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Abstract15

High throughput quantitative analysis of microscopy images presents a challenge due to the complexity16

of the image content and the difficulty to retrieve precisely annotated datasets. In this paper we introduce17

a weakly-supervised MICRoscopy Analysis neural network (MICRA-Net) that can be trained on a simple18

main classification task using image-level annotations to solve multiple more complex auxiliary tasks, such19

as segmentation, detection, and enumeration. MICRA-Net relies on the latent information embedded20

within a trained model to achieve performances similar to state-of-the-art fully-supervised learning. This21

learnt information is extracted from the network using gradient class activation maps, which are combined22

to generate precise feature maps of the biological structures of interest. We demonstrate how MICRA-23

Net significantly alleviates the expert annotation process on various microscopy datasets and can be used24

for high-throughput quantitative analysis of microscopy images.25

1 Introduction26

The development of powerful microscopy techniques that allows to characterize biological structures with27

sub-cellular resolution and on large field of view tremendously increased the complexity of quantitative28

image analysis tasks [1]. The resulting images exhibit a wide range of structures that need to be identified,29

counted, precisely located, and segmented. Expert knowledge is commonly required to achieve successful30

identification and segmentation of the multiple structures of interest in microscopy images [2, 3]. These31

tasks can be tedious and time consuming especially for large databanks or for the comparison of multiple32

biological conditions. It was recently demonstrated that deep convolutional neural networks (CNN) are33

excellent feature extractors [4]. They were successfully applied to segmentation (e.g. whole cells, nuclei,34

dendritic spines), enumeration (e.g. cell counting), and classification (e.g. state of cell) of structures in35

microscopy images [5–9]. The most common deep learning (DL) approaches applied to microscopy and36

biomedical images are fully-supervised and require precisely annotated datasets. Hence, it is often a limiting37

step in the application of DL for quantitative analysis of biomedical imaging [3, 10, 11]. To alleviate the38

annotation process, weakly-supervised DL methods were introduced [11–14]. Bounding box annotations are39

commonly used for weakly-supervised segmentation tasks as they are simple, allow the task to be spatially40
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constrainted [2, 13, 15–17], and were shown to decrease the annotation phase by 15-fold compared to precise41

identification of structure boundaries [18]. Methods for training with binary, image-level targets, reducing42

even further the complexity and duration of the annotation task, have been proposed when multiple instances43

are displayed on a single image [19]. Unfortunately, when applied to microscopy and biomedical image44

analysis, such weakly-supervised approaches using whole image annotations resulted in lower segmentation45

precision compared to approaches using precisely identified structures [20–22].46

In this paper we propose MICRA-Net (MICRoscopy Analysis Neural Network), a new approach rely-47

ing only on image-level classification annotations for training that achieves performances similar to fully-48

supervised methods on multiple microscopy analysis tasks. MICRA-Net builds on latent learning [23], which49

refers to a model retaining information (i.e. latent space) that is not required for the task at hand in or-50

der to learn new auxiliary complementary tasks [23]. In this work, we leverage the information embedded51

within a trained classification network to solve multiple complementary, yet very different, tasks relevant52

to microscopy image analysis. The network uses binary classification targets as input to build a general53

representation of the specific dataset and generates precise feature maps from which specific tasks such as54

segmentation, detection, and classification can be addressed. Even further this showcases the potential of55

MICRA-Net for addressing various high-throughput microscopy analysis challenges, relying solely on weak56

image-level annotations for training.57

2 Results58

2.1 Multi-class segmentation of synthetic images59

The generation of precisely annotated large datasets to train deep neural networks remains a challenge in the60

field of microscopy and biomedical imaging. MICRA-Net, a CNN-based method, addresses this challenge61

by using solely whole-image binary targets for training. The network was trained on a simple multi-class62

classification task and we evaluated its capacity to perform diverse auxilliary tasks (e.g. segmentation,63

enumeration, detection) relevant to high-throughput microscopy image analysis. Generation of an annotated64

training dataset for each task would have required complex and time-consuming annotations such as precise65

contours or localization of the biological structures. The training dataset for MICRA-Net requires the expert66

to identify class-specific positive and negative images with respect to the structures of interest. In contrast to67

the identification of the structure boundaries using precise or bounding box contours, image-level annotations68

do not require to specify the positions of the object in the field of view of the microscopy images (Figure 1a).69

This annotation scheme thereby reduces both the expert interactions and annotation times required for the70

generation of the training dataset (Figure 1b).71

Figure 2a shows the architecture of MICRA-Net, which was designed around a CNN architecture, com-72

posed of 8 convolutional layers (L1 to L8) followed by a fully connected layer. The gradient class activated73

maps (Grad-CAM, see Methods) were extracted for each predicted class and at every layer of the network74

(Figure 2a,b). Thereafter, Rectified Linear Unit (ReLU) activation and thresholding on the Grad-CAM75

of the last convolutional layer (L8) were applied to generate a coarse class-specific feature map [24]. To76

increase the information contained in the extracted feature map, local maps from layers L1−7 were concate-77

nated, resulting in a class-specific 7-dimensions feature space (Figure 2b,c). We retrieved the first principal78

component of every pixel using principal component analysis (PCA) decomposition on the feature space to79

generate a single feature map that was used to solve different sets of specific auxiliary tasks (Figure 2c &80

Methods).81

To characterize the performance of MICRA-Net for classification and segmentation tasks, we used a82

synthetic dataset containing N randomly sampled cluttered handwritten digits from the MNIST dataset [25]83

(Modified MNIST dataset, Figure 2c & Methods). Each image may contain several instances of digits (from84

0 to 9), as well as variable levels of noise and signal to mimic variations observed in microscopy images. Our85

first step was to classify the digits appearing on each image to validate the representation capability of the86

network, which is confirmed by the obtained class-wise mean classification testing accuracy of (98.9± 0.5)%87

(mean ± std).88

In addition to the classification task, MICRA-Net generates class-specific segmentation maps of the digits89

in the modified MNIST dataset. Using the information embedded in the Grad-CAMs of the hidden layers90

(L1−7), to precisely locate each digit in the image, significantly increased the segmentation performance of the91
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Figure 1: Various supervision levels can be employed for training a DL model to segment structures of interest
in microscopy images. a) Representative image from the Cell Tracking Challenge dataset [8] overlayed with
the corresponding fully- and weakly-supervised annotations. Annotated images are presented in decreasing
spatial level of supervision and required annotation time (from left to right). b) Evaluation of the annotation
task required to generate the training set for all microscopy datasets used throughout the paper for fully-
supervised (FS) and MICRA-Net approaches. Reported above is the effective number of decisions (number
of extracted crops for MICRA-Net and number of edge pixels for FS learning) and the required time in hours.
For MICRA-Net the number of decisions corresponds to the number of extracted crops and the annotation
time per crop (assignation of a positive or negative annotation) was on average 2 seconds for all datasets. For
FS learning, the decision and annotation time for each dataset separately on a precisely annotated subset of
images was evaluated (see Methods).

network when compared to the maps obtained from the Grad-CAMs of the last layer only (L8) (Figure 2e &92

Supplementary Fig. 1. A U-Net [26] trained on the same dataset using a fully- and weakly-supervised training93

scheme was used as a baseline to better evaluate the performance of MICRA-Net. Fully-supervised learning94

consisted in training with the binary digits contours from MNIST, while weak contours were generated by95

a dilation of the digits with a square of size {5, 10, 25} pixel as a structuring element (see Supplementary96

Note 1). Figure 2f shows that MICRA-Net achieves similar or superior segmentation performance compared97

to all weakly-supervised training instances of the U-Net and is only outperformed by fully-supervised training98

