffect() function [32]. We generated a topological overlap matrix (TOM) based
on expression values from 17,662 genes in the fibroblast dataset and 22,663 genes in the iMN dataset and identified
modules using a dynamic tree cutting algorithm based on hierarchical clustering of TOM dissimilarity values. After
optimization to maintain scale-free topology, we set the ideal soft power threshold value at 4 for the vehicle network, 20 for
the EH301 network, and 8 for the iMN network. To allow for direct comparisons between the vehicle and EH301 networks,
Q-Q scaling was performed such that the 95% quantiles of both matrices matched. For all networks the module merging
parameter was kept consistent at 80%. Pairwise Pearson’s correlations were used to calculate associations between
modules and disease traits. Pathway analysis was done in the same way as described for RNAseq. Hierarchical clustering
of ALSFRS-R and gene expression was done using the dendextend package [33]. Correlation between dendograms was
calculated using Baker's gamma index, and significance was determined using a permutation test [34]. Logistic regression
using the glm() function was used to calculate a model predicting ALSFRS-R progression. To evaluate model performance,
we used a ten-fold cross validation approach, in which we randomly divided samples into ten sets. In each iteration, one
set was used as the test data and the model was trained on the remaining 9 sets. Model performance was evaluated by
calculating precision, accuracy, false positive rate, and false negative rate with the caret package [35], and with receiver
operating characteristic analysis done with the ROCR package [36].

Statistical analyses
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A Wald test was used to determine statistical significance of differential gene expression, with the cutoff being a False
Discovery Rate of < 5% after Benjamini-Hochberg correction. Significance for differential metabolite abundance was
determined with one-way ANOVA with post-hoc t-tests, with the cutoff being a False Discovery Rate of < 5% after
Benjamini-Hochberg correction. All data visualization was done in R using the ggplot2, pheatmap, corrplot, and
venndiagram packages available from CRAN. Z scores were calculated from normalized counts for each gene using the
standard formula (x-p)/o, where x is the sample value, p is the population mean, and o is the population standard
deviation.

Results

Transcriptomic analysis reveals higher number of DEGs in SALS1 than sALS2 fibroblasts and different transcriptional
responses to EH301

To characterize gene expression profiles of SALS subgroups we performed 3'RNAseq analysis on fibroblast lines from
control, sALS1, and sALS2 subjects (n=6 per group). In sALS1, 281 genes were differentially expressed (DEGs, padj. <0.05)
relative to controls (Supplementary Table 1), while only one gene reached statistical significance in the comparison
between sALS2 and controls (Fig. 1A, Supplementary Table 2). Interestingly, several genes relevant to neuronal function
and development were differentially expressed in sALS1. For example, stathmin 2 (STMN2) was downregulated in sALS1
by ~80%. STMN2 has been linked to TDP-43 dysfunction [37] and a novel STMN2 genetic variant has been associated
with ALS risk, onset, and progression [38]. Furthermore, the most upregulated gene in sALS1 was an antisense RNA for
kinesin family member 5C (KIF5C-AS1). KIF5C is highly expressed in the brain and enriched in motor neurons [39], where it
regulates axonal transport [40], and alterations of KIF5C are associated with intellectual disabilities and cortical
development malformations [41, 42]. In addition, YIF1A, which was upregulated in sALS1, interacts with the ALS8 related
protein VAPB [43] involved in neuronal ER-Golgi interactions [44]. HIST1HA4C, a replication-dependent component of the
nucleosome, was among the top downregulated genes in sSALS1. Mutations affecting lysine 91 in HIST1H4C have been
associated with a syndrome characterized by developmental anomalies and intellectual disabilities, indicating the
importance of chromatin organization for the correct development and function of the nervous system [45]. SOX9, a
transcription factor that controls several aspects of neurodevelopment [46] and is highly expressed in astrocytes and
neural progenitor cells [47], was downregulated in SALS1. SYNE2 (nesprin), involved in organellar subcellular organization
[48] and associated with muscular dystrophy [49], was also downregulated in sALS1. The only gene significantly
upregulated in SALS2 compared to controls was MRE11, which encodes a double-strand break repair protein implicated in
DNA damage response [50].

In addition to examining individual genes expression, we performed pathway analysis by Webgestalt [26] of biological
processes and molecular function of sALS1 DEGs, which revealed that upregulated genes are involved in vesicular and
protein transport and in extracellular matrix organization (Fig. 1B, Supplementary Table 3). Among the downregulated
genes, the most enriched pathways in sALS1 were linked to cell cycle progression and cytoskeletal function (Fig. 1B).

Next, we evaluated the effects of EH301 on fibroblast transcriptomic profiles. Cells were exposed to EH301 (NR TmM, PT
10uM) for 48 hours prior to RNA extraction. Interestingly, we found that EH301 affected a larger number of genes in sALS1
and sALS2 fibroblasts compared to controls (233 genes in SALS1, 202 genes in sALS2, 77 genes in controls), with little
overlap between groups (Fig. 1C, Supplementary Tables 4-6). In control fibroblasts, pathway analysis of DEGs between
vehicle and EH301 treated cells indicated that EH301 modified the expression of genes involved in mRNA processing

(Fig. 1D, Supplementary Tables 7-9). For example, SYNCRIP a ribonucleoprotein involved in RNA stabilization and editing,
which has been associated with intellectual disabilities [51-53], was downregulated by EH301. CWC22 and CWC27, which
cooperate during spliceosome assembly and are linked to developmental defects [54], were also downregulated in control
fibroblasts by EH301. In sALS1 fibroblasts, EH301 influenced downstream steps of protein biosynthesis, by modifying the
expression of genes involved in ribosome organization, translation initiation, and protein localization (Fig. 1D). Several

