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Abstract

Background: The mitogenomes of vascular plants are one of the most structurally diverse molecules. In the
present study we characterize mitogenome of a rare and endangered species Pulsatilla patens. We investigated
the gene content and its RNA editing potential, repeats distribution and plastid derived sequences.

Results: The mitogenome structure of early divergent eudicot, endangered Pulsatilla patens does not support the
master chromosome hypothesis, revealing the presence of three linear chromosomes of total length 986 613 bp.
The molecules are shaped by the presence of extremely long, exceeding 87 kbp, repeats and multiple chloroplast
derived regions including nearly complete inverted repeat. Since the plastid IR content of Ranunculales is very
characteristic, the incorporation into mitogenome could be explained rather by intracellular transfer than
mitochondrial HGT. The mitogenome contains an almost complete set of genes known from other vascular
plants with exception of rps10 and sdh3, the latter being present but pseudogenised. Analysis of long ORFs
enabled the identification of genes which are rarely present in plant mitogenomes, including RNA and DNA
polymerases, albeit their presence even at species level is variable. Mitochondrial transcripts of P. patens were
edited with a high frequency, exceeding the level known in other analyzed angiosperms, despite strict
qualification criteria of editing event’s count and analysis of generally less frequently edited leaf transcriptome.
The total number of edited sites was 902 and nad4 was identified as the most edited gene with 65 C to U
changes. Non-canonical, reverse U to C editing was not detected. Comparative analyses of mitochondrial genes
of three Pulsatilla species revealed a level of variation comparable to chloroplast CDS dataset and much higher
infrageneric differentiation than in other known angiosperm genera. The variation found in CDS of
mitochondrial genes is comparable to values found among Pulsatilla plastomes. Despite a complicated
mitogenome structure, 14 single copy regions not splitted by repeats or MTPT of 329 kbp revealed potential for
phylogenetic, phylogeographic and population genetics studies by revealing intra- and interspecific collinearity.

Conclusions: This studies provides valuable new information about mitochondrial genome of early divergent
eudicots, Pulsatilla patens, revealed multi-chromosomal structure and shed new light on mitogenomics of early
eudicots.

Background

The mitogenomes of vascular plants are one of the most structurally diverse molecules despite generally stable
gene content. After the divergence of evolutionary lineages of bryophytes and early vascular plants the
mitogenomes of the latter started to expand their intergenic regions [1]. Most of the structural variation in
flowering plant mitogenomes are related to the presence of large repeats which enable homologous
recombinations. In addition to the large, frequently recombining repeats, there are often smaller repeated
sequences in the size lower than 1 kbp [2]. The frequency of the recombination appears to be positively
correlated with the length of repeats [3].

The size variation of angiosperm mitogenomes can be spectacular even between closely related taxa. Beside
duplication of large parts of mitogenomes, the size expansion can be achieved by uptaking foreign sequences
from plastid and nucleus or even extrinsic mitochondrial DNA via horizontal transfer [4]. The plastid derived
regions contribute 1 up to 10% of the mitochondrial genomes size in vascular plants, however the majority of
transferred genes were non-functional with a few exceptions of tRNA genes [5].
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Unlike in non-flowering plants [1, 6, 7], the mitochondrial genome is present under different forms, not only
circular one [8].

In recent years several comparative analyses between closely related species were conducted, often revealing
variation in structure and gene content [6, 8, 9], but the intraspecific variation was not the subject of many
studies [10]. Due to mostly maternal inheritance mitogenomes may be an important source of evolutionary
information, providing new insights into plant phylogeography and population genetics. However, frequent
changes of chondriome structures and assumed lower evolutionary rate than plastomes do not make
mitochondrial genomes a first choice for studies on phylogeny and phylogeography, with exception of early land
plant, bryophytes, which mitogenomes are rather evolutionarily stable [1, 6, 7] with rare exceptions [11].

Modern technologies including long-read sequencing enabled obtaining sequences of many mitogenomes, but
most of them belong to model or economically important and well studied species [8, 12]. Both methods of long-
read sequencing require high quality, high molecular weight DNA, which is sometimes difficult to obtain for
species of limited tissue availability. In this study we employed PacBio and ONT sequencing technologies
combined with DNA and RNA short-read sequencing to characterize mitogenome of a rare and endangered
species Pulsatilla patens, belonging to Ranunculales order, which is basal for flowering plants although still
poorly explored in terms of mitogenomics. In the present study we investigated the gene content and its RNA
editing potential, repeats distribution and plastid derived sequences. We also tried to answer the question if
mtDNA can be a source of evolutionary information in phylogeography and conservation of endangered
species.

Assuming the structural dynamics of mitogenomes, the application of complete genomic sequence in
microevolutionary studies of vascular plants may be problematic due to relatively difficult assembly as well as a
proper interpretation of recombination events. However, in this study we tried to identify and validate single copy
mitogenomic regions, which can serve as a potential resource for population scale studies using mtDNA
information.

Methods
Plant Material and nucleic acids extraction

Plant material used in this study was collected from Polish population of Pulsatilla patens (P13 - Rudne, Poland;

53°23'N, 21°35'E, Figure 4) during previous population studies [34]. Formal identification of the plant material
was performed by Monika Szczecinska.

All plant material has been deposited in Herbarium of Department of Botany and Nature Protection in Olsztyn
(OLS) with specimen label: Pulsatilla patens P13 - Rudne.