(Supplementary Fig. 2 & Supplementary Tab. 1).99

2.2 Class-specific segmentation of super-resolution microscopy images100

The next question that needed to be addressed was the applicability of our approach for super-resolution101

microscopy image segmentation, for which precisely annotated datasets are rarely available. The auxiliary102

task was the semantic segmentation of STimulated Emission Depletion (STED) microscopy images of two103

nanostructures of the F-actin cytoskeleton in neurons: 1) a periodical lattice structure and 2) longitudinal104

fibers (Figure3a,b) [2]. The F-actin nanostructure segmentation task is challenging since the morphology of105

neurons is highly variable throughout the dataset, and there are many distractors around the structures of106

interest [2]. Figure 1 shows that image-level annotation reduced by more than 19 folds the time required by107

an expert to generate the training dataset compared to precise identification of the structure boundaries that108

would be required for fully-supervised DL approaches. This also corresponds to a reduction of the annotation109

time of more than 3 folds compared to the tracing of polygonal bounding boxes, which were recently used110

for weakly-supervised training of the U-Net architecture on this dataset [2].111

On the main classification task, MICRA-Net achieves an accuracy of 75.2% and 83.7% on the testing112

dataset for the F-actin periodical lattice and longitudinal fibers, respectively. This is inline with a mean113

inter-expert classification accuracy of (80± 5)% and (75± 7)% for periodical lattice and longitudinal fibers114

respectively (calculated from 6 experts using a leave-one-out scheme from 50 images), confirming the model115

capability to handle data of this nature (Supplementary Fig. 3). As described in the previous section, an116
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Figure 2: MICRA-Net architecture and experimental results on the modified MNIST dataset. a) MICRA-
Net architecture (detailed in the Methods section). Each depth is composed of two sequential convolutional
layers (Conv2D), batch normalization (BatchNorm2D), and Rectified Linear Unit activation (ReLU). A 2×2
max pooling (MaxPool2D) was employed to increase the richness of the representation from the model. A
linear layer is used to project the globally pooled L8 layer (256 filters, Global Maxpool2D) to the specified
number of classes. b) Concatenation of low- and high-level feature maps obtained from the Grad-CAMs of
every layer is performed to generate the multi-dimensional feature space for every predicted class. c) Feature
maps generated from the calculated Grad-CAMs for class 0 and 6 on the modified MNIST dataset. Each
activated class is backpropagated through the network and a local map for each layer of the network (L1−8)
is computed. d) Coarse and precise segmentation maps of the digits of a representative image (256 × 256
pixel) and insets (right, dashed white box) from the modified MNIST dataset using MICRA-Net. The
color code corresponds to the digit class and the red arrow indicates a missed digit in the field of view. e)
Evaluation of the coarse and precise segmentation performance using the i.e. F1-score, intersection over
union (IOU), and symmetric boundary dice (SBD) (see Methods). Reported here is the mean performance
over the 10 classes (see Supplementary Fig. 1 for class-wise and density-wise performances). A significant
increase in the segmentation performance is measured for precise over coarse segmentation (t-test, pF1−score =
1.6616× 10−6, pIOU = 5.2650× 10−7, pSBD = 1.1627× 10−5). f) Mean performance over the 10 classes
obtained with the U-Net trained with and without dilation of the ground truth contours. The segmentation
maps are presented in Supplementary Fig. 2a. The MICRA-Net precise segmentation (color-coded dashed
lines) surpasses the U-Net trained with 10 pixels dilation and is not statistically different from the U-Net
trained with 5 pixels dilation. Only fully-supervised training outperforms MICRA-Net precise segmentation
(one-way ANOVA followed by posthoc t-test, pF1−score = 2.0254× 10−12, pIOU = 8.7200× 10−14, pSBD =
5.7291× 10−13). All p-values are reported in Supplementary Tab. 1. Bar graphs show the mean values and
standard deviation.

informative feature map was generated from the PCA decomposition of the combined L1−7 extracted features.117

Thresholding of this feature map resulted in precise binary masks that were used to solve the segmentation118

task. Relying on a precisely annotated dataset consisting of 25 images of each structure (Supplementary119
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Figure 3: Semantic segmentation of F-actin nanostructures observed on super-resolution microscopy images.
a,b) Left : Representative raw images from a dataset of STimulated Emission Depletion (STED) microscopy
images of two F-actin nanostructures in fixed cultured hippocampal neurons: periodical lattice (a) and lon-
gitudinal fibers (b). Arrows point towards the periodical lattice (green) and longitudinal fibers (magenta).
Middle-Left : precise expert contours of the nanostructure, Middle-Right : weakly-supervised U-Net segmen-
tation masks and Right MICRA-Net segmentation masks. c, d) Performance evaluation of MICRA-Net
and weakly-supervised U-Net segmentation on the precisely annotated testing dataset using custom metrics
for rings (c) and fibers (d). The FFT (c) and intensity distribution (d) metrics evaluate the difference be-
tween the pixels found within the precise expert annotations and the two DL-based segmentation approaches
(see Methods). An increased segmentation accuracy is measured with MICRA-Net compared to U-Net for
rings (c) and fibers (d). No significant differences are measured between the precise expert annotations and
MICRA-Net segmentation mask for both metrics. Statistical analysis: c) t-test, p = 3.7342× 10−4, d) all
p-values are shown in Supplementary Tab. 2. Performance evaluation was performed within the dendritic
mask (a,b: yellow line). a,b) Scale bars: 1 µm.

Fig. 4), each segmentation performance evaluation consisted of: i) MICRA-Net, ii) multi-expert bounding-120

box annotations (6 experts on 25 images of each structure: user-study), and iii) the U-Net trained with121

polygonal bounding boxes [2] (see Methods and Supplementary Note 2 for specific details). MICRA-Net122

achieved equivalent or superior segmentation performance on the precisely annotated dataset in comparison123

to both the user-study and the U-Net (Supplementary Figure 5). Thus, even if trained with weak image-level124

annotations, MICRA-Net can extract the necessary structural information to generate precise segmentation125

maps for both nanostructures.126

A qualitative visual inspection of the segmentation masks suggested that MICRA-Net precise segmenta-127

tion produced a finer detailed mask compared to the U-Net weakly-supervised segmentation [2], especially128

for fibers, for which it provides precise segmented contours of single fiber strains (Figure 3c, Fibers). Custom129

performance metrics that were adapted to the F-actin nanostructures were required to better characterize130

this observation. For the F-actin periodical lattice, we measured the Fourier Transform (FT) of the seg-131

mented areas for frequencies corresponding to the periodicity of the lattice (180-190 nm [27]) (Figure 3c &132

Methods). No significant difference with the precisely annotated dataset is measured with this FT-metric for133

MICRA-Net, while a significant increase is measured for the U-Net. This suggests an increased segmentation134

precision for our approach over U-Net segmentation. Similarly, a custom metric based on the pixel intensity135

distribution of the segmented areas was developed to evaluate the approaches on the fiber segmentation task.136

While no difference was observed for the regions identified with MICRA-Net compared to the regions from137

the precisely annotated dataset, a significant increase of the proportion of low-intensity pixels was obtained138

from the U-Net segmentation (Figure 3d, Supplementary Tab. 2 & Methods). This supports a higher accu-139

racy to precisely identify the contours of individual fibers or periodical lattice regions of MICRA-Net over140
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weakly-supervised U-Net segmentation.141

2.3 Single cell counting and segmentation142

Cell counting and segmentation is a common challenge in high-throughput analysis of optical microscopy143

images [8, 9, 28]. Both fully- and weakly-supervised DL approaches were shown to be very powerful to assess144

these tasks on multiple cell lines [7, 22]. We characterized the performance of MICRA-Net for single cell145

detection and segmentation compared to a pre-trained fully-supervised U-Net [9] (Supplementary Fig. 7a).146

