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Abstract
Nisha Amalaki (NA), an Indian herbal formulation consisting of two herbs, Curcuma longa and Emblica
officinalis, has been commonly used to treat Type 2 diabetes mellitus (T2DM). However, the
pharmacological mechanism of NA remains unknown. In this study, a network pharmacology-based
approach was used to explore its underlying mechanism. NA phytochemicals were collected from
PubChem, KNApSAcK, IMPPAT, and ChEBI databases, and their potential targets were investigated using
similarity ensemble approach (Tanimoto coefficient ≥ 0.6). A protein-protein interaction network was
constructed to study the interactions among the targets and clustered into separate modules using
NetworkAnalyst 3.0. A significant module (P ≤ .01) was identified, and DAVID web tool was utilized for
the enrichment analysis. A total of 201 phytochemicals and 262 targets of NA were selected. Forty-five
nodes of the significant module were identified as potential targets of NA. The enrichment analysis
exhibited 27 biological processes and 78 pathways (P ≤ .01). Out of 45, 18 nodes were associated with
T2DM as probable targets of NA. The metabolite-target-pathway network revealed that anti-diabetic
effect of NA is a synergy of multi-target and multi-pathway efforts via regulation of glucose, lipid
metabolism, insulin resistance, β-cell survival and proliferation, inflammation, apoptosis, and cell cycle.

Introduction
Diabetes mellitus (DM) is a chronic, complex metabolic disorder, and the most common form is Type 2
diabetes mellitus (T2DM)1. It is estimated to affect approximately 422 million people worldwide, resulting
in 1.6 million deaths annually2. Conventional therapies used to treat diabetes may be promising in
glycemic control but are reported to have potential side effects like hypoglycemia, vitamin B12 deficiency,
pancreatitis, upper RTI infection, lipoatrophy, weight gain, and gastrointestinal dysfunction3,4.
Consequently, people are turning their attention to traditional herbal medicine or diet-based therapy as a
safer and more cost-efficient alternative medicine for T2DM5–7.

Indian traditional medicinal system is a rich resource that describes various Indian medicinal plants used
to prevent and treat T2DM8,9. Nisha Amalaki (NA), an Ayurvedic herbal formulation, has been used in the
traditional Indian medicinal system to treat T2DM10,11. It consists of a fine powder of turmeric rhizomes
(Curcuma longa L.; Nisha, Haridra in Sanskrit; Family: Zingiberaceae; CL) and Indian gooseberry (Emblica
officinalis L.; Amalaki in Sanskrit; Family: Euphorbeaceae; EO), prepared as a 1:1 (w/w) mixture12. Both
CL and EO are known for diverse medicinal properties. C. longa is a common Indian spice traditionally
used to treat several ailments such as diabetes, rheumatism, cancer, urinary disease, liver disorders,
inflammation, cough, wound, and bruise healing13. Curcumin and its derivatives, such as
bisdemethoxycurcumin and desmethoxycurcumin, are major phytochemicals in C. longa. They have been
reported to possess significant antioxidant, anti-inflammatory, anti-infective, anti-carcinogenic, anti-
coagulant, and anti-diabetic activity14–17. On the other hand, E. officinalis contains phytochemicals such
as pedunculagin, gallic acid, emblicanin, quercetin, chebulinic acid, and corilagin, which has been shown
to have antioxidant, anticancer, anti-inflammatory, anti-diabetic, antimicrobial, adaptogenic, nootropic,
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and immunomodulatory potential18,19. It has also been reported to prevent hyperlipidemia, osteoporosis,
and several other ailments20. Although both the herbs possess anti-diabetic activity, the pharmacological
action of the NA formulation remains to be explored. Both herbs and their formulation, NA, have been
implicated in the treatment of diabetes, but their underlying mechanism of action is still not clear.

Network pharmacology (NP) approach has been a promising for understanding traditional herbal
formulas21, identifying probable new drugs or targets22–24, and provide novel insights into drug actions.
In addition, it explores potential target spaces by allowing an unbiased examination of current drug
molecules used in various therapeutic conditions25. It elucidates the probable mechanism of action of
phytochemicals/bio-active compounds through huge dataset analysis and determines their synergistic
effects in treating complex diseases26.

Therefore, this study was designed to develop an NP-based method to identify possible therapeutic
targets and explore the underlying mechanism of this herbal formulation. First, the protein-protein
interaction (PPI) network was generated using putative targets of phytochemicals from NA. Next, the
network was clustered into various modules containing targets sharing a functional similarity. Finally, the
modules with significant P-value were identified and enriched to pathways to generate the metabolite-
target-pathway interaction network. Also, the gene-disease association network was created to explore
the use of NA in other diseases. The workflow of the NP-based method for NA herbal formulation has
been shown in Figure 1.