Page 6/27



genes encoding ribosomal proteins, components of the 60S and the 40S subunits, were upregulated. Furthermore, two
elements of the eukaryotic initiation factor 3 complex were differentially expressed after treatment. EIF3F, a positive
regulator of NOTCH signaling [55], was upregulated. Conversely, EIF3J, involved in the recognition of starting codons [56]
and in ribosome recycling [57], was downregulated. SEC11A, which mediates import of nascent protein into the ER [58],
was upregulated, while KDELR3, mediating protein trafficking from Golgi to ER and involved in stress response [59], was
downregulated by EH301. BCAP31, a chaperone abundant in the ER and involved in transmembrane protein export [60, 61]
and in the assembly of mitochondrial Complex | [62], was upregulated. Both KDELR3 and BCAP31 have been associated
with pathologies of the nervous system [63, 64]. Of note, treatment with EH301 normalized YIF1A expression in SALST,
while STMN2 and KIF5C-AS1expression remained altered. Surprisingly, no pathway was found to be significantly enriched
in SALS2 fibroblasts, even though the expression of 187 genes was altered by EH301 in this group.

In summary, RNAseq in human primary fibroblasts confirmed that, based on the number of DEGs, SALS1 samples are more
distinct from controls than sALS2 and that genes involved in neurodevelopment and neuronal function are differentially
regulated in sALS1 fibroblasts. Moreover, pathway analysis indicates that EH301 affects sALS1, sALS2, and control
fibroblast gene expression differently, mostly affecting mRNA splicing and stability in controls and protein biosynthesis
and localization in sALS1, while no specific pathways were identified in EH301 treated SALS2.

The metabolite profiles of sALS and control fibroblasts are modified by EH301

Next, we investigated how treatment with EH301 affects the metabolite profiles of sALS1, sALS2, and control fibroblasts.
We performed targeted metabolomics in the same cell lines (n=6 per group) used for transcriptomics, in the same cell
culture conditions. Following exclusion of low abundance hits, 166 metabolites were used for analysis. Metabolomics
profiles showed that SALS1 had reduced cystathionine and increased betaine compared to controls (Supplementary Tables
10-12), corroborating previously reported differences in the transsulfuration pathway [8]. Cystathionine levels were
unchanged in EH301 treated sALS1 but decreased in both control and sALS?2 fibroblasts (Fig. 2A). Oxidized glutathione
was increased after treatment in controls, but unchanged in SALS1 and sALS2 fibroblasts (Fig. 2A). Together, these results
indicate that EH301 modulates the transsulfuration pathway, but does not correct the alterations observed in SALS1. As
expected, metabolic pathway analysis showed that EH301 modifies metabolites of the nicotinate and nicotinamide
pathway in all groups, increasing availability of NAD precursors and NAD (Fig. 2A, B). EH301 treated sALS2 also showed
decreased fumarate and malate compared to vehicle treated cells, suggesting that NAD derived from NR accelerates the
TCA cycle (Fig. 2A). D-glyceraldehyde-3-phosphate was significantly increased at baseline in sALS2 compared to controls
and was normalized by EH301 (Fig. 2A), pointing to accelerated flux of NAD-dependent reactions in EH301 treated sALS2
cells. Riboflavin, the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), was decreased at
baseline in both sALS1 and sALS2 fibroblasts and returned to control levels after treatment with EH301 (Fig. 2A). The
pentose phosphate pathway was also affected by EH3101 in control, sALS1, and sALS2 fibroblasts, with increased
concentration of ribose and phosphorylated ribose in treated cells (Fig. 2A, B). Pyrimidine metabolism was modified by
EH301 only in sALS1 and sALS2 fibroblasts, while controls were not affected (Fig. 2A, B). Purine metabolism, which was
reported to be altered in SALS1 at baseline [8], was affected by EH301 in control and sALS1 cells (Fig. 2A, B). Interestingly,
EH301 increased 1-methyladenosine in all groups. 1-methyladenosine is a S-adenosylmethionine (SAM)-dependent
modification of RNA regulating mRNA localization, stability, translation, and splicing [65]. 1-Methyladenosine also
responds to stress, decreasing upon glucose or amino acid starvation and increasing after heath shock [65]. 1-
Methyladenosine can also modify tRNA, regulating its stability and folding [66] and is found in mtDNA-encoded transcripts
[67]. Thus, some of EH301 effects on transcription and metabolism could be mediated by regulation of SAM-dependent
epigenetics marks on RNA.

The alanine, aspartate, and glutamate metabolic pathways were globally altered by EH307 in sALS1 and sALS?2 fibroblasts
(Fig. 2A, B). Specifically, glutamate was decreased at baseline in sALS1, but not in SALS2, compared to controls (Fig. 2A,
B). This selective glutamate decrease in sALS1 could be due to increased extrusion of glutamate in exchange for cystine
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by the SLC7A11 transporter, which was shown to be upregulated in sALS1 fibroblasts [8]. EH301 decreased glutamate
levels in all groups, a potentially disease-relevant effect, since extracellular glutamate homeostasis is known to be
dysregulated in ALS [68].