The first step consisted in validating the representation capability of the model on the classification task147

of 6 cultured cell lines of the Cell Tracking Challenge [8]. In contrast to the seminal implementation of148

Falk et al. [9], the U-Net was designed to output class-specific segmentation, hence comparing similar tasks149

between U-Net and MICRA-Net (see Supplementary Note 3). Both U-Net and MICRA-Net (see Methods)150

were trained with 256 × 256 pixel crops from the resampled images (with an effective pixel size of 0.5 µm).151

MICRA-Net enabled the classification of the different cell lines with a testing accuracy of (95.8± 0.4)%152

(calculated from 5 network instances) compared with (96± 1)% for U-Net. Next, we aimed at solving the153

auxiliary tasks, i.e. single cell detection and segmentation. As expected for weakly-supervised learning from154

image-level targets, a sufficient amount of negative samples (images not containing the object of interest)155

is required to extract informative context from an image, i.e. to distinguish the cells in the field of view.156

Accordingly, MICRA-Net detection and segmentation performances are strongly reduced when no negative157

samples are provided (Supplementary Fig. 7b, DIC-C2DH-HeLa and Fluo-N2DH-GOWT1) despite having a158

high classification accuracy. It is therefore necessary to adapt the size of the training images that are provided159

to the network to the size of the structures of interest (Figure 4a), ensuring that enough images contain only160

background. For each cell type of the Cell Tracking Challenge, we resized the images in the dataset so that161

a single cell would be approximately half the size of a 128× 128 pixel region (see Supplementary Tab. 3 for162

scaling factors).163

Next, we compared the semantic segmentation and detection efficiency of MICRA-Net with the pre-164

trained fully-supervised U-Net from Falk et al. [9]. To obtain the MICRA-Net segmentation masks, it165

was necessary to threshold the resultant feature maps (dependent on the cell line) and apply a watershed166

transformation to separate connected cells (see Supplementary Note 3 for specific details). Since no precisely167

annotated testing dataset was provided for the Cell Tracking Challenge dataset, precise annotations of 4168

images were generated for each cell line to evaluate the segmentation performance of both approaches.169

MICRA-Net and U-Net achieved comparable IOU for 3 cell lines for segmentation, while for the remaining170

cell lines the U-Net performance was superior (Figure 4b,d & Supplementary Tab. 4). In the detection task,171

MICRA-Net outperformed or is equivalent to the U-Net approach for 5 out of 6 cell lines (Figure 4c,d &172

Supplementary Tab. 5). Most importantly, MICRA-Net allowed the reduction by a factor of 40 the number173

of expert decisions required to generate the training dataset and by more than 150h the necessary annotation174

time usually needed to complete this task (Figure 1b).175

2.4 Multi-device analysis176

While DL approaches can be very powerful when tackling tasks on very similar images, challenges are often177

encountered when the imaging conditions change over time (e.g. due to a new device) [30, 31]. To increase178

the applicability of the proposed method to various experimental conditions, we investigated how MICRA-179

Net could be fine-tuned on a new dataset that contains similar structures but acquired on a new device.180

To address this, a brightfield microscopy dataset of Giemsa-stained [32] P. vivax (malaria) infected human181

blood smears was used (Figure 5a), for which the training and testing datasets had very distinct intensity182

distributions (Figure 5a,b) [28, 29].183

The first attempt to solve the classification task consisted in predicting the presence of infected smears in184

a 256× 256 pixel image. A mean testing classification accuracy of (78± 13)% (mean ± standard deviation,185

calculated from 5 different instances of the network) was obtained. Since the testing images had a very186

different pixel intensity distribution, we investigated whether the classification results could be improved187

by adjusting for this. To this aim, we considered i) modifying the threshold of the linear layer and ii)188

fine-tuning a model by training on {12, 24, 36} sampled images from the test set using a k-fold training189

scheme (see Supplementary Note 4 & Supplementary Fig. 8). We repeated the fine-tuning process 5 times190
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Figure 4: Cell counting and segmentation on 6 cell lines of the Cell Tracking Challenge dataset. a) Rep-
resentative annotated images for each cell line used for MICRA-Net (top rows) and U-Net (bottom row)
training. We compared the segmentation and detection of the MICRA-Net architecture with the pre-trained
U-Net from Falk et al. [9]. Bootstrapped mean and 95% confidence interval are reported from 5 instances
of network with random initialisation weights. d) Example images (top row) of each dataset comparing the
MICRA-Net (middle row) and U-Net (bottom row) segmentation. On the segmentation maps, true positives
are depicted in green, false positives in yellow and false negatives in magenta. All scale bars are 10 µm.

from each of the 5 naive instantiations (as starting points) while allowing i) linear layer [Linear ], ii) linear191

layer and depth 4 [Linear + 4 ], iii) linear layer and depths 3 and 4 [Linear + 3, 4 ], and iv) all [All ] layers192

to be updated (Figures 2a, 5c). A testing classification accuracy over 87% was obtained when updating193

the threshold and over 88% for all fine-tuned models, demonstrating the capability of MICRA-Net to be194

fine-tuned on similar tasks performed on images acquired on different devices (see Supplementary Table. 6195

for detailed classification results).196

In the context of parasite detection and stage determination for malaria, the most important task consists197

in the detection of infected cells [28]. When trained solely on the original training set, MICRA-Net performed198

worse on the detection task, obtaining a F1-score of 0.44± 0.13 (Figure 5c, d). However, with fine-tuning of199
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Figure 5: Segmentation of two different datasets of bright field microscopy images of Giemsa-stained red
blood cells from Hung and Carpenter [29]. a) Representative images from the training (2 left) and testing (2
right) datasets. The training/validation dataset is composed of images taken from two different laboratories,
while the testing images were acquired in a third laboratory. b) A change in the brightness and contrast
is observed between the training and testing dataset. This results in a large difference in the mean pixel
intensities (training: blue line, testing: orange line, with standard deviation: pale region) of the training
and testing images. c, left) A precision-recall graph quantifies the detection performance of MICRA-Net
on the testing dataset. Without fine-tuning, the performance on the testing dataset (Naive, grey ellipse) is
characterized by a recall of 0.79, and a poor precision of 0.32. A variable number of images ({12, 24, 36}) from
the testing dataset were used to adjust the detection threshold (Threshold, blue ellipse), which increased
the precision but also reduced the recall by approximately 2 folds. Fine-tuning of the model on the sampled
{12, 24, 36} images from the testing set with different settings: i) allowing the linear layer (orange), and ii)
different depths (depth 4: green; depth 3, 4: red) to be updated (see Supplementary Fig. 8 & Supplementary
Note 4) resulted in precision-recall above human level detection. c, right) Zoomed region of the precision-
recall performance of MICRA-Net. When the number of trainable parameters increases, the number of
images required for a model with good generalization properties also increases. d) Detection efficiency (F1-
score) of the various trained fine-tuned models. As a general tendency, increasing the number of images
sampled from the testing set and allowing more layers to be updated resulted in better detection of infected
red blood cells. The best detection accuracy of all trained models is highlighted in bold. See Supplementary
Tab. 7 for calculated p-values.

at least the linear layer and the depth 4 of the architecture, the F1-score was significantly increased, beating200

the inter-expert accordance (0.61 [29]). Additionally, increasing the number of images sampled from the201

testing set can significantly increase the detection accuracy (see Supplementary Table 7). The best detection202

accuracy (0.82± 0.01) was obtained by updating either Linear + 3, 4 or All layers. This again demonstrates203

the capability of MICRA-Net to be fine-tuned and used across different microscopes.204