Results
NA phytochemicals and target prediction. A total of 201 phytochemicals identified in NA (108 in CL and
93 in EO) were collected with CAS ID (Chemical Abstracts Service registry number) and PubChem CID
(Supplementary file 1). The possible targets of the NA phytochemicals were determined using similarity
ensemble approach (SEA). The scope of potential targets of NA was narrowed from 5187 to 1052 based
on the Tanimoto Coefficient (Tc max ≥ 0.6) (Supplementary file 2). Further duplicate entries and genes
not found in humans were removed, and the number of targets for analysis gradually decreased from
1052 to 262.

PPI network analysis and module identification. The PPI network was created using NetworkAnalyst 3.0
as an undirected network, i.e., edges having no direction. The target genes/proteins were represented as
‘nodes,’ and the interaction between any two genes/proteins was represented by ‘edge.’ The network
analysis revealed the interaction of 163 nodes via 604 edges (Figure 2). In the network, 42 nodes showed
a degree of one, while 121 nodes showed a degree more than one. Out of 121 nodes, 39 nodes had ≥ ten
connections to other nodes. We also found “betweenness” ranging from 2.5 to 2617.62 for 94 nodes in
the constructed network. The results indicate that the constructed network was abundant in the hub
proteins (high degree, i.e., number of connections with other nodes) and bottleneck proteins (high
betweenness, i.e., number of shortest routes passing through a node), which suggests that they may be
important proteins27,28. Based on the results, proteins having the high degree in the PPI network showed
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the high betweenness. As hub proteins contribute to many interactions and hold the network together29,
they play a crucial role in regulating signaling pathways as well as transcription. Therefore, hub proteins
may serve as potential therapeutic targets or biomarkers.

The constructed PPI network was further clustered into modules, which contain proteins with similar
functions. A network module is a subnetwork in which nodes are more closely linked to each other than
rest of the network. Identifying the modules within the network is important as it might help in detecting
the hidden structural information. Seven highly connected independent modules were observed, out of
which only Module 1 showed a significant P-value (P ≤ .001) (Table 1). Thus, the PPI network of Module
1 was extracted for further analysis (Figure 3). The particulars of topological parameters, i.e., closeness
centrality, betweenness centrality, eccentricity, and degree, have been shown in Table 2, highlighting the
importance of each target in the network.

Table 1
Identification of modules of the PPI network

Modules Targets Size P-value

Module
1

AKT1, AURKA, AURKB, BCL2, CCND1, CRYAB, CSNK2A1, CYP19A1,
DNMT1, EP300, ESR1, ESR2, FABP3, FOS, GSK3B, HDAC1, HDAC2,
HDAC3, HDAC8, HDAC9, IL2, JUN, KDM2A, MAP3K8, MCL1, MMP1,
MMP13, MMP2, MMP9, NFE2L2, NFKB1, NR3C1, NR4A1, PLK1,
PLK4, PPARD, PPARG, RELA, RXRA, SMAD3, SRC, SREBF2, TERT,
TOP1, TOP2A

45 0.0000291

Module
2

ALK, AXL, EGFR, ERBB2, FYN, IGF1R, INSR, MET, MYLK, PDGFRB,
PIK3R1, PTK2, PTPN1, PTPN2, PTPN6, STAT1, STAT3, SYN1, TLR2

19 0.303

Module
3

ABCB1, ABCG2, ACHE, ALOX5, APEX1, APP, CCNA1, CCNA2, CDK1,
CDK4, DYRK1A, ELAVL1, EPHB4, NOS3, NUAK1, PIM1, VCP

17 0.889

Module
4

ABCB11, CYP3A4, NR1H2, NR1H3, NR1H4, PPARA, RARB, RARG,
RXRB, RXRG, SPHK1

11 0.789

Module
5

ACP1, DAPK1, FASN, FLT3, FLT4, IKBKG, KDR, TEK, TPT1 9 0.476

Module
6

HDAC6, MAPK14, MAPT, PKN1, RPS6KA3 5 0.67

Module
7

CDK2, MIF, MPG, P4HB, PGD 5 1
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Table 2
Properties of network Module 1