EH301 strongly protects fibroblasts from cell death induced by thiol group depletion

Although EH301 did not correct the characteristic unbalances of transsulfuration metabolites in sALS1, we investigated if
increased NAD availability and modification of amino acids metabolism by EH301 could improve cell viability under
metabolic stress induced by methionine and cystine deprivation. To this end, we cultured cells for 72h in methionine and
cystine depleted medium, in the presence or absence of EH301 or its individual components (NR or PT). Depletion of
methionine and cystine caused similar levels of cell death in all groups (Fig. 2C, D). Interestingly, addition of NR alone was
effective in protecting sALS1 fibroblasts from cell death, while the viability of SALS2 and controls was not improved

(Fig. 2C, D). Treatment with PT alone was sufficient to prevent cell death in all groups (Fig. 2C, D). The combination of NR
and PT (EH301) had comparable effects to PT alone. These results further indicate that the metabolic alterations of sALS1
are different than sALS2 and potentially more responsive to nicotinamide derivatives. They also indicate that PT is the
most potent compound in protecting cells from the profound redox stress deriving from thiol group depletion.

Transcriptomic analysis performed on control cells exposed to medium depleted of methionine and cystine showed that
treatment with EH301 reduces expression of genes involved in inflammation and apoptosis (Fig. 2E, F, Supplementary
Tables 13-14). Of note, the expression of the stress response factor ATF3 was downregulated by EH301, while the levels of
ATF5, which promotes expression of chaperones and pro-survival factors [69], was increased (Fig. 2E). Members of the
kinesin family and TP53 were among the genes upregulated by EH301 in fibroblasts grown in absence of methionine and
cystine. PMRT1 and PRMT2, regulating DNA damage response and other signaling pathways through SAM-dependent
arginine methylation, were also increased by EH301. On the other hand, interleukins (CXCL1, CXCL2, CXCL3, CXCLS5,
CXCL6, CXCL8) were downregulated by the treatment. The transcripts of SOD2 and different metallothionein isoforms
were reduced in fibroblasts treated with EH301 compared to vehicle, further indicating that EH301 acts through antioxidant
and anti-inflammatory mechanisms, which prevent the need for upregulation of free radical scavengers and stress
response genes under thiol-depleted conditions.

Weighted gene co-expression network analysis highlights associations between fibroblast transcriptional profiles and ALS
clinical traits, which are altered by EH301 treatment

Weighted gene co-expression network analysis (WGCNA) is a powerful unbiased method for analysis of transcriptome-
wide changes due to disease state [30, 70]. WGCNA differs from more traditional differential gene expression analysis
methods, because it considers groups of genes with highly similar expression patterns across samples as part of a set of
interconnected modules, rather than considering genes as single entities. This type of analysis increases the statistical
power available to identify significant associations with phenotypic traits by minimizing noise. It may also provide more
comprehensive information on complex biological processes [71].

To apply the WGCNA framework to our fibroblast gene expression dataset, we first constructed a co-expression matrix
using normalized expression data for 17,662 genes. For this analysis we included all the vehicle-treated lines except one
sALS1 that was identified as an outlier, based on its extreme distance from all other samples in hierarchical clustering (Fig.
S1). We applied the same method to construct a matrix using all the EH301-treated samples. The WGCNA framework uses
this matrix as input for hierarchical clustering to group highly co-expressed genes into modules. We identified 25 such
modules in the vehicle network and 90 in the EH301 network (Fig. 3A, B). We next correlated module gene expression with
6 disease traits (disease status - ALS or control -, disease subgroup - sALS1 or sALS?2 -, disease duration, ALSFRS-R, rate of
ALSFRS-R decline, and forced vital capacity - FVC%), as well as sex and age. Disease duration, ALSFRS-R, rate of decline,
and FVC% are all relevant markers of ALS severity, which were significantly correlated with each other, as expected (Fig.
S2). We found no significant correlations between age and any of the disease traits or the first ten principal components,
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which cumulatively explain over half of the total variance in the dataset, derived from gene expression in either vehicle or
EH301 samples, suggesting that age does not significantly contribute to the variance in gene expression in our data. Sex
significantly correlated with vehicle PC9 and EH301 PC1 and PC9 but did not correlate with any of the disease traits (Fig.
S2). Nevertheless, we opted to include sex and age in our analysis, as they are potential biologically relevant variables in
ALS. In the vehicle network, 10 modules (40%) were significantly associated with one or more traits (Fig. 3C), while in the
EH301 network, 38 modules (44%) had significant associations with one or more traits (Fig. 3D).

We then performed GO pathway analyses using the GO: Biological Process (GO:BP), GO: Molecular Function (GO:MF), and
KEGG databases on the significantly associated modules and found that in the vehicle network 6/10 modules (Table 2)
had a significant enrichment for one or more pathways, while in the EH301 network 23/38 modules (Table 3) had a
significant enrichment for one or more pathways. The module significantly associated with the largest number of traits in
the vehicle network was the Greenyellow, which associated with disease status, disease duration, ALSFRS-R score, and
nearly reached significant association (p=0.06) for FVC%. GO analysis showed that the set of genes comprising the
Greenyellow module were functionally enriched for genes involved in cell cycle, chromatin modifications, and DNA damage
repair (Fig. 4A). The Turquoise module significantly associated with FVC%, and neared significance for association with
disease metabotype, ALSFRS-R score, and rate of decline. Genes belonging to the Turquoise module were functionally
enriched for pathways related to DNA damage repair, autophagy and protein catabolism, cell cycle, innate immunity, and
mitochondrial function (Fig. 4B). Interestingly, the Turquoise module was also significantly enriched for genes annotated
by the KEGG database as important for ALS pathogenesis (KEGG hsa05014). Finally, the Salmon module, which
significantly associated with disease metabotype, contained genes belonging to pathways related to autophagy and
protein catabolism (Fig. 4C). Clustering of module eigengene expression revealed that the Salmon, Turquoise, and
Greenyellow modules had highly dissimilar expression patterns from each other (Fig. S3). Furthermore, when comparing
the GO terms enriched in these three modules, we found minimal overlap in terms enriched in the Greenyellow and Salmon
modules (Fig. 4D), suggesting that the genes comprising them have mostly distinct functions. Although the Turquoise
module has GO terms showing an over 50% overlap with those found in the Salmon and Greenyellow modules, it also has
over 1000 unique GO terms, indicating that it contains genes that have functional annotations not represented in either of
the other two modules. Thus, based on their eigengene expression and GO enrichment, the three modules identified in the
vehicle network are non-redundant.