The DNA and RNA was isolated from the leaves of the same individual. The mature leaves of the healthy plant
during its flowering stage were collected and used for total RNA extraction immediately after collection using
modified phenol/SDS method for plant RNA preparation [73]. Adequate RNA quality and quantity of RNA
samples was ensured by Bioanalyzer (Agilent) analysis. The RNA integrity value was measured using
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Bioanalyzer 2100 (Agilent Technologies, Santa Clara, California, USA). The purified total RNA was used for
sequencing library preparation.

Total genomic DNA extracted from fresh tissue immediately after collection. Ca 1 cm2 of cleaned leaf tissue
was ground with silica beads in a MiniBead-Beater homogenizer for 50 s and subsequently processed following
CTAB protocol [74].

DNA quantity was estimated using the Qubit fluorometer and Qubit™ dsDNA BR Assay Kit (Invitrogen, Carsbad,
NM, USA). DNA quality was checked by electrophoresis in 0.5% agarose gel stained with Euryx Simple Safe
(Eurx, Gdansk, Poland). The extracted DNA prior to long-read sequencing was carefully examined and
additionally cleaned using Genomic DNA Clean and Concentrator kit (Zymo, Irvine, USA).

Genomic DNA lllumina sequencing

The genomic libraries for short-read sequencing were constructed with TruSeq DNA kit (Illumina, San Diego, CA,
USA) and was sequenced using HiSegX (lllumina) to generate 150 bp paired-end reads at Macrogen Inc. (Seoul,
Korea) with 350 bp insert size between paired-ends.

Nanopore sequencing

The long-read libraries were constructed using Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore
Technologies) and NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing
(New England Biolabs) according to manufacturer’s protocol and sequenced using MinlON MK1B portable
device (ONT) and R.9.4 Flow Cell (ONT). The Flow Cell was prepared for sequencing with Flow Cell Priming Kit
EXP-FLP002 (ONT). Sequence reads were basecalled using high-accuracy guppy basecalling on MinKNOW
platform.

PacBio sequencing

The sample was prepared according to a guide for preparing SMRTbell template for sequencing on the PacBio
Sequel System. The library preparation and sequencing were done by Macrogen Inc. (Seoul, Korea).

Reads polishing

In order to use sequencing reads of the best quality the nanopore reads were polished using hybrid read error
correction method. First, the Burrows-Wheeler Transform (BWT) of the short-read lllumina dataset was
constructed using ropeBWT2 [75]. Next, FMLRC [76] was used to build FM-index and correct errors occurring
within nanopore reads.

RNA sequencing

Total RNA extraction was performed immediately after collection using modified phenol/SDS method for plant
RNA preparation [73]. Adequate RNA quality and quantity of RNA samples was ensured by Bioanalyzer (Agilent)
analysis. The RNA integrity value was measured using Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
California, USA). The purified total RNA was used for sequencing library preparation. The extracted RNA was
used for library construction using Truseq RNA kit with Ribo-Zero option (lllumina) and sequenced using
lllumina NovaSeq 6000 platform by Macrogen Inc. (Seoul, Korea).

Mitogenome assembly and annotation
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To avoid extensions of chloroplast genome sequences, the complete plastid genomes were assembled using
NOVOplasty v2.8. [77] with previously published Pulsatilla patens plastome as reference [32]. The unmapped
reads generated from three platforms were used for contig assembly using SPAdes hybrid assembler. The
obtained contigs were imported into Geneious Prime to identify contig containing mitochondrial genes based on
available plant mitogenomic resources in GenBank. Initial repeat analysis revealed presence of multiple repeats
in 100-1000 bp range and to avoid misassembly the nanopore and PacBio reads shorter than 2 kbp were
removed from further analyses. The sequences containing mitochondrial genes were extended by mapping
using Geneious mapper with five iterations with minimal overlap of 3000 bp and overlap identity of 95%. This
approach enabled assembly of six scaffolds containing all known mitochondrial genes. These sequences were
flanked by large 8- 87 kb repeats. Careful examination of nanopore reads enabled the proper orientation of three
flanking regions reducing the number of scaffolds to three, which can not be assembled together due to
opposite orientation of flanking repeats. The assembly was verified by mapping of PE reads with min overlap of
140 bp and identity of 99% which revealed ca 600x coverage of single copy regions and proportionally higher at
repeats and plastid derived regions.

Mitochondrial protein coding genes were annotated using MITOFY web-based software [28]. The congruence
with ORFs predicted by Geneious software (with 300 bp minimal length) were manually checked. Exonic-intronic
boundaries were corrected using RNA-seq library reads. The ORFs identified within the intergenic spacer and
longer than 300 bp length were blasted against the GenBank database using BLASTX. The rRNA and tRNA
genes were identified using RNAmmer 1.2 [78] and tRNAscan-SE version 1.21 [79], respectively. The repeats were
identified using RepeatFinder plugin for Geneious suite with minimum length set as 500 bp and up to 15%
mismatches between repeats. The transposable elements were detected and classified using the LTR_Retriver
package [80].

Identification and confirmation of RNA editing sites

In order to predict C-to-U and U-to-C RNA editing sites, the PREPACT 3.12.0 (Universitdt Bonn, Bonn, Germany)
[65] tool was used with the BLASTX mode and 0.001 e-value cut-off.

The RNA-seq reads obtained from the same individuals as DNA were used to confirm predicted RNA editing
sites. The transcriptome and genome datasets were compared using RES-Scanner with default settings [81]. The
editing frequency were calculated using previously published approach [63].