Name Betweenness
Centrality

Closeness
Centrality

Eccentricity Clustering
Coefficient

Degree Topological
Coefficient

AKT1 0.019 0.537 3 0.378 10 0.313

AURKA 0.006 0.458 3 0.400 5 0.447

AURKB 0.001 0.419 4 0.000 2 0.604

BCL2 0.012 0.440 3 0.167 4 0.346

CCND1 0.011 0.550 3 0.667 10 0.424

CRYAB 0.003 0.440 3 0.333 3 0.452

CSNK2A1 0.021 0.543 3 0.422 10 0.366

CYP19A1 0.000 0.415 4 1.000 2 0.780

DNMT1 0.003 0.478 3 0.400 5 0.457

EP300 0.095 0.677 2 0.391 23 0.285

ESR1 0.068 0.629 3 0.395 20 0.310

ESR2 0.000 0.454 3 0.900 5 0.520

FABP3 0.001 0.383 4 0.000 2 0.563

FOS 0.060 0.603 3 0.368 17 0.286

GSK3B 0.059 0.543 3 0.200 11 0.282

HDAC1 0.151 0.688 3 0.313 25 0.270

HDAC2 0.038 0.603 3 0.417 16 0.313

HDAC3 0.052 0.620 3 0.399 18 0.298

HDAC8 0.008 0.444 3 0.200 6 0.313

HDAC9 0.010 0.512 3 0.476 7 0.377

IL2 0.000 0.506 3 1.000 5 0.545

JUN 0.125 0.657 3 0.329 22 0.268

KDM2A 0.000 0.444 3 1.000 3 0.611

MAP3K8 0.000 0.427 3 0.333 3 0.600

MCL1 0.002 0.376 4 0.000 2 0.500

MMP1 0.000 0.449 3 0.833 4 0.558
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Name Betweenness
Centrality

Closeness
Centrality

Eccentricity Clustering
Coefficient

Degree Topological
Coefficient

MMP13 0.000 0.449 3 0.833 4 0.558

MMP2 0.000 0.440 4 1.000 3 0.656

MMP9 0.000 0.500 3 0.900 5 0.518

NFE2L2 0.000 0.423 4 1.000 2 0.611

NFKB1 0.025 0.595 2 0.505 14 0.339

NR3C1 0.019 0.557 3 0.485 12 0.360

NR4A1 0.032 0.512 3 0.333 10 0.332

PLK1 0.033 0.524 3 0.422 10 0.370

PLK4 0.001 0.431 4 0.333 4 0.510

PPARD 0.001 0.500 3 0.786 8 0.500

PPARG 0.006 0.530 3 0.639 9 0.397

RELA 0.081 0.667 2 0.385 22 0.285

RXRA 0.022 0.595 2 0.505 14 0.331

SMAD3 0.053 0.603 3 0.375 16 0.297

SRC 0.013 0.537 3 0.439 12 0.342

SREBF2 0.000 0.458 3 0.667 4 0.516

TERT 0.000 0.484 3 0.800 5 0.500

TOP1 0.001 0.431 3 0.500 4 0.433

TOP2A 0.013 0.530 3 0.429 8 0.366

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis. GO enrichment analysis was done on 45 target genes of Module 1, and the GO terms with P ≤
.01 were selected and represented on the graph as − log P values (Figure 4). The results showed that
these 45 target genes are involved in various biological processes like negative regulation of apoptotic
process, aging, regulation of signal transduction by p53 class mediator, histone H3 deacetylation, positive
regulation of transcription from RNA polymerase II promoter, negative regulation of cell growth, etc.
(Figure 4a). In addition, these processes are associated with molecular functions such as transcription
factor binding, NF-kappa B binding, protein kinase activity, DNA binding, protein homodimerization
activity, etc. (Figure 4b). These processes occur in different cellular components like nucleoplasm,
nucleus, cytosol, spindle microtubule, nuclear chromosome, etc. (Figure 4c).
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KEGG pathway enrichment analysis was also done to explore the target’s role (Supplementary file 3). The
top 30 enriched pathways have been shown in Figure 5. The results showed that the targets were highly
enriched in Pathways in cancer, Endocrine resistance, IL-17 signaling pathway, Apoptosis, Cell cycle, Wnt
signaling pathway, Longevity regulating pathway- multiple species, etc. In addition, pathways related to
the T2DM and its complications were also observed, including, PI3K-Akt signaling pathway, Insulin
resistance, TNF signaling pathway, AGE-RAGE signaling pathway in diabetic complications, FoxO
signaling pathway, NF-kappa B signaling pathway, Jak-STAT signaling pathway, MAPK signaling
pathway, HIF-1 signaling pathway, Non-alcoholic fatty liver disease (NAFLD), etc. These results suggest
that NA herbal formulation may exert therapeutic effects by regulating these pathways.

Gene-disease association network. A gene-disease association network constructed for the 45 target
genes of Module 1 showed 424 nodes and 611 edges (Figure 6). The degree and betweenness of the
resultant diseases ranged from 11 to 1 and 9700.68 to 0, respectively. The diseases with betweenness ≥
50 were considered significant (Supplementary file 4). The results showed that besides diabetic
conditions, NA could be explored in other disease conditions like neoplasms, leukemia, carcinoma,
obesity, hypertensive disease, atherosclerosis, osteoporosis, liver cirrhosis, fatigue, heatstroke, depressive
and anxiety disorders.

