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Abstract:  

Cell line authentication is important in the biomedical field to ensure that researchers 

are not working with misidentified cells. Short tandem repeat is the gold standard 

method, but has its own limitations, including being expensive and time-consuming. 

Deep neural networks achieve great success in the analysis of cellular images in a cost-

effective way. However, because of the lack of centralized available datasets, whether 

or not cell line authentication can be replaced or supported by cell image classification 

is still a question. Moreover, the relationship between the incubation times and cellular 

images has not been explored in previous studies. In this study, we automated the 

process of the cell line authentication by using deep learning analysis of brightfield 

cell line images. We proposed a novel multi-task framework to identify cell lines from 

cell images and predict the duration of how long cell lines have been incubated sim-

ultaneously. Using thirty cell lines’ data from the AstraZeneca Cell Bank, we demon-

strated that our proposed method can accurately identify cell lines from brightfield 

images with a 99.8% accuracy and predicts the incubation durations for cell images 

with the coefficient of determination score of 0.927. Considering that new cell lines 

are continually added to the AstraZeneca Cell Bank, we integrated the transfer learn-

ing technique with the proposed system to deal with data from new cell lines not in-

cluded in the pre-trained model. Our method achieved excellent performance with a 

sensitivity of 97.7% and specificity of 95.8% in the detection of 14 new cell lines. 

These results demonstrated that our proposed framework can effectively identify cell 

lines using brightfield images. 

 

 

 

 

 

 

 



 

 

Introduction 

Over the last 50-60 years, cell lines have become a staple of biological re-

search, resulting in rapid developments in the fields of cell and molecular bi-

ology, however, this increased use of cell lines has brought to light the issue 

of cell line authentication [1]. Many isolated cell lines were subsequently 

found to be contaminated by faster growing cell cultures, such as HeLa cells, 

due to poor cell culture practice leading to the misidentification of cell lines 

[1]. The use of a misidentified cell line can lead to false conclusions and irre-

producible experiments, consequently leading to a waste of time, money and 

resource [2, 3]. It is estimated that industry wide 10-20% of preclinical effort 

was wasted due to misidentified cell lines, estimated to cost the industry 28 

billion USD per year [4].  

 

Though there are many methods for cell line authentication, short tandem re-

peat (STR) profiling, also sometimes referred to as DNA fingerprinting, has 

been the most widely used and is recommended as the standard by the Amer-

ican Type Culture Collection (ATCC) Standards Development Organization 

Workgroup ASN-0002 [5]. In spite of the prevalence of STR profiling, there 

are limitations. Microsatellite instability and loss of heterozygosity, espe-

cially in cancer cell lines, can make validation and authentication challenging 

using STR profiling [6]. In one study involving hematopoietic cancer cell 



 

 

lines it was found that the effect of long term culture, subcloning, and selec-

tion led to genetic drift, thereby significantly altering the DNA fingerprinting 

and over time some cell lines may also go through genetic and transcriptional 

evolution (GTE) [7, 8]. All of these variances can make it harder to discrimi-

nate between cell lines using STR profiling [8]. In addition, due to time and 

cost restrictions, standard practice is to test the cells once they have been fully 

expanded and frozen, however this process results in wasted time and effort 

if the sample then fails STR profiling. It was therefore desirable to develop a 

new authentication approach to complement STR testing. Ideally, the new 

method should be easy to use, quick, and cost effective, and would enable 

early identification of the cell line that could be built into standard laboratory 

practice as well as overcoming the limitations of STR profiling [9, 10].  

  

With the advancements of deep learning (DL) approaches, automated 

cell image classification is a possible solution to allow fast analysis at low 

cost, as well as potentially identifying changes in cell morphology that could 

be indicative of undesirable qualities such as genetic drift or cellular senes-

cence. Oei et al. collected 522 fluorescence cell images from 3 cell lines (e.g. 