We compared the segmentation results of MICRA-Net with expert precise annotations. Due to the lack205

of a precisely annotated dataset in the original publication by Ljosa et al. [28], we manually segmented all206

infected smears from the test set (303 smears). In contrast to the results obtained for the detection accuracy,207

updating more layers while fine-tuning (Linear + 3, 4 {12, 24, 36}, and All {12, 24}) significantly reduced208

the IOU compared to only updating the linear layer (see Supplementary Fig. 9 & Supplementary Table 8).209

Hence, a trade-off should be made by the users according to their specific needs. For instance, with these210
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P. vivax datasets, the best trade-off to maximize both detection and segmentation efficiency requires the211

fine-tuning of at least the linear layer and depth 4.212

2.5 Expert detection and segmentation assistance213

The next step was to assess how MICRA-Net could be implemented as a tool to guide experts in the214

annotation of sparse and small structures in large images of an electron microscopy dataset. Our approach215

was tested on a dataset of Scanning Electron Microscopy (SEM) images of ultrathin mouse brain sections216

in which axons were genetically labeled with a small engineered peroxidase APEX2 [33] (refered to as Axon217

DAB, see Methods). In the SEM dataset, 1-10 small axonal regions (with an averaged size of 113 × 113218

pixel) needed to be identified in images of around 10 000× 10 000 pixel (Figure 6a). Applied to this dataset,219

MICRA-Net was used to suggest regions containing the Axon DAB marker and generate segmentation masks220

of the structure in the regions that were accepted by the expert.221

An expert identified Axon DAB positive regions on the training (158 images) and testing (44 images)222

sets using point annotations (see Methods). To train MICRA-Net, all positive regions (1024 × 1024 pixel223

i.e. 5.12 × 5.12 µm2) centered on the detected Axon DAB were extracted from the original images (image224

size of 10 240 × 10 240). As previously stated, MICRA-Net requires negative crops (not containing Axon225

DAB) for training. Therefore, all negative 1024× 1024 pixel crops without overlap (see Figure 6a, Methods226

& Supplementary Note 5) were also included in the dataset.227

In the context of very sparse detections, positive-unlabeled (PU) learning can improve the performance of228

a given architecture [34]. On the main classification task, an accuracy between 83% and 90% was obtained229

for all PU ratios (see Supplementary Tab. 9). We next investigated how PU learning could improve the230

detection rate of Axon DAB in the SEM images and obtained best performances for a PU ratio between231

1:5 and 1:16 (Figure 6b & Supplementary Fig. 10). The usage of MICRA-Net for this sparse detection task232

resulted in an increase of the measured recall above the inter-expert accordance (0.79), while requiring from233

an expert to proof only 3.13% of a newly acquired image. Accordingly, the area that was inspected by the234

expert and consequently the annotation time were reduced by 30 folds. Additionally, MICRA-Net allowed235

the expert to detect 57 new Axon DAB regions in the test set (representing 25% more detections) that236

had been missed by the expert during the initial image annotation process (Figure 6c). This demonstrates237

the potential of MICRA-Net as a tool to assist experts in the analysis of newly acquired images, not only238

reducing the manual annotation time by 30 folds, but also increasing the recall above the inter-expert239

variability. We also inspected how it performed on a second auxiliary task: the segmentation of Axon DAB240

regions (Supplementary Fig. 10a). For this purpose, an expert carefully highlighted the boundaries of 170241

positive Axon DAB regions sampled from the testing set. As in the detection task, MICRA-Net had the242

same tendency of achieving better performance with PU ratios above 1:2 and could obtain a maximal IOU243

score of 0.62± 0.03 with the 1:5 ratio (see Supplementary Fig. 10 & Supplementary Tab. 11). Application244

of MICRA-Net to this electron microscopy annotation task was thus successful to reduce the burden of245

generating the training dataset, while also significantly increasing the discovery of regions of interest that246

were missed by the manual expert annotation.247

3 Discussion248

While pixel-wise metrics and ground-truth annotations are well established in the field of DL and computer249

vision with natural images, retrieval of ground truth annotations in biomedical imaging is a laborious pro-250

cess, requires highly-trained experts, and annotation imprecision often occurs [3, 35]. This stresses the need251

for weakly-supervised DL approaches that do not rely on spatially precise annotations of the structure of252

interest, but rather on annotations that are easier and faster to retrieve. MICRA-Net, a CNN-based method,253

relies on the information embedded in the latent space of a main simple task, in our case classification, to254

learn multiple complementary tasks without the need to generate task-specific precisely annotated train-255

ing sets. We designed multiple experiments to challenge MICRA-Net at solving common microscopy tasks256

(segmentation, enumeration or localization) relevant to high-throughput microscopy image analysis [3, 9].257

Unlike multi-task learning [36], MICRA-Net does not combine auxiliary tasks to increase the learning per-258

formance of a main task, nor requires more annotations from the dataset for each task [37, 38]. Hence, the259
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Figure 6: MICRA-Net is used as a tool to assist experts in the detection of sparse Axon DAB markers in
large SEM images of ultrathin mouse brain sections. a) Schematic representation of the proposed approach.
MICRA-Net is first swept over the entire field of view to output suggestions of plausible positions for axonal
DAB markers. The suggestions are then viewed by the expert who can accept or decline it. For each accepted
region, MICRA-Net generates a segmentation map of the Axon DAB region. b) Validation of MICRA-Net
suggestions accuracy. Two experts with variable levels of experience (high: [A], and intermediate: [B])
annotated all positive detections from MICRA-Net with a detection threshold set to have a recall of 1, i.e.
all the original identifications (from expert [A], generated without MICRA-Net assistance) are detected by
MICRA-Net. An intra-expert (expert [A]) recall of 0.756 was calculated for the visualisation of 100% of
the field of view (without MICRA-Net assistance, star marker). Comparison of the decisions of [B] with [A]
resulted in a inter-expert recall of 0.791 (dashed line). Using MICRA-Net as expert annotation assistance
reduces the detection time by 25 folds (right vertical axis) while maintaining intra- and inter-experts recall
levels. For constant recall, positive-unlabeled ratios of 1:2 and above allow a reduction of the annotation time
compared to the 2:1 and 1:1 ratios, showing the importance of negative instances in the training dataset.
The solid lines and associated pale regions are the bootstrapped mean and 95% confidence interval of 5
networks instantiated randomly for each condition. c) Total number of detections from the testing dataset
with and without assistance from MICRA-Net. Using MICRA-Net the expert could identify 57 new Axon
DAB positive regions which correspond to an increase of 25% in the total number of detections. The scale
bar is 5 µm for the full field of view and and is 1 µm for extracted crops.

use of MICRA-Net should significantly reduce the burden of task-specific annotation of bioimaging datasets260

thereby increasing the accessibility of such deep learning based microscopy image analysis.261

Our results show that MICRA-Net can be applied to various microscopy modalities and biological con-262

texts, while significantly reducing the number of required expert decisions to generate the training dataset263

(Figure 1b). While fully-supervised DL approaches (e.g. based on a U-Net architecture) have the drawback264

of being costly to train, they can benefit from pre-training [9, 39, 40], and have access to precise information265

about the structure boundaries. On the other hand, MICRA-Net leverages on the extraction of spatial266

features from the hidden layers of the network to generate precise feature maps using solely, easy to retrieve,267

binary image-level annotations for training. MICRA-Net provides similar or even superior performance on268

multiple tasks to the state-of-the art weakly- and fully-supervised learning approaches, thus making it an269

unprecedented alternative to address bioimaging analysis challenges for which large and precisely annotated270

datasets are not available.271

Additionally we demonstrated that MICRA-Net could be fine-tuned when facing strong variations in272
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the quality of the available datasets, for example when images were acquired on two different microscopes.273