Phylogenetic analyses

The phylogenetic relationships were investigated using three datasets. The main dataset contains 29 protein-
coding genes present in the most known angiosperm mitogenomes including: atp1, atp4, atp6, atp8-9, ccmB,
ccemC, cemFC,cecmFN, cob, cox1-3, matR, mtitB, nadl-7, nadd, rol2, rpls, roN0, N6, rps1-4, rps8, ps11-14, ps19
and sdh4. Next two datasets including RNA and DNA polymerase genes which were found in P, patens and other
species mitogenomes.

Extracted protein-coding genes were aligned using MAFFT [82] and trees were calculated using IQ-Tree [83]
under the model automatically selected by IQ-TREE (‘Auto’ option in IQ-TREE) for 5000 ultrafast [84] bootstraps,
as well as the Shimodaira—Hasegawa-like approximate likelihood-ratio test [85]. Optimal evolutionary models
for each gene were selected on the basis of BIC criterion calculated using Modeltest GTR+F+I+G4 [86, 87].
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Variation detection

The sequences of P alpina and P, pratensis mitochondrial genes were obtained by mapping short reads to P
patens mitochondrial genes dataset extracted from assembled genome.

The SNPs were detected using Geneious Prime 2019 software (Biomatters, Auckland, New Zealand) with
options: minimum coverage set to 20 and minimum variant frequency set to 0.8. The pi diversity values were
obtained using Tassel 5.2.60 software [88].

Results & Discussion

Sequencing results

The initial assembly strategy assumed using only PE and PacBio long reads, which should overcome issues
with plastid derived regions as well as most of long repeats which form the most sequenced plant mitogenomes
not exceeding 1-10 kbp range [2]. However, obtained PacBio sequencing results (2 Gbp) revealed mitochondrial
reads up to 2 kbp and coverage ranged from 4-10x, which only resolved part of issues related with long repeats
and plastid derived regions. Better results were obtained with the nanopore sequencing, where 24-hour runs
enabled the obtaining over 8 Gbp of data. This resulted in 60x coverage of single copy mitochondrial regions
and enabled proper orientation of repeat flanking contigs.

Mapping PE read onto assemble mitogenome revealed mean 531x coverage for single copy regions and
relevelant multiply for repeat regions (up to 5000 x coverage).

Mitogenome structure

Obtained results do not support the master chromosome hypothesis either in circular or linear form. Hybrid
assembly using ONT and lllumina reads enabled to obtain three mitochondrial contigs (named chromosomes
chMt1-chMt3) flanking by overlapping repeats A - D, which were also found inside chromosomes chMt1 and
chMt2 (Figure 1).

The main role in shaping the structure of Pulsatilla mitogenome are up to 87 kbp- long repeats (Figure 1). The
longest of them, Repeat D is located at 5" end of chromosome chMt1 and 3’ end of chromosome chMt2. This
repeat also contains remaining long repeats including almost 39 kbp- long Repeat C, 13 kbp Repeat B and 8 kbp-
long Repat A (Figure 2).

The Repeat C is flanking the 5' end of chromosome chM3t and appears also inside chromosome chMt1. The &
end of chromosome chMt2 is flanked by Repeat B, which is also an internal part of chromosome chMt1, while
remaining ends of chromosomes are flanked by Repeat A.

In the case of Pulsatilla patens the linearity of chromosomes chMt1 and chMt2, which contain large repeats A, B

and C was supported only by six and eleven nanopore reads respectively, but junctions were positively validated

by long-range PCR amplification. However designed PCR primers to single copy regions closest to flanking

repeats did not amplify any detectable products, which may support circular master chromosome hypothesis.

The fact that single circular molecule is an oversimplified representation of the plant mitochondrial genomes

and that they rather exist in vivo as a mix of circular, linear and branched forms is well documented [8, 13, 14].
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However, a circular structure can usually be observed at the level of sequence assembly due to the presence of
multiple repeats. This is not the case for P patens where internal repeats are also present but their location does
not allow to reconstitute the master circle chromosome. It's also indirectly supported by unequal short and long
reads coverage distribution along the main flanking repeat. The linear of P patens mitochondrial chromosomes
is also supported by features usually found in other species with linear single or multichromosomal
mitochondrial genome: a terminal inverted repeat and the genes of RNA and DNA polymerases [15]. The
multichromosomal, linear mitogenomes were not previously reported in early eudicots, since Aconitum,
Anemone and Nelumbo support master circular chromosome hypothesis [16, 17].

Multichromosomal architecture of the mitochondrial genome was previously reported in several tracheophytes
species and can form circular, linear or branched molecules. The diversification of mitogenome structures
appear in the earliest tracheophyte lineages, while the evolutionarily older land plants, bryophytes exhibit single
circular mitogenome molecules [18]. Starting with lycophytes, where single circular mitochondrial chromosome
were confirmed only for Huperzia [19, 20, 21], non-circular and multichromosomal mitogenomes are widely
distributed among different fern, gymnosperm and angiosperm lineages. Two circular mitochondrial
chromosomes were found in early divergent fern Psilotum nudum, while in Ophioglossum californicum supports
master circle chromosome hypothesis [22]. The sequenced gymnosperm mitogenomes of genera Cycas, Ginkgo,
Welwitschia and Taxus could be also assembled into single circular molecule [22, 23, 24], but the larger, over 5
Mbp mitogenomes of Picea species are described as multichromosomal and linear [25, 26]. The mitogenomes
of angiosperms are structurally variable at genus or even species level. The largest and smallest known
angiosperm mitogenomes belong to the species of Silene which exist in single or multichromosomal, but
usually circular forms [10]. Single and mulichromosomal circular mitogenomes were reported for variety of
Allium cepa [27], and linear, branched or circular mitochondrial molecules were found in single individual of
Lactuca sativa [8]. Out of three mitochondrial chromosomes of Solanum tuberosum two could be assembled as
circular, but the third exist in the linear form [12].