Identification of T2DM genes and corresponding NA phytochemicals. A list of 579 genes related to T2DM
was identified using various databases as described in methodology (Supplementary file 5). Out of 45
genes, 18 were common among Module 1 and the T2DM related gene list (Table 3). The NA
phytochemicals targeting these 18 gene targets were identified as curcumin, quercetin, (2S)-Eriodictyol 7-
O-beta-D-glucopyranoside, arachidic acid, bis-(4-hydroxycinnamoyl)methane, bisdemethoxycurcumin,
calebin A, demethoxycurcumin, dihydrocurcumin, letestuianin B, corilagin, indole-3-acetic acid, chebulinic
acid, tauroursodeoxycholic acid, Go-Y022, epigallocatechin gallate, eriodictyol, glycocholic acid,
naringenin, naringenin 7-O-beta-D-glucoside, beta-carotene, and quercetin-3-O-glucoside. The results also
showed that AKT1, BCL2, CYP19A1, ESR1, IL2, MCL1, NR4A1, and RXRA are the targets of EO, while
EP300, HDAC1, JUN, NFKB1, NR3C1, PPARD, and PPARG are the targets of CL. However, GSK3B, MMP2,
and MMP9 are the common targets of both CL and EO.
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Table 3
Nisha Amalaki gene targets related to Type 2 diabetes mellitus

Target
gene

Protein
Description

UniProt
ID

Associated
pathways

Relevant
phytochemical(s)

Herb

AKT1 RAC-alpha
serine/threonine-
protein kinase

P31749 Insulin resistance,
PI3K-Akt signaling
pathway, AGE-RAGE
signaling pathway
in diabetic
complications,
AMPK signaling
pathway, HIF-1
signaling pathway,
FoxO signaling
pathway, MAPK
signaling pathway,
TNF signaling
pathway

Quercetin EO

Ellagic acid EO

BCL2 Apoptosis
regulator Bcl-2

P10415 Apoptosis, AGE-
RAGE signaling
pathway in diabetic
complications, HIF-
1 signaling
pathway, NF-kappa
B signaling
pathway, PI3K-Akt
signaling pathway,
Jak-STAT signaling
pathway

Epigallocatechin
gallate

EO

CYP19A1 Aromatase P11511 Metabolic
pathways, Ovarian
steroidogenesis,
Steroid hormone
biosynthesis

Naringenin 7-O-beta-D-
glucoside

EO

Naringenin EO

Eriodictyol EO

(2S)-Eriodictyol 7-O-
beta-D-
glucopyranoside

EO

EP300 Histone
acetyltransferase
p300

Q09472 FoxO signaling
pathway, HIF-1
signaling pathway,
Jak-STAT signaling
pathway, Pathways
in cancer, Cell cycle,
cAMP signaling
pathway, Notch
signaling pathway

Calebin A CL

Curcumin CL

Letestuianin B CL

Demethoxycurcumin CL

1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,4,6-
heptatrien-3-one

CL

Dihydrocurcumin CL

Go-Y022 CL
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Target
gene

Protein
Description

UniProt
ID

Associated
pathways

Relevant
phytochemical(s)

Herb

ESR1 Estrogen receptor P03372 Endocrine
resistance,
Pathways in cancer,
Thyroid hormone
signaling pathway,
Estrogen signaling
pathway

Naringenin EO

GSK3B Glycogen
synthase kinase-3
beta

P49841 PI3K-Akt signaling
pathway, Non-
alcoholic fatty liver
disease (NAFLD),
Insulin resistance,
Pathways in cancer,
Wnt signaling
pathway, Cell cycle,
Thyroid hormone
signaling pathway

Demethoxycurcumin CL

bis-(4-
hydroxycinnamoyl)
methane

CL

Bisdemethoxycurcumin CL

Quercetin EO

Ellagic acid EO

HDAC1 Histone
deacetylase 1

Q13547 Pathways in cancer,
Cell cycle, Notch
signaling pathway,
Thyroid hormone
signaling pathway,
Longevity
regulating pathway
- multiple species

bis-(4-
hydroxycinnamoyl)
methane

CL

Bisdemethoxycurcumin CL

IL2 Interleukin-2 P60568 PI3K-Akt signaling
pathway, Pathways
in cancer, Jak-STAT
signaling pathway,
Inflammatory bowel
disease (IBD),
HTLV-I infection

Quercetin-3-O-
glucoside

EO

JUN Transcription
factor AP-1

P05412 AGE-RAGE signaling
pathway in diabetic
complications,
MAPK signaling
pathway, Non-
alcoholic fatty liver
disease (NAFLD),
Pathways in cancer,
TNF signaling
pathway, Apoptosis,
Endocrine
resistance

Demethoxycurcumin CL

Curcumin CL

Calebin A CL

bis-(4-
hydroxycinnamoyl)
methane

CL

Bisdemethoxycurcumin CL

1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,4,6-
heptatrien-3-one

CL

Go-Y022 CL
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Target
gene

Protein
Description

UniProt
ID

Associated
pathways

Relevant
phytochemical(s)

Herb

MCL1 Induced myeloid
leukemia cell
differentiation
protein

Q07820 Jak-STAT signaling
pathway, PI3K-Akt
signaling pathway,
Apoptosis,
MicroRNAs in
cancer