Fine-tuning of the architecture on few images from another microscopy system was sufficient to achieve274

better detection efficiency than inter-expert agreement. This is of particular interest for large-scale studies,275

conducted on multiple sites, that require analysis framework to be easily adaptable to new experimental276

conditions [28, 41, 42]. Future work on fine-tuning of such approaches to new structures of interest and277

analysis task will be an important step to increase their accessibility to a larger network of researchers.278

Lastly, MICRA-Net was used to assist an expert to perform a complex annotation task, that is the279

detection of small sparse objects (sections of genetically-labeled axons) in large fields of view of brain sections280

imaged with Scanning Electron Microscopy. Originally, this task was prone to identification errors and281

fatigue, limiting the performance of the experts, and increasing inter-expert variability. Leveraging on the282

precise feature maps that were retrieved using MICRA-Net, this approach was successfully applied to assist283

the experts at finding possible positive regions in the images. Instead of screening the whole field of view,284

experts could focus their attention on less than 5% of the image and quickly decline or accept the proposed285

regions. This allowed an increase in the total number of detected regions of interest (genetically-tagged286

axons) by 25% while reducing the required annotation time for newly acquired images by 30 folds.287

Precise annotations, even if obtained from trained experts, are associated with inter-expert variability,288

especially when defining the boundaries. This variability needs to be assessed to characterize the annotated289

dataset and the precision of the neural network precision [3, 43]. Nevertheless, image-level binary levels can290

help to increase the consistency among experts by reducing the complexity of the annotation task. As a291

whole, MICRA-Net can be used in multi-class detection, segmentation, counting, and classification tasks in292

bioimaging, for which a precise annotated dataset is not available and can be used to reduce the identification293

variability between experts. The approach presented will simplify the development of deep learning based294

analysis strategies for microscopy and will open up new possibilities for quantitative bioimaging.295
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4 Methods469

4.1 MICRA-Net architecture470

Figure2a shows the schematic representation of the MICRA-Net architecture. Each depth of the network471

contains two blocks of convolutions (kernel size of 3) followed by batch normalization, and ReLU activation.472

The number of filters in the convolutional layers is doubled after maxpooling (stride and kernel size of 2) to473

increase the richness of the representation. The number of filters for each layer is {32, 64, 128, 256}. Global474

maxpooling on the output layer allows a reduction of the dimensionality and a fully connected layer (FCL)475

is used to provide a classification prediction. Dropout (probability of 0.5) is applied on the input features of476

the FCL.477

At inference, MICRA-Net predicts a whole image target from a given sample. Then, from each activated
class c, a local map Ll is calculated from the weighted combination of the activation map Al,k and the
mean gradient αc

l,k of each l layer [24]. The mean gradient αc
l,k is calculated from the backpropagated class

activation yc

αc
l,k =

1

Z

∑

i

∑

j

∂yc

∂Al,k
i,j

︸ ︷︷ ︸

gradients via backprop

. (1)

The local map Ll is calculated as the linear combination of the activation map and the mean gradient of
each layer of convolutions in the network

Ll =
∑

k

αc
l,kA

l,k. (2)

Since MICRA-Net produced spatially reduced feature maps, local maps were upsampled using nearest478

neighbor interpolation to match the input image size of 256×256 pixel. These images were then normalized in479

the range [0, 1] using a min-max scaling. ReLU activation is applied on the last layer (L8) of the network, as480

in the seminal implementation of Grad-CAM [24], to be used for the coarse segmentation. Local maps from481

layers L1−7 (Figure 2a-c) were concatenated into a feature space and retrieved the first principal component482

of every pixel using principal component analysis (PCA) [44] decomposition to retain prominent information483

from the feature space. The network was built and trained with the PyTorch library [45].484
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4.2 Datasets485

4.2.1 Modified MNIST dataset486

We generated the modified MNIST training dataset by randomly sampling N digits from the original MNIST487

training dataset and randomly distributed them on a 256× 256 pixel field of view. To avoid overlap between488

digits we used a random Poisson disc sampling algorithm with a radius size of 25 pixels [46]. The number of489

digits N was uniformly sampled from {1, 2, 3, 4, 5, 10, 15, 20, Max}, where Max corresponds to the maximum490

number of digits that can be placed without overlap. A rotation of ±30◦ uniformly sampled was applied491

to the digits before placement on the image. We applied, in a random order, a Gaussian blur with sigma492

uniformly sampled in [0, 2[ and artificial normalized Poisson noise with λ =
√
255
2

. The resulting image493

intensities were clipped to lie in [0, 1]. Using this technique, we generated 2000 and 1000 images for training494

and validation respectively.495

The modified MNIST testing dataset consists of 1000 images of handwritten digits sampled from the496

original MNIST testing dataset. As for the training dataset, we also applied, in a random order, Gaussian497

blur and artificial normalized Poisson noise sampled as before.498

4.2.2 F-actin dataset499

The F-actin dataset was generated by using a sliding window of size 256 × 256 pixel with a stride of 192
pixels over 260 complete images with an approximate size of 1000 × 1000 pixel. Since the super-resolution
microscopy images used are mostly composed of background, we set out to keep the crops containing at least
10% of dendritic area thereby reducing the number of crops to identify. The dendritic mask was obtained
from the foreground detection on the confocal imaged of the dendritic marker MAP2 using a global Otsu
thresholding on the normalized Gaussian blurred image [47]. The sigma parameter of the Gaussian blur was
set to 20 pixels as it provided suitable dendrite detection over a wide range of images. We next annotated
each generated crop as being positive to the presence of the F-actin periodical lattice or longitudinal fibers.
The resulting training dataset contained 3832 crops (256 × 256 pixel, 897 images positive to the periodical
lattice and 1456 positive to the longitudinal fibers), the validation dataset contained 1287 crops (405 positive
to periodical lattice and 377 positive to fibers), and the testing dataset contained 416 crops (83 positive to
periodical lattice and 132 positive to fibers). The images were rescaled to lie in the [0, 1] interval. The
maximum value for scaling (max) was obtained by sampling the maximal value of all training images from
which we calculated the median in addition to 3 standard deviation. The minimum value was calculated as
the median of minimas (min). To ensure a proper scaling of the images we also added a scaling factor of 0.8

x′ =
x− min

0.8(max− min)
. (3)

To evaluate the segmentation performance of the trained models, an expert precisely highlighted the500

contours of the structures in 50 images (25 images positive to periodical lattice and 25 images positive to501

fibers) from the testing set randomly sampled. This small segmentation dataset only served to compare the502

segmentation performance from the MICRA-Net, weakly-supervised U-Net, and user-study.503

4.2.3 Cell Tracking Challenge dataset504

We selected 6 cell line datasets from the Cell Tracking Challenge (CTC) [8]: the DIC-C2DH-HeLa dataset505

which was acquired using differential interferometry contrast microscopy, three non-synthetic fluorescence506

microscopy datasets (Fluo-C2DL-MSC, Fluo-N2DH-GOWT1, and Fluo-N2DL-HeLa) and two phase contrast507

microscopy datasets (PhC-C2DH-U373, and PhC-C2DL-PSC). All original images were rescaled in the [0,508

1] range using a per image min-max scale. We then resized each image and associated precise annotations509

according to the specific needs using bi-linear interpolation and nearest neighbors respectively with the510

Scikit-Image [48] Python library (see Supplementary Table 3 for scaling factors). We used a sliding511

window of size 128 × 128 pixel or 256 × 256 pixel with a 75% overlap between crops in both directions.512

Using this sliding window technique yielded a total of 27,106 positive crops and 3,364 negative crops for the513

256×256 pixel crops resized to have an effective pixel size of 0.5 µm. The sliding window with size 128×128514

pixel crops and resized to have single cells in the field of view yielded a total of 121,699 positive crops and515
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77,589 negative crops. We generated weak annotations from the precise contours of the cells provided in the516

original CTC dataset by identifying an image crop as positive if the corresponding annotated crop contained517

at least 1% of annotated area, and negative otherwise. To evaluate the segmentation and detection tasks,518

we manually segmented 4 images randomly sampled per cell line in the testing set.519