The presence of master circular mitogenome structure can not be completely excluded. The assembly of
Chrysantheum nakingense mitogenome using similar approach confirmed the master chromosome structure
relying only on 4 nanopore reads, but modules were not flanked by long inverted repeats [14], as it was in the
case of P, patens.

Gene content

Annotation of Pulsatilla patens mitogenome enables the identification of a set of genes (rRNA, tRNA and CDS)
that is typical for angiosperms (Table 1). According to classification of [3] sequenced mitogenomes contain all
“core” genes (atp1, atp4, atp6, atp8 atp9, ccmB, ccmC, cmmFc, ccmFn, cob, cox1-3, matR, mttB, nad1-7, nadd)
and most of genes defined as “variable” (ro/1, rp/5, N0, N6, Ps1-4, rps7, rps11-14, rps19, sdh4). These genes
were also found in the three remaining Pulsatilla species including P alpina, P pratensis and P, vernalis. From
the “variable” gene list only rps10 and sdh3 were not found in the Pulsatilla mitogenome. The fragments of
sdh3 including exons 1 and 2 were found at chromosome chMt3, but they contain two internal stop codons and
cover ca. 40% of functional genes. Both genes were not detected in RNA-seq analysis, so they were unlikely to be
transferred to the nucleus. The presence of this gene pair (rps10 and sdh3) in plant mitogenomes seems to be
correlated, since out of 18 cases of ps10 or sdh3 absence, in 15 cases both are missing [3]. Despite using deep
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sequenced libraries enabling nuclear genome coverage above 40X, the presence of these genes was not
confirmed even in nuclear genomes.

The repeat units in the P patens mitochondrion contain three protein coding genes: nad3, nads (exons 1-3) and
rps12. All three genes are located in the Repeat A, over 48 kbp long duplicated region, resulting in two identical
copies in the mitogenome. The different copy of rps12 is located in a single copy region with pairwise identity
81.9%. The RNA-seq analysis confirmed the expression of both rps12 variants. These genes are also duplicated
or even triplicated in few known mitogenomes including Cycas taitungensis (AP009381), Oryza minuta
(NC_029816) and Vitis vinifera (NC_012119). In the case of the mitogenome of Daucus carota (NC_017855), the
rps12 gene is triplicated, but opposite to Pulsatilla mitogenome, all three copies are identical. The partial
duplication of nad5 gene was also described in mitogenomes of Beta vulgaris (BA000024), Cynanchum
auriculatum (MH410146), Rhazya stricta (KJ485850) and Tamarindus indica (MN017227).

Pulsatilla patens mitogenome consists of two large ORFs encoded polymerases, which were recently reported in
plant mitogenomes [8, 14]. The 2,850 bp long Ppo_DNA_pol_B (encoding DNA polymerase) gene and 2,154 bp
Pp_RNA_pol (encoding DNA-dependent RNA polymerase) are located at the chromosome chMt1.

The length of Pp_DNA-pol_B gene is similar in size to previously reported Ac_DNA_pol_B gene (2,814 bp) found
in Actinidia chinensis but the homolog of Po_RNA_pol gene of this species is remarkably shorter counting 1,743
bp.

Mining available angiosperm mitogenomes towards polymerases encoding genes revealed their presence in
over 50 accessions in the case DNA polymerase and 18 accessions in the case of RNA polymerase assuming
blastx identity threshold above >50%.

Both genes were reported from several mitogenomes, but the expression of them remained unconfirmed in most
of the studies. Angiosperm mitochondrial genomes contain DNA derived from exons of the nuclear genome [28,
29, 30], but the examples of expression are rather rare. The expression of nuclear derived gene arf17 was
confirmed in mitogenomes of Arabidopsis [31], but it's rather a rare exception. The RNA-Seq analysis confirmed
the presence of MRNA of polymerase coding genes in all three analysed samples. However, since availability of
nuclear genomic resources of P, patensis limited to NOR regions [32, 33], the nuclear origin of these transcripts
can not be ruled out.

The presence of polymerase coding genes seems to be limited to P patens. Both genes are absent in the three
other Pulsatilla species, including P, alpina, P pratensis and P, vernalis as well as in more distant species of
Ranunculales, Anemone maxima and Aconitum kusnezoffii. Moreover, among eight analysed specimens of P
patens, the presence of polymerase like genes was not confirmed in individuals from populations STR6 and
a115. The frequency of intraspecific presence polymerase-like genes was not analysed in previous studies, but
the lack of these genes in samples from southern populations [34] could indicate its recent transfer from
nucleus.