MCF10A, MCF-7, MDA-MB-231) using confocal immunofluorescence mi-

croscopy [11]. By using the features of actin cytoskeleton structures, they 

proposed a convolutional neural network (CNN) based on VGG-16 to classify 



 

 

the microscopy images into three categories and reported the performance of 

CNN outperforms their biological experts in the classification task. Akogo et 

al. used MobileNet to perform image classification in their 5 cell line dataset 

(MDA-MB-468, MCF7, 10A, 12A and HC11) with 96.67% accuracy [12]. 

Most recently, Mzurikwao et al. trained two CNNs to classify 4 cancer cell 

lines (COLO 704, UKF-NB-3, EFO-27 and EFO-21) and their isogenic cell 

lines using brightfield images [10]. Compared with STR profiling, deep learn-

ing methods improve the cost and efficiency as these methods only need cel-

lular images to train CNNs and the trained models are used to directly predict 

the identities for held-out test data. However, because of the lack of central-

ized available datasets and the intrinsic difficulties in analyzing multi-batch 

cellular images from different cell lines over time, the previous studies only 

conducted their experiments on small-scale cell line datasets of no more than 

ten cell lines. Whether or not CNN can identify tens even hundreds of cell 

lines is an open question. The relationship between the incubation times and 

cellular images has not been analyzed in previous studies. This could be tre-

mendously useful for flagging growth rate defects or analyzing the differen-

tiation processes of stem cells in the future. In addition, new cell lines are 

continually added to the AstraZeneca Cell Bank therefore, how to deal with 

data from new cell lines not included in the model requires consideration. 



 

 

Therefore, in this study, we aim to answer these questions by develop-

ing an automated cell line authentication method by using deep learning-

based analysis of routine brightfield cell line images. Our main contributions 

reported in this paper are: 

(1) Dataset: We have established two cellular datasets. i) The first dataset 

consists of 47671 brightfield images of 30 cell lines, which is 23 GB of 

data. The dataset was curated from a set of experiments where 30 cell 

lines were cultured  and each cell culture flask was imaged at 2-3 hour 

intervals using the IncuCyte. To our knowledge, it is one of the largest 

such collections of data in the literature for cell line authentication. ii) 

The second dataset includes 860 cell images from 14 new cell lines not 

included in the 30 above. The 14 cell lines were incubated by using the 

same conditions as the previous 30 cell lines and we used this dataset to 

validate whether or not our proposed method can identify new cell lines 

without training model from scratch. 

(2) Cell image recognition framework: We proposed a novel multi-task cell 

image recognition framework to i) identify and authenticate cell lines 

and ii) predict the duration of how long cell lines have been incubated 

simultaneously. The cell line classification network (CLCNet) learns 

image-level features from the cell images and outputs the predicted 

probabilities of the cell line labels for each input image. The extracted 



 

 

convolutional features of CLCNet are integrated with the cell line re-

gression network (CLRNet) to predict the incubated time points for 

bright-field images. 

(3) Identify new cell lines: We integrated a transfer learning approach with 

the proposed framework to identify images from new cell lines which 

are not included in the pre-trained model (currently we have 30 cell 

lines). This is an important aspect, as we are unlikely to be able to ac-

quire very large numbers of images for every cell line that we wish to 

authenticate. 

(4) Validation: We conducted comprehensive validation experiments to 

justify the significance of our proposed framework on the established 

datasets. The prediction performance of CLCNet reached the accuracy 

of 99.8% and the f1-score of 99.7% in the classification of the 30 cell 

lines. CLRNet achieved the coefficient of determination score (R2-

score) of 0.927 in the prediction of the incubated times for cell images. 

In the detection of 14 new cell lines, our proposed method obtained the 

sensitivity of 97.7% and the specificity of 95.8%. These results demon-

strated that our proposed framework can effectively authenticate the 

identities of cell lines from brightfield images.  

  



 

 

Materials and Methods 

Cell Culture and Image Acquisition  

We have established two cell line datasets. (1) The first dataset consists of 

30 different cell lines, as listed in Table. S1. The base medium is listed in 

the table, all medium was supplemented with 10% Foetal Bovine Serum 

(Sigma) and 1x GlutaMAX (Gibco) unless otherwise stated. The cells were 

thawed and seeded into a 25cm2 flask (Corning) at a density of 0.5 - 2 x 106 

cells per flask. The flasks were then added to the Incucyte S3 (Essen Biosci-

ence, Sartorius) and phase contrast images collected from 21 different loca-

tions across the flask every 2-3 hours over a time period between 3-7 days. 