Vehicle network modules with a sign-li—gc?;tztrait association and GO annotation
ALSvsCTL sALS1vssALS2 DiseaseDuration ALSFRS-R Rate of Decline FVC% Age Sex
Greenyellow  Salmon Greenyellow Greenyellow Turquoise  Brown
Darkred
Orange
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Table 3

EH301 network modules with a significant trait association and GO annotation

ALS sALS1vs Disease ALSFRS-R Rate of Decline = FVC% Age Sex
Vs sALS2 Duration
CTL
Brown  White Lightpink2  Darkviolet  Darkviolet Red Tan3 Salmon1
Indianred1  Skyblue Red Red Salmon1  Lavenderblush3  Navajowhite2
Brown Sienna4 Magenta4 Slateblue  Darkred Slateblue
Firebrick Salmon1 Mediumpurplel Magenta4
Slateblue  Lavenderblush3 Mediumpurplel
Brown Lightskyblue4 Darkorange
Magenta4 Mediumorchid4
Magenta3

In the EH301 network, four modules were associated with at least three traits. The Brown module was associated with
disease status, disease metabotype, and ALSFRS-R and included genes enriched for cell cycle, chromatin modifications,
DNA damage repair, nucleic acid metabolism, and transcriptional activity GO terms (Fig. 4E). The Red module associated
with ALSFRS-R, rate of decline, and FVC% and included genes enriched for chemotaxis, antigen processing, and immunity
(Fig. 4F). The Slateblue module was associated with ALSFRS-R, FVC%, and sex and included genes enriched for RNA stem-
loop and scaffold protein binding (not shown). Lastly, the Magenta4 module was associated with ALSFRS-R, rate of
decline, and sex and included genes enriched for Fanconi anemia pathway, a pathway activated by DNA damage (not
shown). Clustering of module eigengene expression revealed that Brown, Slateblue, and Magenta4 cluster together, while
Red does not (Fig. S3). There was minimal overlap in GO enrichment terms among the four modules in the EH301 network
that associate with traits (Fig. 4G). This indicates that, while the gene expression signatures of three of the four trait-
associated modules in the EH301 network are similar, all four modules are functionally distinct.

Comparing the vehicle and EH301 networks revealed a striking difference, as the EH301 network included nearly four times
the number of modules observed in vehicle treated cells. However, the intramodular connectivity was comparable between
the two networks (Table 4), indicating that modules are clustered with a similar robustness in both networks. On the other
hand, the total average connectivity and extramodular connectivity were significantly higher in the EH301 network (Table
S4). This indicates that individual modules are more highly connected to each other in the EH301 than in the vehicle
network. Modules from the two networks were compared based on their components using Fisher's exact test, and
modules were paired if p < 0.05. This analysis revealed that 22/25 vehicle modules have a corresponding module in the
EH301 network (Fig. S4). Of these 22 pairs, four significantly associated with only one common trait, while the Greenyellow
and Brown pair associated with two traits common to both (disease status and ALSFRS-R). When the GO terms from all
modules that significantly associated with a trait in both networks were compared, most terms associated with disease
status in the Greenyellow vehicle module were also found in the Brown EH301 module (Fig. 5A), and were related to cell
cycle and DNA replication (Fig. 4). This suggests that the genes that correlate with disease status likely share similar
functions, regardless of treatment with EH301, but the latter introduces new associations with genes annotated with
different functions, including nucleic acid metabolism and transcriptional regulation (Fig. 5A and Fig. 4E). However, for
other traits including disease metabotype (Fig. 5B), disease duration (Fig. 5C), and FVC% (Fig. 5E), the overlap between GO
terms from the vehicle and EH301 networks was small or absent. GO terms differing between sALS1 and sALS2 in vehicle
conditions were related to autophagy and protein catabolism (Fig. 4C), while GO terms after EH301 treatment were related
to glycolysis, extracellular matrix organization, cell cycle, and transcription (Supplementary Table 15). Vehicle modules
associated with disease duration were enriched for terms related to cell cycle and DNA damage repair, while EH301
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modules were enriched for terms related to cell adhesion, membrane polarization, and cation homeostasis (Fig. 4A and
Supplementary Table 15). The Turquoise vehicle module associated with FVC% was enriched for terms related to
mitochondrial function, innate immunity, cell cycle, and autophagy (Fig. 4B), while the EH301 modules associated with
FVC% were enriched for terms including MHC complex assembly and antigen presentation (Fig. 4F) and cell cycle (Fig. 4E,
and Supplementary Table 15). This suggests that EH301 modifies gene sets associated with disease traits, and that these
genes regulate more diverse functions than those from the vehicle network. Similar to disease status (sALS or control),
there was a substantial overlap in GO terms between the Greenyellow vehicle module and Brown EH301 module
associated with ALSFRS-R (Fig. 5D), but there were also several modules from the EH301 network with no GO overlap with
vehicle modules. These were enriched for terms including sugar alcohol metabolism, RNA and protein binding, MHC
complex assembly, and cell adhesion and motility (Supplementary Table 15). Overall, comparison of the two networks
revealed conservation of most of the vehicle modules after EH301 treatment, including the functionally similar
Greenyellow/Brown pair that associated with disease status and ALSFRS-R. However, a large disparity was found in the
functional annotation of the other modules associated with clinical traits in the two networks, indicating that EH301
modulates the expression of gene sets that are significantly correlated with various clinical traits.