Table 1. Gene contents, localization and RNA editing of Pulsatilla patens mitogenome
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Category

Complex 1

Complex 2
Complex 3

Complex 4

Complex 5

Cytochrom c
biogenesis

Gene

nad1

nad?2

nad3
nad4

nad4L
nad5

nad6
nad?7

nad9
sdh4
cob
cox1

cox2

cox3
atp1
atp4
atp6
atp8
atp9
ccmC
ccmB
ccmFC

ccmFEN

Location

M1(eT 8;M2(e2—

3):M3(e4-5)

M1(E1-E2);
M3(E3-5)
ChM3
ChMT1

ChMT1

ChM1 (E1-2),
CHM2 (E3-E4)
ChMT1

ChM2

ChM2
ChM1
ChM2
ChM1
ChM1

ChM1
ChM1
ChM1
ChM1
ChM1
ChM1
ChM1
ChM1
ChM1
ChM1

Gene
structure

el;e2-i1-
e3;e4-i2-
e5

el-i1-
e2:e3-i2-
e4-i3-e5
continous
el-i1-e2-
i2-e3-i3-
e4
continous
el-i1-
e2,e3-i2-
e4
continous
el-i1-e2-
i2-€3-i3-
e4-i4-e5
continous
continous
continous
continous

e-i-e

continous
continous
continous
continous
continous
continous
continous
continous
el-i-e2

continous
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RNA
editing
events

45

43

19
65CDS
+ 3
introns
12

39

17
40CDS
+6
introns
11

8

22

30

18-
cds, 1
intron

20

12
25

40
42
25
34

RNA editing
frequency

3,578732106

2,810457516

5322128852
4,36827957

4,395604396
1,937406855

2,791461412
3,410059676

1,919720768
1,93236715
1,842546064
1,890359168
0,5323868678

2,506265664
0,1937984496
2,116402116
3,267973856
1,851851852
0,4444444444
5,376344086
6,763285024
1,081782778
1,960784314

CDS
Length
nc/aa

978

1530

357
1488

273
2013

609
1174

573
414
1194
1587
3381

798
1548
567
765
486
225
744
621
2311
1734

GC
content

43,6

41

42
42,7

374
41,8

41,2
44,6

42,9
38,9
42,5
44

49,4

452
443
42,5
387
40.1
37,3
44,4
427
49,7
47,3




Ribosome rpl2 ChM1 el-i-e2 1 0,06600660066 1515 51
large subunit
rpl5 ChM1 continous 10 1,792114695 558 441
rpl10 ChM1 continous 6 1,19760479 501 42,9
rpl16 ChM1 continous 10 2,096436059 477 45,3
Ribosome rps1 ChM1 continous 5 0,7278020378 687 428
small subunit
rps2 ChM1 continous 10 1,481481481 675 38,2
rps3 ChM1 el-i-e2 16 0,9523809524 1680 4372
rps4 ChM3 continous 31 2,425665102 1278 39,3
rps7 ChM1 continous 3 0,6711409396 447 43
rps11 ChM1 continous 4 0,8888888889 450 442
rps12 ChM1,ChM3 continous 11 2,91005291 378 4572
rps13 ChM2 continous 6 1,709401709 351 39,9
rps14 ChM2 continous 2 0,7575757576 262 40,2
rps19 ChM1 continous 4 1,388888889 288 39,6
Translocation mttB ChM1 continous 43 5,449936629 789 447
pathway
Maturases matR ChM3 continous 19 0,9639776763 1971 52,5
HGT DNA pol chm1 continous 0 0 2850 38,7
fasciclin- chm3 continous 0 0 396 50,8
like
RNA pol CHM1 continous O 0 2154 33,6

Blasting longer orfs (>300 bp) also revealed other genes that are seldom or non-reported from mitogenomes of
angiosperms. The 396 bp long orf from chMt3 chromosome was identified as fasciclin-like arabinogalactan
protein 21 with the greatest similarity to sequences found in genomes of Medicago truncata (99% query
coverage, 96.2 percent identity) and species of genus Arachis (97% query coverage and 83-85.4% percent
identity). Unannotated gene was also found in the three chromosomes of Cicer arietinum (100% QC, 98.7 PI).
However, all blastx (and blastn in case of Cicer) hits refer to nuclear genomes of Fabales species, suggesting
that this gene was recently acquired by intracellular HTG from nucleus or was previously unannotated in known
mitogenomes. Blasting against known mitochondrial genomes revealed the presence of this gene (97-100%
query coverage and 99-95% percent of identity) not only in mitogenomes of Fabales (Lotus japonicus,
Tamarindus indica, Styphnolobium japonicum and Medicago truncata), but also in Paraprenanthes diversifolia
and Lactuca species of Asterales. The phylogenetically scattered presence of this gene in angiosperm
mitogenomes supports nuclear origin and its transfer to mitogenome independently in at least three angiosperm
orders: Fabales, Asterales and reported for the first time Ranunculales.
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The chromosome chMt1 of mitochondrial genome of Pulsatilla patens contains orf encoding RNA-dependent
RNA polymerase (RdRP) and an expression of this gene was confirmed by RNA-seq analysis. The RdRp gene is
recognized by its conserved protein domain family, pfam05919 and is presumably required for replication of
mitoviruses [35] and was found in 40 out of 50 analysed plant mitogenomes [36]. Mitoviruses have small,
nonsegmented RNA genomes and all are through to replicate in the host mitochondria [37, 38]. They were
previously known from fungal hosts [39] and their detection in plant transcriptomes was considered as a
contamination from fungal pathogens or as a result of HGT [36]. However, the recent studies suggest an
existence of the contemporary plant mitoviruses [35]. The completeness of RdRP gene in plant mitochondrial
genomes varies from nearly complete versions of the RARP to remnants barely detectable in sequence searches
[36]. The RARP gene found in the Pulsatilla mitogenome is 292 aa long and belongs to the longest among those
found in plants. The further studies on Pulsatilla transcriptomes are required to confirm the presence of a
complete mitovirus genome, which can be up to 4.4 kbp long [35].