Corilagin EO

Indole-3-acetic acid EO

Chebulinic acid EO

MMP2 72 kDa type IV
collagenase

P08253 AGE-RAGE signaling
pathway in diabetic
complications,
Endocrine
resistance, Estrogen
signaling pathway,
Pathways in cancer,
GnRH signaling
pathway

bis-(4-
hydroxycinnamoyl)
methane

CL

Bisdemethoxycurcumin CL

Epigallocatechin
gallate

EO

Quercetin EO

MMP9 Matrix
metalloproteinase-
9

P14780 Endocrine
resistance, Estrogen
signaling pathway,
IL-17 signaling
pathway, Pathways
in cancer, TNF
signaling pathway

Demethoxycurcumin CL

Calebin A CL

Curcumin CL

Letestuianin B CL

bis-(4-
hydroxycinnamoyl)
methane

CL

1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,4,6-
heptatrien-3-one

CL

Bisdemethoxycurcumin CL

Dihydrocurcumin CL

Go-Y022 CL

Quercetin EO

NFKB1 Nuclear factor NF-
kappa-B p105
subunit

P19838 Insulin resistance,
AGE-RAGE signaling
pathway in diabetic
complications,
Apoptosis, PI3K-Akt
signaling pathway,
MAPK signaling
pathway, Longevity
regulating pathway,
NF-kappa B
signaling pathway,
Non-alcoholic fatty
liver disease

Demethoxycurcumin CL

Calebin A CL

Curcumin CL

Dihydrocurcumin CL

1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,4,6-
heptatrien-3-one

CL
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Target
gene

Protein
Description

UniProt
ID

Associated
pathways

Relevant
phytochemical(s)

Herb

(NAFLD), Pathways
in cancer, TNF
signaling pathway

Go-Y022 CL

Letestuianin B CL

NR3C1 Glucocorticoid
receptor

P04150 HIF-1 signaling
pathway, FoxO
signaling pathway,
Thyroid hormone
signaling pathway,
Notch signaling
pathway, Estrogen
signaling pathway

Glycocholic acid CL

Tauroursodeoxycholic
acid

CL

NR4A1 Nuclear receptor
subfamily 4 group
A member 1

P22736 PI3K-Akt signaling
pathway, MAPK
signaling pathway

beta-carotene EO

PPARD Peroxisome
proliferator-
activated receptor
delta

Q03181 PPAR signaling
pathway, Wnt
signaling pathway,
Pathways in cancer

Arachidic acid CL

PPARG Peroxisome
proliferator-
activated receptor
gamma

P37231 PPAR signaling
pathway, AMPK
signaling pathway,
Longevity
regulating pathway

Arachidic acid CL

RXRA Retinoic acid
receptor RXR-
alpha

P19793 Non-alcoholic fatty
liver disease
(NAFLD), PI3K-Akt
signaling pathway,
PPAR signaling
pathway, Thyroid
hormone signaling
pathway,
Adipocytokine
signaling pathway,
Pathways in cancer

beta-carotene EO

EO, Emblica officinalis; CL, Curcuma longa

M-T-P network analysis. To visualize and construct an M-T-P network, the metabolites, potential targets,
and associated pathways were imported into Cytoscape v3.8.2. The network contained 148 nodes and
578 edges with a network density of 0.053 (Supplementary file 6). Next, the M-T-P network using the
T2DM related metabolites, potential targets, and associated pathways was constructed using Cytoscape
v3.8.2 (Figure 7). The network showed 63 nodes and 197 edges with an average clustering coefficient of
0.088 and network density of 0.084. In this network, phytochemicals like bisdemethoxycurcumin, bis-(4-
hydroxycinnamoyl) methane, and demethoxycurcumin showed the highest degree, each having ten
targets suggesting that these compounds may be the significant phytochemicals of NA in treating T2DM.
It was followed by curcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one, calebin A, and
quercetin which had a degree equal to 8. The network analysis showed that one metabolite could
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correspond to multiple targets, and one target could correspond to multiple metabolites and pathways.
Thus, the network reflected the features of the synergetic relationships between the multiple metabolites,
targets, and pathways of NA. Based on the M-T-P network, a proposed schematic diagram was drawn
outlining the target proteins and pathways involved in T2DM (Figure 8).

Discussion
Traditional medicinal plants have been used for centuries to treat complex diseases such as cancer and
diabetes30. Traditional medicinal systems generally use herbal formulations comprising multiple
compatible herbs to improve therapeutic effect through synergism31. Moreover, it implements a
comprehensive approach that focuses on supporting complete functional recovery and eradicating
underlying cause of the disease. The concept of NP is comparable to the theory of the Traditional
medicinal system. Hence, it is appropriate to explore the components and mechanism of action of
complex Traditional herbal formulations using various databases and available software. The present
work has explored the mechanism of action of NA, traditionally used in India to treat T2DM. The network
module approach and widely used enrichment analysis methods have been utilized to uncover the
concealed information within the target PPI network. In this study, 201 phytochemicals in NA were
predicted by network analysis, of which 20 have been found to have anti-diabetic effects. Subsequently,
we found that these metabolites have therapeutic effects through regulating various T2DM related target
proteins of different metabolic pathways.