(2) The second dataset includes images from 14 cell lines, as listed in Table. 

S2, these images were not used in the training of the CNN network. In this 

dataset, each cell line includes one location only resulting in fewer images. 

All images were exported for analysis as JPEGs or TIFF format using the 

Incucyte S3 software with 1408×1040 resolution. Example images of three 

cell lines (e.g. A431, A549, T47D) with different incubated durations are 

shown in Fig. 1.  

Multi-task Framework Overview 

Our proposed framework is shown in Fig. 2. In the data preparation stage, 

cell images are collected using the IncuCyte for all 30 cell lines. Each cell 

image has two separate labels, cell line name and incubation time. Then, the 

deep learning network CLCNet learns the image-level features from the in-

put cell images with their cell line labels and outputs the predicted classes 

for test cell images. Once CLCNet is trained, the convolutional features of 

the training data are extracted to train CLRNet. CLRNet predicts the time of 

incubation after initial seeding for each image. 

Data pre-processing 



 

 

Before the model training of CLCNet, we carried out the following pre-pro-

cessing procedures: (1) Image scaling: The original image resolution for the 

established dataset is 1408×1040. In the training dataset, each cell image is 

cropped at a random region with the size 896×869 to improve the data di-

versity, which can influence the generalization and robustness of the train-

ing model in the downstream tasks. Images from the test set are cropped at a 

fixed center region with the same size 896×869 for later method comparison 

experiments. The cropped images are resized to 224×224 using the bilinear 

interpolation [13]. (2) Grayscale: The scaled cell images are gray but have 

three channels. The grayscale method is applied to convert the images into 

one channel. (3) Data Normalization: Data normalization aims to restrict the 

image pixels within a specific range and ensure each pixel has similar data 

distribution [10]. Each cell image is normalized by subtracting the image 

mean (i.e. pixel values) and dividing by image standard deviation, to im-

prove the convergence speed while training the neural networks. 

Cell Line Classification Network 

We employed the Xception model [14] as the backbone of CLCNet for clas-

sification. The model structure used in our system is shown in Fig. S1. After 

pre-processing procedures, the input shapes of the cell images are 

224×224×1 (Height×Width×Channel). The input images will first pass 

through two convolution layers that each convolutional layer is followed by 

batch normalization [15] and a ReLU activation function. Five depthwise 

separable convolutional (DSC) blocks are stacked to further learn spatial 

and hierarchical features from the inputs. Each DSC block includes two or 

three DSC layers and one maxpooling layer. DSC layer consists of a depth-

wise convolution (i.e. a spatial convolution performed independently over 

every channel of input) and a pointwise convolution (i.e. a convolution with 



 

 

1×1 kernel, projecting the channels computed by the depthwise convolution 

onto a new channel space) [16]. The mathematical formulation is defined as: 

Οk,l,E = ∑ 𝐾𝑚,𝐸𝑀
𝑚 ∙ ∑ 𝐾𝑖,𝑗,𝑚 ⨀𝐼,𝐽

𝑖,𝑗 𝐹𝑖+𝑘,𝑗+𝑙,𝑚 (1.) 

where Ο is the output feature map, k × 𝑙 is the kernel size of the depthwise 

convolution and E is the channel of the output feature map. On the right -

hand side of Eq. (1), 𝐾 and 𝐾 are the convolutional filters of the pointwise 

and depthwise convolution separately. 𝐹 is the input feature map and 

I×J×M is the shape of the input feature map. ⨀ represents the operation of 

an element-wise product. The output of the DSC blocks is concatenated with 

the output of a shortcut convolution (1×1 Conv) through the residual con-

nection. Only the fourth DSC block’s feature map concatenates with the in-

put feature map without the convolutional processing. The dimension of the 

output feature map from the final two DSC layers is 7×7×2048 and the fea-

ture map is converted to 2048 dimensions by the adaptive average pooling 

layer. The final fully connected layer outputs the probability distribution for 

30 cell lines. The classification loss ℒ𝑐𝑙𝑐  is computed using the cross en-

tropy: 