The 328 aa long orf encoding reverse transcriptase with retrotransposon gag protein domain pfam03732 were
found on chromosome chMt3 (blastx up to 90% of query coverage and >50% identity), however blasting against
known plant mitogenomes did not provide any hits. The discovery of this gene encouraged us to perform LTR
search in the assembled mitogenome, which are often considered as HGT vectors among nuclear and
mitochondrial genomes [40]. Several orfs longer than 500 bp remain unidentified, as no significant hits were
found in public databases, despite their expression end RNA editing events. However, the genomic resources of
early eudicots are poorly explored.

Primary annotation of rp/2 gene did not reveal presence of stop codon at the end of the second exon. In the
most angiosperms the stop codon of mitochondrial ps2 is generated by C->U RNA editing process [41, 42, 43].
However, despite deep reads coverage, the editing required to develop stop codon in rp/2 was not detected even
at low frequency. This gene in various angiosperm lineages is known by different intermediate stages of its
transfer to the nuclear genome [44]. It has been proposed that part of rp/2, located between the intron and 3’ end
of the gene, was transferred to the nuclear genome in the ancestor of core eudicots, most likely preceding the
generation of a stop codon TAA. That left mitochondrial rp/2 shortened to form present in most angiosperm
mitogenomes [45]. Following fission, the 5’ part of rp/2 was transferred to the nucleus in Fables, lettuce and
probably several other eudicot lineages [46]. The mitochondrial rps2 of P patens is longer than in core eudicots
and corresponds to structure found in the early angiosperms: Magnoliales [47] and Nymphaeales [48]. The lack
of variant in the rpf2 and surrounding regions suggests, that process if rp/2 transfer to nuclear genome appear
after divergence of Ranunculales, but before divergence of Proteales, since mitochondrial genome of Nelumbo
nucifera contains shortened p/f2 known from core eudicots [17].

Phylomitogenomics relationships of Pulsatilla patens

The phylogenomic analyses based on protein-coding mitochondrial genes resulted in trees with similar
topologies (Figure 3, Figure S1) and obtained topologies are congruent with previously published papers [49].

The phylogenetics analysis of 39 protein-coding mitochondrial genes reveals Aconitum, Anemone and Pulsatilla
(Ranunculales) as early divergent eudicots with Nelumbo nucifera (Proteales) as it's closest relative (Figure 3).
However, the phylogenomics analyses did not resolve Proteales-Ranunculales relationships with a maximal
support. Previous studies using mitochondrial dataset [49], resolved Nelumbo as a basal for eudicots, however, it
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naturally did not include any member of Ranunculales. The phylogenetic position of Pulsatilla patens is
congruent with plastome datasets, which resolved Ranunculales as an earlier divergent than Proteales [50]. Also,
the analysis of 1,594 nuclear loci resolved Ranunculales as an older group than Proteales [51] and provided
results congruent with chloroplast and mitochondrial data. The main aim of this analysis was the phylogenetic
placement of mitogenomes containing polymerase genes (DNApol, RNApol) which are scattered along the whole
tree.

Phylogenetic relationships of mitochondrial DNApol and RNApol genes in many cases did not reflect the
phylogenetic position of species (Figures S2-S3), suggesting it's independent acquisition via horizontal gene
transfer, which was reported several time in plant mitochondrial genomes [4, 52, 53]. The sequences of
polymerase genes extracted from mitogenomes of close related species usually group together, but in some
clades even orders are mixed. The phylogenetic position of Po_RNA_pol gene remained unresolved (Figure S3)
and Pp_DNA_pol gene was clustered together with genes coming from evolutionary unrelated genera like
Theobroma, Actinidia and Prunus (Figure S2).

Repeats

Based on the currently known genomic resources, these large repeats seem to be limited to the genus Pul/satilla.
The BLAST against known mitogenomes revealed only presence of very short (up to 400 bp in case of
Ligustrum sp.) parts of these repeats in other plant species. Each of three P patens mitochondrial chromosomes
is flanked with the same pair of inverted repeats, which seem to be unique among known mitogenomes.
Chromosomes of Solanum tubersoum are also flanked with repeats, however in this case, the repeats were
present in only two copies and their length ranged from 1,208 to 11,915 bp [12].

Beside mentioned large repeats, which shape the P patens mitogenome structure only two repeats longer than
1,000 bp were found. The repeats S1 (1,889 bp) and S2 (1,594 bp) were located at chMt2 and present in two
copies. Additional two repeats shared among chromosomes fall within 500-1,000 bp range: repeats S3 (848 bp
long) were found at chMt1 and chMt2 and repeat S4 (697 bp) were found at chMt2 and chMt3.