Table 4
Vehicle and EH301 network structure comparison parameters
Parameter Vehicle Network Average  EH301 Network Average  P-value
Total Connectivity 184.45 243.75 2.04e118
Intramodular Connectivity ~ 140.0 144.0 0.18
Extramodular connectivity  44.0 100.0 0.00

To investigate the transcriptional regulation underlying the effects of disease and EH301 treatment on gene expression, we
performed a transcription factor (TF) binding site enrichment analysis on all genes in modules significantly associated
with disease traits in both networks. The TF binding sites most enriched in genes associated with disease in both vehicle
and EH301 modules were those of the E2F and the Sp families of TFs (Supplementary Table 16). Importantly, enrichment
of binding sites of several TFs was found only in disease-associated modules of the EH301 network, indicating that these
transcriptional effects are EH301-specific (Supplementary Table 16). These TFs have also been associated with ALS in
patients or model systems and include AP-2, FOXO1A [72], SREBP1 [73], MTF-1 [74, 75], and RARB [76].

Lastly, we aimed to identify “hub” genes from important modules, or genes that drive the expression profile of each
module, while also correlating significantly with disease traits. Hub genes may be useful as biomarkers for potential
classification of patients based on their clinical characteristics and disease severity. For each gene we calculated a
significance score, denoting how strongly that gene associates with a trait, and a module membership score, denoting how
closely that gene's expression pattern matches the average module eigengene expression, or how strongly that gene
“belongs” to that module [30]. We identified the most inter-connected genes in each module using connection strengths
calculated from the topological overlap matrix and visualized with VisANT [77]. For each of the relevant modules in the
vehicle network (Fig. S5) and the EH301 network (Fig. S6), we selected the 50 most significant genes for each associated
trait, as well as the top 50 most strongly connected genes within the associated module. To illustrate the potential
application of this analysis to discover disease biomarkers, we chose five genes from the Greenyellow vehicle module that
were significantly associated with ALSFRS-R. To this end, genes were ranked in order of significance for correlation with
ALSFRS-R and chosen if they 1) were part of the network hub identified by VisANT and 2) were identified as differentially
expressed in the sALS1 vs CTL comparison in vehicle samples. Expression patterns of these five genes (DIRAS3, GTSET,
RRM2, CDCA5, and HJURP) showed clear differences between control and sALS1 samples, and to a lesser extent between
control and sALS2 (Fig. 6A). We next examined if the expression of these genes could be used to group samples based on
their ALSFRS-R score. Dendograms were constructed from hierarchical clustering first of ALSFRS-R score and then of
average expression of the five genes, for vehicle-treated samples (Fig. 6B, left) and EH301-treated samples (Fig. 6B, right).

Page 11/27



In both vehicle and EH301 treated fibroblasts, clustering based on ALSFRS-R significantly matched the clustering based on
gene expression, indicating that expression of these five selected genes can be used to group samples based on their
ALSFRS-R scores.

WGCNA of transcriptomic data from ALS iMNs supports and extends fibroblast results

To extend the WGCNA analysis to a cell type affected by the disease, we utilized transcriptomic and clinical data from 124
(99 ALS and 25 control) iMN lines obtained by the Answer ALS project (https://www.answerals.org/). We constructed a
new network (Fig. 7A) using expression data from the 22,653 genes that passed quality control filters and identified 38
modules. We next calculated associations between modules and six traits (disease status, baseline ALSFRS-R, most recent
ALSFRS-R, ALSFRS-R progression slope, age, and sex) and found 23 modules (60%) with a significant association with
one or more traits (Fig. 7B). GO analysis revealed that 20/23 modules had significant enrichment for one or more GO:MF,
GO:BPR, and/or KEGG pathways (Table 5). Of these, Blue, Magenta, and Tan associated with both disease status and one or
more measures of ALSFRS-R. Genes in both the Blue and Tan modules were functionally enriched for terms associated
with nucleotide metabolism and several types of protein modifications, and Tan module genes were also enriched for
terms involved in the mitochondrial electron transport chain (Fig. 7C, D). Genes in the Magenta module were enriched for
pathways related to signal transduction through G-protein coupled receptors (Fig. S7).

iMN network modules with a signigsabliitsrait association and GO annotation
ALS ALSFRS-R Baseline ALSFRS-R Latest ALSFRS-R Progression Age Sex
Blue Cyan Magenta Blue Honeydew1 Bisque4
Magenta Tan Magenta Darkgrey
Tan Lightgreen Tan Bisque4
Maroon Yellowgreen
Yellowgreen Lightpink4
Cyan Coral1
Lightpink4 Darkred
Darkgreen Sienna3
Orangered4 Black
Lightyellow Purple
Turquoise

Next, we evaluated which modules in the iMN network contained genes from the Greenyellow module in the vehicle-treated
fibroblast network. We found that the majority of the Greenyellow genes were found in the Purple and Turquoise modules
in the iIMN network, both of which significantly associate with ALSFRS-R progression slope. Accordingly, GO analysis
revealed that both Purple and Turquoise genes were enriched for pathways related to cell cycle and development, similar to
the pathways identified in the fibroblast Greenyellow module (Fig. 7F-G, Supplementary Table 15). We then evaluated
whether the genes associated with traits in the vehicle fibroblast network had similar functional GO annotations to the
genes associated with the same traits in the iIMN network. There was little overlap in GO enrichment between modules
associated with disease status in the fibroblast and iMN networks (Fig. 7H). However, for all traits related to ALSFRS-R,

there was a large overlap in the GO terms identified in each network, with approximately 2/3 of the GO terms associated
with ALSFRS-R in the fibroblast network also associating with one or more of the ALSFRS-R measures in the iMN network
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(Fig. 71). Therefore, genes related to ALSFRS-R, a measure of disease severity, share similar functions, including cell cycle
and nucleic acid metabolism, in fibroblasts and iMNs.