ℒ𝑐𝑙𝑐 =  − 1𝐶 ∑ 1𝐵𝐶
𝑐=1 ∑ 1{Υ𝑏𝑐  = 𝑐} log(Ρ(Υ𝑏𝑐 = 𝑐|𝑋𝑏; 𝑊))𝑋𝑏∈𝑋  (2.) 

where 𝐶 is the number of class and 𝐵 is the batch size. 𝑋𝑏 represents the 

𝑏-th sample in the batch and 1 {∙} denotes a characteristic function that 



 

 

1 {∙} = 1 if the condition is true and 0 otherwise. Ρ(Υ𝑏𝑐 = 𝑐|𝑋𝑏; 𝑊) is the 

probability of the sample 𝑋𝑏 being correctly predicted as the class Υ𝑏𝑐  using 

the network parameters 𝑊. 

 During the network training, 10% of data are split from the training set 

for validation. The performance of Xception model on the validation set is 

monitored for each 5 training epochs. Beyond epoch 50, if the validation loss 

has not decreased for 10 consecutive epochs, early stopping is triggered and 

the best model with the lowest validation loss is used for reporting the perfor-

mance on the held-out test set. 

Cell Line Regression Network 

Network features, Ϝ, are extracted from the adaptive average pooling layer 

and its dimension is 2048. We employed a multilayer perceptron (MLP) 

[17] as the backbone of CLRNet to refine features and reduce the dimension 

finally predict the incubation times for cell images. The network consists of 

three FC layers. The first two layers include 512 and 128 neurons separately 

and each layer is followed by a ReLU activation function. The third FC 

layer has 16 neurons and its output feature vectors are then transformed to a 

scalar which is the prediction result of the regression task. We add dropout 

units [18] with 0.2 rates after all FC layers to avoid overfitting. The regres-

sion loss ℒ𝑐𝑙𝑟  is computed using the mean squared error (MSE): 

ℒ𝑐𝑙𝑟 =  1𝐵 ∑  (Τ𝑏 −  Γ(Ϝ𝑏; 𝑊))2Ϝ𝑏∈Ϝ  (3.) 

where 𝛵𝑏  is the ground truth and 𝛤(Ϝ𝑏; 𝑊) is the predicted incubation 

times for cell images. Similar to the training strategy of CLCNet, we also 

randomly selected 10% of data for the validation of CLRNet. The validation 



 

 

MSE loss is monitored each epoch and the best model with the lowest vali-

dation loss is saved after 50 epochs. 

Transfer Learning for Identifying New Cell Lines 

To deal with data from new cell lines which are not included in the pre-

trained model, combining the previous data with the new obtained data and 

retraining CLCNet from scratch is a way to solve this issue. However, the 

time and computational resources required are prohibitive for this approach. 

Hence, we integrated the transfer learning technique with CLCNet to iden-

tify new cell lines. We first take the pre-trained CLCNet model which is 

trained on the 30 cell lines dataset and freeze all layers except the last FC 

layer. The FC layer is replaced by a new FC layer with 44 neurons (i.e. 30 

original cell lines + 14 new cell lines). The weights of the new FC layer are 

initialized. During the model training, only the weights of the FC layer will 

be updated with new data and the weights of other layers are fixed. The 

training set of the 30 cell lines is combined with the training set of the 14 

cell lines. The underlying concept is that having been trained on 30 cell 

lines, the model will have learned a good representation of brightfield 

images for discriminating between different cell lines, and as such good 

classification performance can be obtained for new cell lines by only 

retraining the final classification layer. The combined test set is used to vali-

date whether or not the updated model can keep good classification perfor-

mance on the 30 cell lines and identify the new 14 cell lines. 