Chloroplast derived regions

DNA transfer from plastome to mitogenome is well documented in almost all vascular plant lineages [29, 54].
This transfer is usually not limited to a single gene, but in most cases it comprises a cluster of genes, which
seems to be conserved among angiosperms [55]. The Pulsatilla patens, which belongs to early divergent
angiosperm order Ranunculales, reveals over 35 kbp of plastome derived regions in its mitogenome, called
MTPT (plastid-derived mitochondrial DNA), which comprise 3.6% of total mitogenome length (Table S1). The pt-
derived DNA is distributed among all the mt-chromosomes: 5, 3, and 1 transfer were found in chMt1, chMt2 and
chMt3 respectively. Out of 9 unique cp-mtDNA regions, 5 were transferred from chloroplast inverted repeat
regions, including longest, over 19 kbp. In total, almost the whole IR region (except gene ycf1) was transferred to
mitochondrion in scattered form mainly over chMt1 with one part located on chMt2. The length of the longest
MTPT is unusual, since the most previously identified chloroplast derived regions fall within 200-4,000 bp range
[56] and the largest, 12.6 kbp long MTPT was found in Zea mays mitogenome [57]. In the other known
mitogenome of Ranunculales, Hepatica maxima, the MTPT fragments are up tp 7.1 kbp long, with total length
of 16 kbp [16] The presence of an almost complete IR region in P patens mitogenome suggests that it was
derived from single transfer that was subsequently split and partially duplicated by rearrangement. Similar
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scenario was described in Silene conica, where 35 kbp region was transferred in a single event but later, most of
this MTPT was removed by a series of deletion events [57]. The mitogenome of P patens contains 26.7% of
plastome (excluding one copy of IR) which falls between Cucumis melo (22.7%) and Bambusa oldhamii (40.9%)
Due to lack of mitogenomic data on early divergent eudicots it's difficult to infer the evolutionary significance of
the amount of transferred cpDNA.

Among MTPT gene clusters identified by Wang et al. [55], three were not found in P patens mitogenome: atpE-
rbcl, psbE-psbF and ycf1-trnN. Another transferred cluster specific for eudicots, psaA-psaB [55] was splitted
among chromosomes chMt1 and chMt2 (Table S1). The rpoC1-rpoC2 cluster found at chromosome chMt3 was
not specific for Pulsatilla, as blasting it against known plant mitogenomes confirmed its presence in six
mitogenomes belonging to different orders: Phoenix dactylifera (Lililes), Sapria himalayana (Malpighiales),
Solanum aethopicum (Solanales), Ziziphus jujuba (Rosales), Spondias tuberosa (Sapindales) and
Ammopiptanthus mongolicus (Fabales). Recent studies hypothesize that plastome sequences were initially
acquired by intracellular gene transfer and then were transferred among plant lineages via mitochondrial
horizontal gene transfer [56], however in the case of Pulsatilla mitogenome this scenario in rather unlikely. The
longest MTPT (chloroplast transfer 4) contains 11 genes which order is characteristic for all known Pulsatilla
chloroplast genomes and intergenic spacer sequences is specific for this genus [32, 33, 58, 59]. Separation of
MTPT from plastome reads with the whole genome sequencing approach could be challenging, especially while
only short reads sequencing results are available, which could be mapped on both regions making them look
like each other. Application of two long reads sequencing platform enabled presence of core mtDNA and MTPT
in single reads, which confirmed the mitochondrial origin of MTPT which fall within the range of cpDNA
variation at intraspecific level [32] suggesting it's acquisition via intracellular gene transfer.

RNA editing

According to previous studies RNA editing is obligatory for few mitochondrial genes by creating initiation or
termination codons [12]. In the Pulsatilla patens mitochondrial genome, the C->U editing is required to create
start codon in nad1 and stop codons in atp6, s11, ccmFC, and cox2 genes.

The mitochondria of flowering plants usually have 300—-500 sites that are subjected to RNA editing [60]. Despite
considering only editing events with frequency above 0.5, the number of affected sites (907) is bigger than in
Solanum [12] and Populus [61], where 799 and 355 editing events were detected respectively. High number of
editing sites in CDS of P patens mitogenome can not be explained by tissue used for RNA extraction, since leaf
(as in case of our study) and root tissues are considered as less frequently edited than flower tissues [62]. The
lower number of predicted RNA-editing sites was given for Hepatica maxima [16] due to presence of two genes
missing in P patens (rp/10 and sdh4). However, predicting-based estimation of RNA-editing sites usually
overstates the amount of RNA-seq verified editing sites [63].

The number of observed edited sites varies from single in 70/2 up to 65 in nad4 (Table 1, Fig. S4). Considering
gene category, the highest number of edited base pairs was found in the genes of Complex 1 (nad) and
Cytochrome C biogenesis (ccm), which is congruent with data obtained for Populus [61] as well as for early land
plants [63]. Despite deep transcriptome sequencing, the reverse U->C editing, which was documented in many
early divergent tracheophytes lineages [64], has not been observed at assumed frequency in P patens
mitogenome.
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In our study, the high number of editing sites can not be explained by possible false-positive results often
observed in many surveys, where DNA and RNA libraries were prepared from different individuals.

Interspecific variation in protein- coding genes

The comparative analyses of P alpina, P patens and P, pratensis protein coding genes (CDS) revealed 50 SNPs
(43 dN and 7 dS) and 23 (18 dN and 5 dS) differentiating P patens from P alpina and P, pratensis respectively
(Table XS2). Eight out of 38 compared genes did not reveal any interspecific variation (nadl1, nad3, nadb6, nadd,
cox3, ccmC, rpl2, mttB) and in the next seven genes only single SNPs were detected (nad4, nad4lL, nad5, nad7,
cox1, ccmB, rps12, matR). The interspecific comparison revealed that the genes of complexes I-IV are least
variable, while the most of interspecific variation is accumulated in the genes of Complex V and genes of small
ribosomal subunit. Among the genes of Complex V the lowest variation was found in atp9 (only two
synonymous mutations), while in the remaining number of nucleotide substitution among atp genes varied from
7 (atp8) to 12 (atp1).

The genes belonging to other groups revealed low variation, except from ccmFC where 16 substitutions were
found.