Finally, to provide initial proof of concept of the potential predictive value of the five genes related to ALSFRS-R
progression in fibroblasts (DIRAS3, GTSE1, RRM2, CDCA5, and HJURP), we used multinomial logistic regression to classify
ALS iMN samples based on the expression of these genes. We used a ten-fold cross validation approach, in which we
randomly divided the 62 ALS samples with available ALSFRS-R progression slopes into ten sets. In each iteration, one set
was used as the test data and the model was trained on the remaining 9 sets. We arbitrarily defined cases as “fast
progressors” if their ALSFRS-R progression slope values were one standard deviation or more below the mean. Using this
method, we obtained an average accuracy of 78.9% (95% Cl 66.0% - 91.6%), precision of 80.1% (95% Cl 67.6% - 92.6%),
false positive rate of 1.4% (95% Cl -1.4% - 4.2%), and false negative rate of 17.0% (95% Cl 6.3% - 28.0%), indicating good
specificity and fair sensitivity. We then computed receiver operating characteristic (ROC) curves for six of the ten iterations
(four iterations were unusable due to the absence of any fast progressors in the test set) and obtained an average area
under the curve (AUC) value of 0.767 (95% CI 0.651 - 0.883) (Fig. 7J). This approach represents an example of how genes
associated with ALSFRS-R in fibroblasts could be utilized to discriminate patients with fast disease progression relative to
all other ALS cases in disease-relevant iMNs.

Discussion

Numerous lines of evidence suggest that metabolic alterations in ALS patients are related to both pathogenesis and
prognosis [3-5]. Therefore, metabolism could be a viable therapeutic target for the disease. However, the biochemical and
molecular underpinnings of metabolic dysregulation remain largely unknown, especially in sALS, hindering the
development of effective targeted approaches to correct them. The mechanisms leading to metabolic dysregulation can
differ in sALS metabotypes, resulting in different sets of biomarkers and susceptibility to the effects of treatments. Efforts
have been made to use biofluids to identify metabolic biomarkers for stratification of sALS patients [6, 7, 78], but high
variability associated with environmental factors can be challenging. An alternative approach to using biofluids for
unbiased -omics studies is to obtain cells from patients and investigate their metabolism under homogeneous conditions
to identify specific markers indicative of sALS metabotypes that can then be validated and in patients and used in clinical
settings. Our studies have utilized primary skin fibroblasts from sALS patients to first identify a hypermetabolic phenotype
relative to healthy controls [6, 7] and, more recently, to define a subtype of sALS (sALS1) metabolically characterized by
enhanced transsulfuration metabolism, which was then confirmed in patient plasma [8]. This finding raised the possibility
that sALS1 cases are differentially responsive to therapies that modulate cellular metabolism. The NR and PT combination
drug EH301 [19] is one of these therapies, as it is designed to elevate NAD levels and activate sirtuins. EH301 was
successful in a pilot ALS clinical trial [19], and is currently being investigated in a larger phase 3 clinical study. However, the
metabolic effects of EH301 in different subtypes of SALS patients are still unknown.

In this study, we took advantage of a set of sALS patient-derived fibroblasts with defined metabotype (i.e., sALS1 and
sALS2) and controls, based on previous published work [8]. In these groups of cell lines, we performed in-depth
transcriptomic and targeted metabolomic analyses to further elucidate profiles that characterize the subtypes and to
assess how EH301 treatment affects gene expression and metabolism in the different metabotypes. We identified striking
differences in the number of DEGs, relative to control cells, between untreated sALS1 and sALS2 lines (281 vs. 1), and in
the response to EH301, whereby only approximately 5% of the genes modified by the drug were in common between sALS1
and sALS2. Notably, EH301 affected a much smaller number of genes in control lines compared to both sALS groups (77
vs. >200), further indicating group-specific responses to the drug. In addition to the expected increase of NAD and its
precursors, targeted metabolomics revealed that EH301 affected nucleotide metabolism in all groups, and amino acid
metabolism in both sALS groups. Cysteine and methionine metabolism was only affected in sSALS2, suggesting that the
intrinsic transsulfuration alterations of sALS1 lines are not corrected, possibly because the effect of EH301 drives
metabolism in a similar direction as the adaptive mechanisms that naturally take place in sALS1. EH301 had a potent
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protective effect against metabolic stress induced by thiol group deprivation in all groups, and this effect was largely
mediated by PT, because NR alone had a moderate effect only in sALS1. This result supports efficacy of EH301 in
antagonizing the deleterious effects of cellular stress, but do not indicate metabotype specificity of PT. However, it needs to
be noted that the stress paradigm we used is very severe and using cell death as readout may not allow for detection of
more subtle phenotypic differences.