T2DM is a chronic, multifactorial metabolic disorder involving insulin insensitivity due to insulin
resistance, reduced insulin production, and, eventually, pancreatic β-cell dysfunction32,33. There is reduced
transportation of glucose into the liver, muscle, and fat cells and a rise in fat breakdown and
hyperglycemia. NP analysis showed that the phytochemicals of NA such as quercetin, ellagic acid,
quercetin-3-O-glucoside, demethoxycurcumin, bisdemethoxycurcumin, beta-carotene, arachidic acid, and
bis-(4-hydroxycinnamoyl) methane could induce insulin secretion, ameliorate insulin resistance, and
elevate utilization of glucose by acting on AKT1, GSK3B, PPAR-γ, NR4A1, and IL-2. Pathway analysis
revealed that these proteins modulate PI3K-Akt, PPAR, Jak-STAT, AMPK, and MAPK signaling pathways
and regulate inflammation, gluconeogenesis, lipid metabolism, and cell cycle. We also found
phytochemicals such as curcumin, bisdemethoxycurcumin, demethoxycurcumin, calebin A, Go-Y022,
epigallocatechin gallate, and 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one can regulate
proteins like NF-κB, JUN, Mcl-1, and Bcl-2 through NF-kappa B, TNF, and HIF-1 signaling pathways.

The results are consistent with the earlier studies suggesting that these proteins and pathways play a
crucial role in the pathophysiology of T2DM. PI3K/Akt signaling pathway activation induces insulin
secretion from pancreatic β-cells34,35. Also, activation of AKT and its downstream signaling
intermediates, viz., GSK3, mTOR1, and FoxO1, leads to increased proliferation, mass, and cell size of
pancreatic β-cells36. It regulates various signaling pathways such as NF-κB, MAPK, and FoxO. These
pathways play a crucial role in regulating protein synthesis, cell differentiation, proliferation, cell survival,
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and apoptosis37. NR4A1 protein is elevated in response to glucose and saturated fatty acids in pancreatic
β-cells38,39, further regulating cell proliferation and insulin secretion40. Knockout of NR4A1 has been
shown to reduce β-cell density in the islets41. Another protein, p300 (EP300), is a transcriptional
coactivator, and many β-cell transcription factors require p300 along with CBP protein. Studies have
shown that p300 is a limiting cofactor for islet development, making it vital for β-cell function and health
in vivo42.

In insulin resistance, glucose tolerance is decreased in response to β-cell dysfunction43. The β-cells
dysfunction is caused by numerous factors, such as oxidative stress and inflammation, and the FoxO
pathway is highly linked to these risk factors44. Also, the AMPK protein activity is reduced in skeletal
muscles and liver reduces in insulin resistance, leading to reduced free fatty acid oxidation and a lesser
glucose intake, which deteriorates glycemic control45. Peroxisome proliferator-activated receptor (PPAR-γ)
is a nuclear hormone receptor expressed primarily in the adipose tissues46. Apart from increasing insulin
sensitivity in peripheral tissues, PPAR-γ has also been shown to enhance the glucose-sensing ability of
pancreatic β-cells. It has been also shown to improve glucose homeostasis by directly affecting the liver
and pancreatic β-cells47. Furthermore, GSK3B is postulated to be a potential kinase that induces insulin
resistance. It can directly phosphorylate the IR and IRS-1 at Ser residues, thereby attenuating the insulin-
stimulated phosphorylation of their Tyr residues48.

NA phytochemicals could also regulate the TNF signaling pathway, which induces many cascade
reactions, such as stimulating the transcription factor NF-κB, inflammatory response49,50, and
apoptosis51. Research has shown that the TNF signaling pathway, a negative feedback mechanism,
inhibits cell death by activating NF-κB52. TNF-α induces inflammation in pancreatic islets, leading to
apoptosis in pancreatic β-cells53–55. In addition, TNF-α down-regulates PI3K/Akt signaling pathway and
activates transcriptional factor NF-κB, an essential modulator of pancreatic cell death56–58. The activated
signal transduction eventually initiates pancreatic β-cell apoptosis by regulating several proteins such as
Bcl-2 and Mcl-159–61. The Bcl-2 regulates the mitochondrial-mediated β-cell apoptosis triggered by pro-
inflammatory cytokines. Few Bcl-2 family proteins also play important role in regulation of β-cell function
and glucose metabolism62. T2DM is associated with impaired wound healing, resulting from complex
pathophysiology involving vascular, immune, neuropathic, and biochemical components13. The network
analysis showed that NA regulates MMP-9, which exhibited a protective role in diabetic mice by
improving wound healing63,64. It suggests that NA could play a vital role in improving healing diabetic
ulcers.