Most mutations found in protein- coding genes were substitutions, however the indels were also identified in five
genes including 2aa indel in atp4, 5aa in ccmFC, 3aa in rps1, 4aa indel in rps3 and the largest, 30aa indel in
rps4. With single exception of atp4 (3 bp shorter CDS in P pratensis than P, patens), the rest indels were found in
R alpina.

The mitochondrial genes are usually considered as slower evolving than chloroplast genes [65, 66], but the
comparative analyses at genus level are limited to only a few genera.

The number of mutations of Pulsatilla mitochondrial CDS did not deviate from chloroplast CDS, especially when
comparing atp and rps genes. Chloroplasts CDS of atpA, atpB, atpE and atpl revealed 3, 2, 1 and 1 substitutions
respectively despite analysing six individuals from three Pulsatilla species [32]. Also the genes of small
ribosomal subunit of chloroplast genome were less variable, with only two substitutions in ps11 and rps15.
With exception of the most variable ycf1 (39 substitutions), the numbers of substitutions in the remaining,
relatively variable chloroplast CDS, ranged from five to seven [32].

The raw numbers of indels and substitutions could be biased by differences in genes length, therefore the pi
nucleotide diversity is often used to estimate relative differences in the variation among genes. The pi values in
the case of analysed Pulsatilla species (excluding mentioned above non-variable genes) varied from 0.0003
(matR, nad5) to 0.0516 for rps4 (Table S3). Nine of the ten most variable genes comprised genes from Complex
V and small ribosomal subunit (Table S4), which corresponded to the raw numbers of detected SNPs.

The mitochondrial protein- coding genes of Pulsatilla genus revealed relatively high variation in comparison to
other vascular plants. Only eight SNPs were found among mitochondrial genes in the genus Larix [66]. On the
other hand, the number of SNPs at species level in Silene vulgaris was much higher (144 SNPs), but they mostly
concentrated into three genes: atp1, atp6 and cox1 [10]. However, the genus Sileneis known for its extreme
mitochondrial diversity, not only at substitution level but also in structure and gene content [10].

Mitochondrial genomes as a resource for phylogenetic and phylogeography studies
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The plastomes of Ranunculaceae are structurally variable [32, 68], but at the genus level the gene order seems to
be conserved [32, 33, 58, 59]. Currently the data on sequenced mitogenomes of Ranunculaceae are restricted to
three species, with different mitogenome structure, gene content and order. However, based on preliminary
mappings of sequenced short-read libraries from Pulsatilla alpina, P vernalis and P, pratensis, the selection of
regions for phylogenetic and phylogeographic studies on generic level is quite challenging due to common
presence of large repeats and MTPTs. Moreover, the linearity of preferred regions should be conserved among
species. Eight single copy linear regions of minimum length 10 kbp with shared, identical gene order among
analysed species were identified at chromosome chMt1 at 89K-122K, 149K-160K, 168K-179K, 123K-252K, 283K-
299K, 303K-333K, 377K-399K, 409K-424K. Together 165 kbp of the total 452 kbp (36 %) of chromosome chMt1
were suitable for low-level phylogenetic and phylogeographic studies. In the case of shorter chromosome chMt2,
for regions meeting above criteria was found: 83K-94K, 101K- 126K, 214K-276K, 295K-323K, which consist 37%
(126K bp) of total chMt2 length. At chromosome chMt3 only two phylogeny suitable regions were found
between 49K-67K and 80K-100K, which consisted 19% (38k bp) of total chMt3 length. The phylogenetic usage
of mitogenomes in plant studies is mainly limited to CDS sequences, due to high evolutionary dynamics of
molecule structure. The beyond-CDS mitogenomic phylogenetics is limited mainly to early land plants with a
stable structure like liverworts [65] and mosses [6, 69, 70] and few studies on vascular plant taxa where both
CDS an intron sequences were used [71]. The amount of shared mitogenomic clusters among Pulsatilla species
seems to be high in comparison to genera like Picea, where only two shared clusters up to 9 kbp were found [26].
Mitochondrial conserved regions seem to have a great potential in phylogenetic studies, despite their taxa
specific restrictions. Since their application in low- level phylogenetics is not straightforward like plastid
genomes, they can provide better phylogenetic resolution than plastomes [72].

Conclusions

Mitochondrial genome of early divergent eudicots, Pulsatilla patens revealed multichromosomal structure driven
by extraordinarily long, flanking repeats, and shed new light on mitogenomics of early eudicots. The presence of
longest, continuous MTPT with structure characteristic for Pulsatilla plastomes suggests its acquisition via
intracellular transfer, not via mitochondrial HTG as recently hypothesized. The mitogenome sequences of
Anemone, Aconitum and Pulsatilla confirm Ranunculales as earliest divergent eudicots.
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Mitochondrial genome of Pulsatilla patens - 986,613 bp
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Figure 1

The mitogenome map of Pulsatilla patens. The mitochondrial gene order and chromosomal localization are
given in the upper part of the draw - the chromosomes are rescaled. The lower part presents all genes, including

MTPTs and flanking repeats.

Figure 2

The alignment of chromosome flanking repeats.
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Figure 3

Phylogenetic tree based on protein-coding mitochondrial genes (green species names — genus contain both
polymerase genes (DNApol, RNApol), blue species names — genus contain only DNA polymerase genes
(DNApol), red species names — genus contain only RNA polymerase genes (RNApol); C - circular mitogenome, L
- linear mitogenome, MC - multicircular mitogenome, ML — multilinear mitogenome).
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o

Pulsatilla patens on the location P13 (phot. Monika Szczecinska)

Figure 4
Location of sampled specimens of Pulsatilla patens.
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