To complement and extend the differential gene expression analysis we used WGCNA, which allows association of gene
expression modules with several phenotypic variables, such as clinical parameters or other indices of pathology. This
approach may provide more sensitivity to detect differences in disease characteristics among patients than traditional
grouped pairwise-comparison approaches [71]. WGCNA has been recently used to identify new risk genes and putative
drug targets associated with major neurodegenerative diseases [79-81]. We used WGCNA to construct networks for
vehicle- and EH301-treated samples and identified several modules in each network that significantly associated with
disease and/or measures of disease severity. In both networks, genes belonging to modules associated with disease and
ALSFRS-R were highly enriched for pathways related to the cell cycle, DNA damage repair, and nucleic acid metabolism. TF
binding site analysis of disease-associated genes in both networks revealed enrichment of E2F and Sp family TF binding
sites. TFs in the E2F family are essential regulators of the cell cycle and apoptosis and have been involved in the response
to DNA damage in cultured neurons [82, 83]. E2F1 has been shown to have upregulated expression correlated with markers
of aberrant cell cycle re-entry in postmortem spinal cord and motor cortex samples from ALS patients [84, 85]. Interestingly,
in addition to its canonical role regulating the cell cycle, E2F1 is also important for controlling several aspects of global
metabolic homeostasis [86]. Sp family transcription factors have been demonstrated to be key for modulating apoptosis in
cultured neurons undergoing oxidative stress caused by glutathione depletion, and Sp1 knockdown is protective in G93A
SOD1 mutant mice [87, 88]. Sp1 and Sp3 can also interact with E2F1 and cooperatively regulate transcription as a complex
[89]. While the cell cycle has not been traditionally considered relevant in post-mitotic cells, such as motor neurons,
increasing evidence suggests that cell cycle genes can be dysregulated in neurodegenerative disease. This dysregulation
may promote aberrant re-entry into the cell cycle, leading to neuronal death [83, 85, 90]. Genes associated with cell cycle
also have important functions in the maintenance of the cytoskeleton. Notably, mutations in kinesin genes, such as KIF5A,
have been linked to ALS and other motor neuron diseases [91]. Our results confirm that cell cycle genes may be involved in
ALS pathogenesis.

Despite the common effects of ALS on gene expression identified in both vehicle and EH301 networks, we also identified
EH301-specific alterations. We found that EH301 markedly modifies network structure relative to vehicle, suggesting global
alterations in patterns of gene expression. Evidence that EH301 produces widespread changes in transcriptional regulation
is also provided by the enrichment of several TF binding sites in genes belonging to modules associated with disease,
which were not found in the vehicle network. Furthermore, we identified substantial differences in the functions of genes
associated with disease traits between EH301 and vehicle networks, such as cell adhesion and immune response which
are unique to EH301. Therefore, EH301 may modulate genes and pathways relevant to mechanisms of ALS pathogenesis
through transcriptional regulation. These findings will be valuable in interpreting the results of the ongoing clinical trial of
EH301 in ALS patients.

In this study, we utilized fibroblasts as a model system, as these cells have been extensively used by us and many other
groups for the investigation of molecular, biochemical, and metabolic changes in ALS. Nevertheless, we deemed it
important to compare the gene expression modules obtained from ALS fibroblasts with modules from an independent,
larger dataset from iMNs publicly available from the Answer ALS database. We observed a small overlap in GO terms
enriched in genes belonging to modules associated with disease status in fibroblasts and iMNs, including nucleic acid
metabolism terms. On the other hand, there was a substantial overlap in the functional annotations of genes associated
with ALSFRS-R in both datasets, indicating disease severity-related gene expression changes common to both cell types.
Previous studies have used genomic and transcriptomic data from human motor cortex to characterize sALS metabotypes,
and have identified immune response, cell adhesion, cytoskeletal organization, and cell cycle among the most
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dysregulated pathways in specific SALS subgroups relative to control [78, 92]. These findings coincide with our results on
pathways affected in sALS fibroblasts and those identified in SALS iMNs, further supporting the notion that different
subsets of sALS cases are characterized by distinct gene expression profiles that are in common among multiple cell types
and tissues.

Purine and pyrimidine metabolism alterations were consistently identified in metabolomics and transcriptomics analyses
in ALS fibroblasts and transcriptomics analyses in ALS iMNs. Alterations in nucleotide metabolism have also been shown
in spinal cord from ALS patients [93]. In post-mitotic cells, nucleotide metabolism is required for proper DNA damage repair
[94], and many of the mechanisms thought to be involved in ALS pathogenesis, such as oxidative stress and energy
imbalance can lead to a loss of DNA integrity and high burden of DNA damage [95-97]. Therefore, nucleotide metabolism
may be integral to the mechanisms leading to motor neuron degeneration in ALS, and nucleotide metabolism may provide
new targets for therapeutic intervention.

Finally, we confirmed in iMNs the association of the five biomarker genes with ALSFRS-R that we found in fibroblasts. In
agreement with the GO terms associated with disease severity identified in both fibroblasts and iMNs, four of these genes
(HJURP, DIRAS3, CDCA5, and GTSET) are associated with cell cycle and DNA damage repair, while RRMZ2 is involved in
purine and pyrimidine metabolism. To establish an initial proof of concept that the expression of a small subset of genes
in patient-derived cells could be used to predict disease progression, we employed a logistic regression model based on the
expression of the five biomarker genes in iMNSs to identify fast progressing sALS cases. Cross-validation of ROC results
showed an average accuracy of 78.9% and precision of 80.1%, which indicates that the combination of the expression of
these genes could potentially identify fast progressing sALS cases. This proof-of-concept assessment was performed on a
relatively small dataset available from Answer ALS, but we think that the encouraging results warrant the extension of
these studies to larger datasets from patient-derived cells, when they become available.