Our network analysis is supported by pre-clinical studies using phytochemicals of NA. Curcumin has been
reported to inhibit TNF- α65,66, caspase-367, and JNK phosphorylation68,69 and induces Bcl-2 activity67. In
addition, it has also been shown to upregulate PPAR-γ via AMPK activation70. Quercetin upregulates AKT
expression and follows the AMPK-P38 MAPK pathway to induce glucose uptake, which may contribute to
correcting insulin resistance via bypassing the GLUT4 translocation via insulin-regulated system71.
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Ellagic acid exerts anti-diabetic activity by inducing insulin secretion and reducing glucose intolerance in
pancreatic β-cells. Also, increased β-cell size and number in diabetic rats72. Also, epigallocatechin gallate
has been reported to reduce oxidative stress, pro-inflammatory cytokines (TNF-α and IL-6), p53, and
caspase levels, and upregulate Bcl-2 in diabetic rats suggesting its anti-inflammatory and anti-apoptotic
action73.

Network analysis has revealed that NA may also be explored in other diseases. In our study,
phytochemicals of NA were putatively associated with pathways involved in leukemia, anemia, infertility,
renal failure, hepatitis, fatigue, dermatitis, hyperhidrosis, etc. Interestingly, the description of CL and EO in
Ayurvedic classical texts also supports their use in tvak dosa (skin disorders), rasayana (rejuvenator),
shotha (inflammatory disorders), sveda (excessive sweating), pandu (hematological disorders), etc.74,75.
The experimental studies further support these facts. CL and EO have been reported to treat tumor76,77,
Alzheimer78,79, obesity80,81 anxiety disorders82,83, infertility84,85, and anemia86,87. Indications of different
NA phytochemicals correspond to synergistic effects of polyherbal formulas used in traditional medicine.
Accordingly, NP seems to be an appropriate approach to study the complex traditional herbal
formulations.

Conclusion
T2DM is a disease with complex pathogenesis, comprised of multiple targets and cross-linked signaling
pathways. NP based approach showed that curcumin and its derivatives, bis-(4-hydroxycinnamoyl)
methane, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one, calebin A, and quercetin regulated
various targets associated with T2DM viz., AKT1, GSK3B, (PPAR)-γ, NR4A1, NF-kappa B, JUN, Mcl-1, Bcl-2,
and IL-2. In addition, NA may regulate T2DM by modulating glucose and lipid metabolism, β-cell survival
and proliferation, regulation of insulin resistance, inflammation, apoptosis, and cell cycle through PI3K-
Akt, TNF, FoxO, Jak-STAT, MAPK, and NF-kappa B signaling pathway. Therefore, the results suggest that
its anti-diabetic effect’s underlying mechanism is a direct or indirect synergism of multiple targets and
pathways. Though, additional experimental studies are necessary to reveal the anti-diabetic effect of NA.

Materials And Methods
Phytochemical compounds of Nisha Amalaki. The phytochemicals/metabolites of CL and EO were
collected from compound databases including PubChem (https://pubchem.ncbi.nlm.nih.gov/)88,
KNApSAcK (http://knapsackfamily.com/knapsack_core/top.php)89, Indian Medicinal Plants,
Phytochemistry and Therapeutics (IMPPAT, https://cb.imsc.res.in/imppat/)90, and Chemical Entities of
Biological Interest (ChEBI, https://www.ebi.ac.uk/chebi/)91.

Identification of NA target genes. The target genes of phytochemical compounds from NA herbal
formulation were identified using the similarity ensemble approach (SEA; http://sea.bkslab.org/)92. It is a
chemical similarity search-based prediction tool known worldwide for its accuracy93,94. Although the SEA
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approach account only for ~2,800 potentially active proteins as alternate binding targets, the method is
coherent with the already identified druggable genome (~3000)95–97.

Target PPI network construction and module identification. The target genes selected above were used to
build a PPI network using NetworkAnalyst 3.0 tool (http://www.networkanalyst.ca/)98,99. The network
construction was constrained to contain only the original seed proteins by choosing the zero-order
interactions in order to avoid the “hairball effect.” NetworkAnalyst 3.0 incorporates extensive PPI data
from already published literature with experimental evidence accessible across various PPI related
databases such as IntAct100, BIND101, MINT102, BioGRID103, and DIP104, integrated into InnateDB105. The
tightly associated group of target proteins, also referred to as modules in the PPI network, was identified
using the “module explorer” tool of NetworkAnalyst 3.0 that uses a random walk-based method for
detecting modules. Wilcoxon rank-sum test was used to calculate the P-value of the modules106, and the
modules with significant P-value (P ≤ .001) were selected. The selected module was analyzed using the
NetworkAnalyzer tool v4.4.8 within Cytoscape v3.8.2107.

GO and KEGG pathway enrichment analysis. GO enrichment analysis, and KEGG pathway annotation
were carried out to elucidate the role of target genes that interact with the phytochemicals of NA using the
Database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov/)
v6.8108 and NetworkAnalyst 3.0 tool, respectively. The GO analysis provides a curated and predicted
annotation of genes with standardized terms relating to cellular components, biological processes, and
molecular functions. The GO term was restricted to P ≤ .01, which is based on the false discovery rate
(FDR; Benjamini-Hochberg). The enriched KEGG pathways with adjusted P-value, i.e., FDR ≤ .01 were
used for the subsequent analysis.