4.2.4 P. vivax dataset520

We used image set BBBC041v1, available from the Broad Bioimage Benchmark Collection [28]. The complete521

dataset contained 1327 3-channel images and was already split into a training (1207 images) and testing522

(120 images) set. The dataset is composed of blood smears that were stained with Giemsa reagent [32]523

and acquired on three different brightfield microscopes from three different laboratories. All blood smears524

(infected or uninfected) were annotated using bounding boxes. The blood smears were later classified as525

infected (gametocytes, rings, trophozoites, and schizonts) or uninfected (red blood cells, and leukocytes)526

by an expert. The task was to differentiate infected from uninfected blood smears. The dataset is highly527

unbalanced towards red blood cells which composes over 95% of the annotated cells.528

For training and testing, we applied a whitening normalization (null mean and standard deviation of 1)529

to each image (and channel) to minimize the impact of a very different intensity distribution. The binary530

targets for training were generated using the provided bounding boxes. A crop was considered as positive if531

it contained at least 5% of overlap with an infected cell, otherwise as negative. The crops were 256 × 256532

pixel.533

We manually extracted and precisely annotated all infected cells in the testing set resulting in 303 small534

crops of size 256× 256 pixel centered on the cell of interest.535

4.2.5 Scanning Electron Microscopy dataset536

The dataset contained 92 images of 10, 240× 10, 240 pixel for training, 66 for validation, and 44 for testing.537

An expert annotated the images using positional markers to locate the Axon DAB markers. On average the538

large fields of view contained 3 small detections (113 × 113 pixel, between 1 and 10 detections per image).539

This resulted in an annotation time of approximately 30 minutes per field of view. Training and inference540

was performed on 512 × 512 pixel size crops. The dataset contained all positive crops (1024 × 1024 pixel,541

centered on the Axon DAB markers), and all negative crops (without overlap). To manually annotate the542

images the expert inverted the acquired images. Hence, we provided MICRA-Net with the inverted image543

to mimic the expert task. We rescaled the provided 8-bit depth images in the [0, 1] range by dividing by a544

scalar value of 255.545

All Axon DAB markers were extracted from the testing set (170 positive markers) and an expert carefully546

identified their contours.547

4.3 MICRA-Net training procedure548

Here follows the general training procedure of the MICRA-Net architecture. For specific training details549

for each dataset, see Supplementary Notes 1-5. MICRA-Net was trained using the Adam optimizer with a550

learning rate specific to each dataset and other default parameters [49]. A learning rate scheduler was used551

to reduce the learning rate of the optimizer with a minimal possible learning rate of 1× 10−5. The number552

of training epochs was adapted to the specific dataset (see Supplementary Tab. 12-16). Early stopping was553

used to reduce overfitting. Unless otherwise specified, we used binary cross entropy with logits loss. We kept554

the model generalizing the most on the validation set during the training phase.555

Data augmentation was used to increase the performance of the network. Refer to Supplementary Tab. 12-556

16 for a detailed data augmentation procedure for each dataset. All operations were applied in a random557

order with a probability of 50%.558
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4.4 Evaluation procedure559

4.4.1 Segmentation560

The binary segmentation masks were obtained from MICRA-Net using the dataset specific procedures de-561

scribed in Supplementary Notes 1-5. The segmentation performances of the trained models was evaluated562

using three common evaluation metrics: F1-score, Intersection Over Union (IOU), and the Symmetric Bound-563

ary Dice (SBD) [50]. If multiple instances of a model were trained on the same task, we bootstrapped the564

average of the trained models to show the bootstrapped mean and 95% confidence interval (10 000 repeti-565

tions).566

4.4.2 Detection567

The centroid of each detected object was obtained from MICRA-Net by using the dataset specific procedures568

detailed in Supplementary Notes 1-5. Each detected centroid was associated with the centroid of objects in569

the ground truth mask using the Hungarian algorithm [51] with a maximal distance of N pixels, where N570

is approximately the object radius. In this context, an associated detected object is considered as a true571

positive, a non-associated detected object is a false positive, and a missed ground truth object is a false572

negative. To evaluate the detection capability of MICRA-Net, we reported the F1-score.573

For a quantitative comparison, we repeated the evaluation for each trained model. We then bootstrapped574

the average of the trained models to show the bootstrapped mean and 95% confidence interval (10 000575

repetitions).576

4.4.3 Classification577

The classification accuracy of MICRA-Net was evaluated by inferring the testing images. To quantitatively578

assess the performances, the classification accuracy was calculated for each trained model. We reported the579

mean ± standard deviation of the trained models.580

4.4.4 Custom performance metrics581

The F-actin periodical lattice is detected as an oscillating pattern between high- and low-intensity stripes with582

180-190 nm periodicity [27]. We designed a metric that would take this periodicity into account to evaluate583

the MICRA-Net precise segmentation performance. We computed, as a baseline, the Fourier transform (FT)584

of the original image (FTb) and the FT of the segmented regions: for the expert (FTe), and for the predicted585

segmentation masks (FTpred). The variation from the baseline was computed as the difference in the FT586

spectrum, for spatial frequencies in the range [170, 200[ nm, between FTe,pred and FTb over the sum of FTb.587

A smaller absolute difference between the variation of the expert and the variation of the predicted mask588

implies more similar segmentation.589

Since F-actin fibers are contiguous and have a high intensity on the dendrites, we designed a metric that590

would use the distribution of pixels under a segmented mask. The rational behind this metric is that the591

F-actin nanostructures on dendrites are composed of both high- and low-intensity pixels. Since F-actin fibers592

have high intensities, a precise segmentation of fibers would imply few low intensity pixels annotated, while593

a coarse segmentation would introduce more low-intensity identified pixels. Hence, we considered a pixel594

within the segmentation mask as part of a fiber if its value was superior to a given threshold. We calculated595

this threshold by first measuring the 25th percentile of pixel intensities outside of the expert mask for all596

images. We then extracted the 90th percentile intensity values from all images containing F-actin fibers.597

This resulted in a threshold between high- and low-intensity pixels within the dendritic mask of 9.598

4.4.5 User-study for F-Actin segmentation599

We performed a user-study in which six experts highlighted the contours of the F-actin periodical lattice600

and longitudinal fibres on a small dataset of 50 images using polygonal bounding boxes. We used polygonal601

bounding boxes as this annotation method reduces the time required by an expert by more than 3 folds602

compared to precisely identifying the boundaries of the structures (Supplementary Fig. 6). We used our603

own annotation application that was optimized for this type of task. Annotation of the full dataset required604
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approximately 40 minutes for the expert. The averaged performance of the six experts was compared to605

MICRA-Net using F1-score, IOU, and SBD.606

4.5 In-house datasets acquisition607

4.5.1 Cell culture, Immunostaining and STED imaging for F-actin imaging608

Before dissection of hippocampi, neonatal Sprague Dawley rats were sacrificed by decapitation, in accordance609

to the procedures approved by the animal care committee of Université Laval. Dissociated cells were plated610

on poly-d-lysine coated glass coverslips, fixed and immunostained as described previously [2]. F-Actin was611

stained with Phalloidin-STAR635 (Abberior GmbH, Germany). Dendrites Microtubule-Associated-Protein612

(MAP2) [2]. STED images of the F-Actin nanostructures were acquired on a 4 color Abberior Expert-Line613

STED microscope (Abberior Instruments GmbH, Germany), equiped with a 100x 1.4 NA oil objective and614

using pulsed (40 MHz) excitation (640 nm) and depletion (775 nm) lasers. Fluorescence was detected with615

an Avalanche Photodiode (APD) and a ET685/70 (Chroma, USA) fluorescence filter. Pixel size was set to616