Conclusions

Multi-omics analyses of patient-derived fibroblasts highlight differential metabolic and transcriptomic profiles in SALS
metabotypes, which translate into differential responses to the investigational drug EH301. In the future, it will be
important to apply similar multi-omics and machine learning strategies to readily available patient materials, such as white
blood cells, to develop viable predictive biomarkers of disease progression and response to EH301 and other therapeutics.
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Figure 1

Different sALS metabotypes show distinct gene expression profiles and transcriptional responses to EH301. a) Volcano
plot of DEGs in sALS1 (left) versus control and sALS2 (right) versus control fibroblasts (n=6 per group). Red dots represent
DEGs with p value < 0.05 after FDR adjustment. Known ALS-related disease genes are labeled. b) Gene ontology pathways
with significantly enriched biological processes (BP) and molecular functions (MF) of upregulated (UP) and downregulated
(DN) DEGs in sALS1compared to control. ¢) Venn diagram of DEGs with p value < 0.05 after FDR adjustment modified by
EH301 in control (green), sALS1 (blue), and sALS2 (red) fibroblasts (n=6 per group). d) Gene ontology pathways
significantly enriched in EH301 treated controls (green) and sALS1 (blue) fibroblasts, (n=6 per group), all DEGs with p value

< 0.05 after FDR adjustment were included in the analysis.
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Figure 2

EH301 affects nucleotide and amino acid metabolism and protects fibroblasts from thiol depletion stress. a) Z score
heatmap of metabolites significantly modified by EH301 in control, sALS1, and sALS2 fibroblasts (n=6 per group), p value
< 0.05 after FDR adjustment. b) Scatter plot of metabolic pathways enriched in control (square), sALS1 (circle), and sALS2
(triangle) fibroblasts after treatment with EH301, shape size reflects number of metabolites. ¢) Percentage cell death in
control, sALS1, and sALS2 fibroblasts grown in methionine/cystine depleted medium for 72h and treated with EH301 or its
single components (NR, PT). Bars represent average +/- standard error of mean of at least three independent experiments.
One-way ANOVA followed by Fisher LSD. *p<0.05, **p<0.01, ****p<0.0001. d) Representative images of control, sALS1, and
sALS2 fibroblasts stained with DAPI, calcein and propidium iodide to assess cell viability. ) Volcano plot of transcripts
modified by EH301 in control fibroblasts (n=3 per condition) grown for 48h in methionine/cystine depleted medium
compared to vehicle treatment. Red dots represent DEGs with log2 fold change greater than 1 with p value < 0.05 after FDR
adjustment. Representative genes belonging to enriched GO pathways are labeled. f) Significantly enriched pathways of

Page 22/27



upregulated (UP) and downregulated (DOWN) genes in control fibroblasts grown in methionine/cystine depleted medium
for 48h and treated with EH301 (n=3 per condition).
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Figure 3

EH301 modifies network structure and associations of modules with disease traits. a-b) Dendogram of hierarchical
clustering of gene co-expression dissimilarity values, constructed from the topological overlap matrix, for vehicle-treated
samples (a) and EH301-treated samples (b). Colors correspond to module assignments (see Fig S1 for network
construction parameters). c-d) Heatmaps showing correlations between module eigengene expression values and clinical
traits for vehicle-treated samples (c) and EH301-treated samples (d). The numbers in each box are p-values, while box
colors correspond to the correlation coefficient. For clarity, only modules with at least 1 significant trait association are
shown.
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Both vehicle and EH301 disease-associated modules have overlapping and unique GO functional annotations. a-c) Top 20
most significant GO terms enriched in the Greenyellow (a), Turquoise (b), and Salmon (c) modules from the vehicle
network. d) Venn Diagram showing overlap of all significantly enriched GO terms in the Greenyellow, Turquoise, and
Salmon vehicle modules. e-f) Top 20 most significant GO terms enriched in the Brown (e) and Red (f) modules from the
EH301 network. g. Venn Diagram showing overlap of all significantly enriched GO terms in the Brown, Red, Slateblue, and

Magenta4 EH301 modules.
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Minimal overlap exists between GO terms from vehicle and EH301 modules associated with specific disease traits. a-e)
Venn Diagrams comparing overlap between all significantly enriched GO terms from all modules significantly associated
with the listed clinical traits, from vehicle and EH301 networks. Due to the number of EH301 modules associated with
ALSFRS-R score, only the 4 modules containing common terms are shown.
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Figure 6

A set of five hub genes that correlate strongly with ALSFRS-R can be used to cluster samples into groups that correspond
to their ALSFRS-R scores. a) Heatmap showing Z-scores of normalized expression values of the five genes chosen as
“markers” of ALSFRS-R score, along with aggregated average expression values of all five and ALSFRS-R score for each
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sample. b) Dendograms created by hierarchical clustering of ALSFRS-R score on the left, and average expression of the
five marker genes on the right, for vehicle samples (left) and EH301 samples (right). Central gray lines show matching of
each sample over the two trees, and colored lines in the tree denote matching clusters. P-value for Baker's gamma index
calculated using 100-fold permutation.
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WGCNA of transcriptomic data from iMNs confirms the association of several GO pathways with disease traits found in
fibroblasts. a) Dendogram of hierarchical clustering of gene co-expression dissimilarity values, constructed from the
topological overlap matrix, for all iMN samples (n= 124). Colors correspond to module assignments. b) Heatmap showing
correlations between module eigengene expression values and clinical traits. The numbers in each box are p-values, while
box colors correspond to the correlation coefficient. For clarity, only modules with at least 1 significant trait association are
shown. c-g. Top 20 most significant GO terms enriched in the Blue (c), Tan (d), Magenta (e), Turquoise (f), and Purple (g)
modules. h-i. Venn Diagram showing overlap of all significantly enriched GO terms from all modules associated with
disease status (h) or ALSFRS-R (i) in the iMN and vehicle fibroblast neworks. j) ROC curves for each of the six cross-
validation runs with computable ROC. AUC values for each curve indicated on bottom right.
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