Gene-Disease network construction. To identify the diseases associated with the target genes in the
significant module gene-disease network was constructed using the ‘gene-disease associations’ network
mapping tool available on NetworkAnalyst 3.0 platform. This tool uses the literature curated gene-disease
association data gathered using DisGeNET database (https://www.disgenet.org/). The DisGeNET
database contains most comprehensive collections of genes and variants associated with human
diseases109.

Identification of target genes related to T2DM. Genes related to T2DM were identified after the screening
of different databases, including Online Mendelian Inheritance in Man (OMIM; http://www.omim.org/),
DrugBank database (http://www.drugbank.ca/), Therapeutic Target Database (TTD;
http://db.idrblab.net/ttd/), and KEGG Disease (https://www.genome.jp/kegg/disease/). The gene names
were validated using UniProt database (https://www.uniprot.org/). The gene list was further used to
identify the T2DM related genes in the significant module.

Construction of the M-T-P network. The NA metabolites, target genes, and the related KEGG pathway were
all imported into Cytoscape v3.8.2 to establish a M-T-P network. The nodes denote metabolites, targets,
and pathways in the network, while the edges denote the interaction between the nodes.
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Figures

Figure 1

Workflow of network pharmacology-based approach for Nisha Amalaki
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Figure 2

Protein-protein interaction network of Nisha Amalaki targets. The network was constructed using
NetworkAnalyst 3.0. The node size and colour are related to degree of the target within the network. The
gradient (colour: dark to light; size: large to small) represents high to low degree of the nodes within the
network.
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Figure 3

Protein-protein interaction network of Module 1. The network was constructed using NetworkAnalyst 3.0.
The node size and colour are related to degree of the target within the network. The gradient (colour: red
→ pink → purple; size: large to small) represents high to low degree of the nodes within the network.



Page 26/30

Figure 4

GO enrichment analysis of Nisha Amalaki targets. (a) Biological process (b) Molecular function (c) Cell
component. The x-axis denotes the GO term, whereas the y-axis is the -log P-value. The GO terms with P
≤ .01 (Benjamini-Hochberg) were selected.
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Figure 5

Scatter plot illustrating enriched KEGG pathways. Top 30 KEGG pathways are depicted in the figure. The
rich factor was determined by dividing the number of genes enriched in a pathway by the total number of
genes annotated in that pathway. The colour and size of the dots denote the range of the -log P-value and
the number of genes in the shown pathways, respectively. The scatter plot was made using R software
v4.0.3.
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Figure 6

Gene-disease association network. The degree sorted network was constructed using Cytoscape v3.8.2.
The red diamonds and blue circles represent the target genes of Nisha Amalaki in Module 1 and the
significant diseases with betweenness ≥ 50, respectively. Edges represent the interaction between genes
and diseases.
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Figure 7

Metabolite-Target-Pathway interaction network related to T2DM. The degree sorted network was
constructed using Cytoscape v3.8.2. The red and blue diamond represents the herbs CL: Curcuma longa;
EO: Emblica officinalis. The red and blue rectangles depict the phytochemicals of EO and CL, respectively.
The orange arrows and green circles denote the T2DM related target genes and pathways, respectively.
Edges denote the interaction between metabolites, targets, and pathways.

Figure 8

Target proteins of Nisha Amalaki and their distribution in the T2DM related pathways. The red boxes are
potential target proteins of C. longa and E. officinalis, while the pathways in the blue box are related to
T2DM. The green boxes represent the relevant phytochemicals of NA. Q, quercetin; EA, ellagic acid; AA,
arachidic acid; QG, quercetin-3-O-glucoside; CA, calebin A; C, curcumin; BM, bis-(4-hydroxycinnamoyl)
methane; DC, demethoxycurcumin; DHC, dihydrocurcumin; LB, letestuianin B; BCA, beta-carotene; GY, Go-
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Y022; BH, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one; BC, bisdemethoxycurcumin; IA,
indole-3-acetic acid; CO, corilagin; CHA, chebulinic acid.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplementaryfile1.xlsx

Supplementaryfile2.xlsx

Supplementaryfile3.xlsx

Supplementaryfile4.xlsx

Supplementaryfile5.xlsx

Supplementaryfile6.docx

https://assets.researchsquare.com/files/rs-954990/v1/0a466074558a005b01f5595d.xlsx
https://assets.researchsquare.com/files/rs-954990/v1/e620814ff3ba3c3e3392e3f2.xlsx
https://assets.researchsquare.com/files/rs-954990/v1/2a2a80aec54db6b1b3c1b039.xlsx
https://assets.researchsquare.com/files/rs-954990/v1/15a3f477996ef2806c98af81.xlsx
https://assets.researchsquare.com/files/rs-954990/v1/bbc31d723967a8a1eaf3ec6e.xlsx
https://assets.researchsquare.com/files/rs-954990/v1/0e847b5b0525bfbe33b217b4.docx