20 nm.617

4.5.2 Animals and stereotaxic injections for scanning electron microscopy dataset618

This study was carried out on 3-month-old mice, weighing 25-35g. Animals were housed under a 12h light-619

dark cycle with water and food ad libitum. All procedures were approved by the Comité de Protection des620

Animaux de l’Université Laval, in accordance with the Canadian Council on Animal Care’s Guide to the Care621

and Use of Experimental Animals (Ed2), and with the ARRIVE guidelines. Maximum efforts were made622

to minimize the number of animals used. Transgenic e-Pet Cre mice expressing Cre recombinase under the623

control of Fev promoter, known to be specific for serotonin (5-HT) neurons [52], were injected in the dorsal624

raphe nucleus (DRN) with 1 µl of AAV9-CAG-DIO-APEX2NES-WPRE. Stereotaxic injections were done625

using a 30◦ angle along the frontal plane at AP: -4.78; ML: +2.00 and DV: -3.20. In these injected transgenic626

mice, the small engineered peroxidase APEX2 [33] is specifically expressed in the cytosol/cytoplasm of 5-HT-627

infected neurons of the DRN and is used, in presence with hydrogen peroxide, to oxidize 3,3 Diaminobenzidine628

(DAB) chromogen that can readily be visible at the light and electron microscope levels.629

4.5.3 Tissue preparation for scanning electron microscopy dataset630

After a period of 21 days following stereotaxic injection, mice were anesthetized with a mixture of ketamine631

(100mg/kg) and xylazine (10mg/kg) and transcardially perfused with 50ml of phosphate-buffered-saline632

(PBS: 50mM at pH 7.4) followed by 150ml of 4% paraformaldehyde (PFA) and 1% glutaraldehyde diluted633

in phosphate buffer (PB; 100mM at pH 7.4). Brains were dissected out, post-fixed for 24h in the same fixative634

solution and cut with a vibratome (model VT1200; Leica, Germany) into 50 µm-thick frontal sections, which635

were serially collected in sodium phosphate buffer saline (PBS, 100mM, pH 7.4). Frontal brain sections at636

the level of the subthalamic nucleus (STN) were processed to reveal the presence of APEX2 in axons arising637

from DRN-infected neurons using 3,3’diaminobenzidine (DAB; catalog no. D5637; Sigma-Aldrich) as the638

chromogen. Briefly, selected 50 µm-thick sections were washed 3 times in PBS and then twice in Tris.639

Sections were then incubated for 1h in 0.05% DAB solution diluted in Tris, then for 1h in 0.05% DAB640

solution containing 0.015% hydrogen peroxide (H2O2). Sections were then rinsed twice in Tris and 3 times641

in PBS. Sections were temporally mounted in PBS and coversliped for light microscope examination. STN642

sections containing DAB-labeled axons were selected for further processing. These sections were washed643

3 times in PB, then incubated during 1h in 2% osmium tetroxide diluted in 1.5% potassium ferrocyanide644

solution. They were then washed 3 times in ddH2O, incubated for 20 min in 1% thiocarbohydrazide (TCH)645

solution and washed again 3 times in ddH2O. Sections were placed 30 min in 2% osmium tetroxide and646

washed 3 times in ddH2O. Sections were then dehydrated in ethanol and propylene oxide and flat-embedded647

in Durcupan (Electron microscopy Science). Areas of interest were cut from embedded sections and glued648

to the tip of resin blocks. Blocks were cut with an ultramicrotome (Leica EM UC7) in ultrathin sections649

( 80 nm), which were serially collected on silicon-coated 10 x 10 mm chip wafer (Ted Pella, Inc; #16006).650
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4.5.4 Scanning electron microscopy (SEM)651

Serial sections were imaged in a SEM (Zeiss Gemini 540) with the help of the ATLAS acquisition software.652

Images were acquired at a resolution of 5 nm/pixel, using acceleration voltage of 1.4 kV and current of 1.2 nA.653

Serial sections acquisitions produced a stack of 38 rectangle images of 25370 x 25633 pixel (126.850 x 128.165654

microns) taken out of 38 ultrathin sections. In addition, a large single section acquisition was acquired and655

produced a single trapezoidal image of 31065 pixels for the small base (155.329 microns), 91393 pixel for the656

large base (456.967 microns) and 53161 pixels for the height (265.809 microns). All acquired images were657

subdivided into overlapping square tiles of 10240× 10240 pixel (51.2 x 51.2 microns).658

4.6 Statistical assessment using resampling659

Resampling was used as a statistical test to verify the statistical difference between two groups [53]. Statistical660

analysis was performed using a randomization test with the null hypothesis being that the different conditions661

(A, B) belong to the same distribution. The absolute difference between mean values of A and B was662

calculated (Dgt = |µA − µB |). For the randomization test, each value belonging to A and B was randomly663

reassigned to A’ and B’, with the sizes of A’ and B’ being NA and NB , respectively. The absolute difference664

between the mean values of A’ and B’ was determined (Drand = |µA′−µB′|) and the randomization test was665

repeated 10 000 times. The obtained distribution was compared with the absolute difference of the mean of666

A and B (Dgt) to verify the null hypothesis.667

When the number of groups was greater than 2, the F-statistic was sampled from each group using a668

resampling method. The F-statistic was calculated from all groups (A, B, C, etc.) as a ground truth (Fgt).669

Each value was randomly re-assigned to new groups (A’, B’, C’, etc.) where group X’ has the same size as670

group X. The F-statistic of newly formed groups (Frand) was calculated and this process was repeated 10 000671

times. We compared Frand with Fgt to confirm the null hypothesis that the groups have the same mean672

distribution. When the null hypothesis was rejected, i.e. at least one group did not have the same mean673

distribution, we compared each group in a one-to-one manner using the randomization test described above.674

In all cases, a confidence level of 0.05 was used to reject the null hypothesis.675

4.7 Evaluation of required decisions and time for fully-supervised training676

F-actin: The number of decisions for a fully-supervised training dataset was estimated as the mean number of677

edge pixels in the 50 precisely annotated images multiplied by the total number of positive crops. The mean678

annotation time per crop was calculated using the precisely annotated dataset. Cell Tracking Challenge:679

The mean image annotation time of 900 seconds was obtained from the precise annotation of each image of680

the testing set. P. vivax : The annotation time for fully-supervised annotations was estimated at 2 minutes681

per image from the precise annotation of 10 images. Electron Microscopy : The required annotation time was682

calculated as the average time required by the expert per image (30 minutes per image, 156 images) to detect683

all axon DAB markers. We added 14 seconds (calculated from highlighting the contours of the Axon DAB684

regions on the testing set) for each positive detection (537 detections) to account for precise annotation.685
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Figures

Figure 1

Various supervision levels can be employed for training a DL model to segment structures of interest in
microscopy images. a) Representative image from the Cell Tracking Challenge dataset [8] overlayed with
the corresponding fully- and weakly-supervised annotations. Annotated images are presented in
decreasing spatial level of supervision and required annotation time (from left to right). b) Evaluation of
the annotation task required to generate the training set for all microscopy datasets used throughout the
paper for fully-supervised (FS) and MICRA-Net approaches. Reported above is the effective number of
decisions (number of extracted crops for MICRA-Net and number of edge pixels for FS learning) and the
required time in hours. For MICRA-Net the number of decisions corresponds to the number of extracted
crops and the annotation time per crop (assignation of a positive or negative annotation) was on average
2 seconds for all datasets. For FS learning, the decision and annotation time for each dataset separately
on a precisely annotated subset of images was evaluated (see Methods).



Figure 2

MICRA-Net architecture and experimental results on the modi�ed MNIST dataset. a) MICRA-Net
architecture (detailed in the Methods section). Each depth is composed of two sequential convolutional
layers (Conv2D), batch normalization (BatchNorm2D), and Recti�ed Linear Unit activation (ReLU). A 2×2
max pooling (MaxPool2D) was employed to increase the richness of the representation from the model. A
linear layer is used to project the globally pooled L8 layer (256 �lters, Global Maxpool2D) to the speci�ed
number of classes. b) Concatenation of low- and high-level feature maps obtained from the Grad-CAMs
of every layer is performed to generate the multi-dimensional feature space for every predicted class. c)
Feature maps generated from the calculated Grad-CAMs for class 0 and 6 on the modi�ed MNIST
dataset. Each activated class is backpropagated through the network and a local map for each layer of
the network (L1−8) is computed. d) Coarse and precise segmentation maps of the digits of a
representative image (256 × 256 pixel) and insets (right, dashed white box) from the modi�ed MNIST
dataset using MICRA-Net. The color code corresponds to the digit class and the red arrow indicates a
missed digit in the �eld of view. e) Evaluation of the coarse and precise segmentation performance using
the i.e. F1-score, intersection over union (IOU), and symmetric boundary dice (SBD) (see Methods).
Reported here is the mean performance over the 10 classes (see Supplementary Fig. 1 for class-wise and
density-wise performances). A signi�cant increase in the segmentation performance is measured for
precise over coarse segmentation (t-test, pF1−score = 1.6616 × 10−6, pIOU = 5.2650 × 10−7, pSBD =
1.1627 × 10−5). f) Mean performance over the 10 classes obtained with the U-Net trained with and



without dilation of the ground truth contours. The segmentation maps are presented in Supplementary
Fig. 2a. The MICRA-Net precise segmentation (color-coded dashed lines) surpasses the U-Net trained with
10 pixels dilation and is not statistically different from the U-Net trained with 5 pixels dilation. Only fully-
supervised training outperforms MICRA-Net precise segmentation (one-way ANOVA followed by posthoc
t-test, pF1−score = 2.0254 × 10−12, pIOU = 8.7200 × 10−14, pSBD = 5.7291 × 10−13). All p-values are
reported in Supplementary Tab. 1. Bar graphs show the mean values and standard deviation.

Figure 3

Semantic segmentation of F-actin nanostructures observed on super-resolution microscopy images. a,b)
Left: Representative raw images from a dataset of STimulated Emission Depletion (STED) microscopy
images of two F-actin nanostructures in �xed cultured hippocampal neurons: periodical lattice (a) and
longitudinal �bers (b). Arrows point towards the periodical lattice (green) and longitudinal �bers
(magenta). Middle-Left: precise expert contours of the nanostructure, Middle-Right: weakly-supervised U-
Net segmentation masks and Right MICRA-Net segmentation masks. c, d) Performance evaluation of
MICRA-Net and weakly-supervised U-Net segmentation on the precisely annotated testing dataset using
custom metrics for rings (c) and �bers (d). The FFT (c) and intensity distribution (d) metrics evaluate the
difference be-tween the pixels found within the precise expert annotations and the two DL-based
segmentation approaches (see Methods). An increased segmentation accuracy is measured with MICRA-
Net compared to U-Net for rings (c) and �bers (d). No signi�cant differences are measured between the
precise expert annotations and MICRA-Net segmentation mask for both metrics. Statistical analysis: c) t-
test, p = 3.7342 × 10−4, d) all p-values are shown in Supplementary Tab. 2. Performance evaluation was
performed within the dendritic mask (a,b: yellow line). a,b) Scale bars: 1 µm.



Figure 4

Cell counting and segmentation on 6 cell lines of the Cell Tracking Challenge dataset. a) Representative
annotated images for each cell line used for MICRA-Net (top rows) and U-Net (bottom row) training. We
compared the segmentation and detection of the MICRA-Net architecture with the pre-trained U-Net from
Falk et al. [9]. Bootstrapped mean and 95% con�dence interval are reported from 5 instances of network
with random initialisation weights. d) Example images (top row) of each dataset comparing the MICRA-



Net (middle row) and U-Net (bottom row) segmentation. On the segmentation maps, true positives are
depicted in green, false positives in yellow and false negatives in magenta. All scale bars are 10 µm.

Figure 5

Segmentation of two different datasets of bright �eld microscopy images of Giemsa-stained red blood
cells from Hung and Carpenter [29]. a) Representative images from the training (2 left) and testing (2
right) datasets. The training/validation dataset is composed of images taken from two different
laboratories, while the testing images were acquired in a third laboratory. b) A change in the brightness
and contrast is observed between the training and testing dataset. This results in a large difference in the
mean pixel intensities (training: blue line, testing: orange line, with standard deviation: pale region) of the
training and testing images. c, left) A precision-recall graph quanti�es the detection performance of
MICRA-Net on the testing dataset. Without �ne-tuning, the performance on the testing dataset (Naive, grey
ellipse) is characterized by a recall of 0.79, and a poor precision of 0.32. A variable number of images
({12, 24, 36}) from the testing dataset were used to adjust the detection threshold (Threshold, blue
ellipse), which increased the precision but also reduced the recall by approximately 2 folds. Fine-tuning of
the model on the sampled {12, 24, 36} images from the testing set with different settings: i) allowing the
linear layer (orange), and ii) different depths (depth 4: green; depth 3, 4: red) to be updated (see
Supplementary Fig. 8 & Supplementary Note 4) resulted in precision-recall above human level detection.
c, right) Zoomed region of the precision-recall performance of MICRA-Net. When the number of trainable
parameters increases, the number of images required for a model with good generalization properties
also increases. d) Detection e�ciency (F1-score) of the various trained �ne-tuned models. As a general
tendency, increasing the number of images sampled from the testing set and allowing more layers to be



updated resulted in better detection of infected red blood cells. The best detection accuracy of all trained
models is highlighted in bold. See Supplementary Tab. 7 for calculated p-values.

Figure 6

MICRA-Net is used as a tool to assist experts in the detection of sparse Axon DAB markers in large SEM
images of ultrathin mouse brain sections. a) Schematic representation of the proposed approach. MICRA-
Net is �rst swept over the entire �eld of view to output suggestions of plausible positions for axonal DAB
markers. The suggestions are then viewed by the expert who can accept or decline it. For each accepted
region, MICRA-Net generates a segmentation map of the Axon DAB region. b) Validation of MICRA-Net
suggestions accuracy. Two experts with variable levels of experience (high: [A], and intermediate: [B])
annotated all positive detections from MICRA-Net with a detection threshold set to have a recall of 1, i.e.
all the original identi�cations (from expert [A], generated without MICRA-Net assistance) are detected by
MICRA-Net. An intra-expert (expert [A]) recall of 0.756 was calculated for the visualisation of 100% of the
�eld of view (without MICRA-Net assistance, star marker). Comparison of the decisions of [B] with [A]



resulted in a inter-expert recall of 0.791 (dashed line). Using MICRA-Net as expert annotation assistance
reduces the detection time by 25 folds (right vertical axis) while maintaining intra- and inter-experts recall
levels. For constant recall, positive-unlabeled ratios of 1:2 and above allow a reduction of the annotation
time compared to the 2:1 and 1:1 ratios, showing the importance of negative instances in the training
dataset. The solid lines and associated pale regions are the bootstrapped mean and 95% con�dence
interval of 5 networks instantiated randomly for each condition. c) Total number of detections from the
testing dataset with and without assistance from MICRA-Net. Using MICRA-Net the expert could identify
57 new Axon DAB positive regions which correspond to an increase of 25% in the total number of
detections. The scale bar is 5 µm for the full �eld of view and and is 1 µm for extracted crops.
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