Results 

Implementation Details  

The hyperparameters for CLCNet and CLRNet were set as follows: The 

SGD optimizer with the momentum=0.9 and weight_decay=5e-4 is 

adopted. The initial learning rate is 0.001 and it decays by factor=0.1 



 

 

every 25 epochs. The batch size and maximum training epochs are 20 

and 100 separately. To evaluate the model performance, 5-fold cross-

validation [19] was applied. We implemented all models and benchmark 

experiments using Python 3.7 with Pytorch 1.9.0 [20] and Scikit-learn 

0.24.0 [21] packages. We deployed all the experiments using a single 

32GB Nvidia V100 GPU.  

Cell line Classification and Regression 

In order to evaluate our proposed system comprehensively, we replaced the 

backbone of CLCNet with three SOTA CNNs: MobileNet, VGG19, Res-

Net50. The results of the classification and regression on the 30 cell lines 

are shown in Table. 1. We evaluated the classification performance of 

CLCNet with four metrics, namely accuracy, precision, recall and f1-score: 

accuracy =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 (4.) 

precision =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (5.) 

recall =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6.) 

f1 =  2 × precision × recallprecision + recall (7.) 

where TP is true positive, TN is true negative, FN is false negative and FP is 

false positive. The Xception model obtained the best classification perfor-

mance and achieved the average accuracy of 99.8 %and the f1-score of 99.7% 

across the 5-fold cross-validation. The classification features of the four back-

bones were extracted to train the CLRNet separately. The regression perfor-

mance is evaluated by two metrics, MSE and R2-score: 

MSE =  1N ∑  (Yn − Ŷn)2N
n=1 (8.) 



 

 

R2 = 1 − ∑  (Yn −  Ŷn)2Nn=1∑  (Yn −  Y̅)2Nn=1 (9.) 

where N is the number of test samples. Yn is the real value of the n-th sample 

and Ŷn is the predicted value. Y̅  denotes the average of all samples. The 

overall MSE and R2-score of Xception for the incubation duration prediction 

were 262.283 and 0.931 separately. We further demonstrated the classifica-

tion results by using the confusion matrix in Fig. 3A, which shows that 

Xception made fewer prediction errors than ResNet50, VGG19, and 

MobileNet. The regression results of the test fold-1 are visualized by using 

the scatter plots, Fig. 3B. Xception outperformed the other three methods in 

predicting the amount of the incubation times with R2-score=0.939. The 

complete regression results of the 5-fold cross-validation are shown in Fig. 

S2.  

 To further view how the deep network distinguished the 30 cell lines, 

we used t-SNE embedding to reduce the dimension of the convolutional 

features of CLCNet (e.g. 2048 dimensions) and visualized the processed 

features in 2d space. The t-SNE plot of the 30 cell lines is shown in Fig. 4. 

Each dot represents one cell image and is colored by its cell line label. There 

were clear gaps between different cell lines which validates that CLCNet can 

find the decision boundary and distinguishes the 30 cell lines well. When we 

associated the cell lines’ distribution with their incubation times, we found an 

interesting phenomenon that samples with similar times are mapped to 



 

 

adjacent areas. For example, in Fig. 5, the samples of HT1080 were clustered 

well. Samples within 0-24 hours were close to the samples within 24-48 hours. 

The complete results of the 30 cell lines with their incubation times are shown 

in Fig. S3.  

 

Identify New Cell Lines 

The Confusion matrix of the transfer learning technique for identifying 14 

new cell lines is shown in Fig. 6A. It is clear that integrating the transfer 

learning with CLCNet can identify 14 new cell lines well with 96.5% 

accuracy. We showed the t-SNE plot of the 44 cell lines in Fig. 6B. The pink 

dots show the data for the 30 cell line dataset and the additional colors show 

the 14 new cell line samples. The samples of the 14 new cell lines were 

mapped to the margin space between the 30 cell lines. By comparing Fig. 6A 

with Fig. 6B, some misclassified cases can be explained. For example, in Fig. 

6A, 98% of MCF7 images were classified accurately but 2% of data were 

misclassified as ASPC1. In Fig. 6B, some dots of MCF7 (i.e. red box) 

gathered with the ASPC1’s dots which represents that the feature vectors of 

MCF7 images are similar to that of ASPC1. In contrast, the well-classified 

cases (i.e. green box) MRC5 and Min6 clustered well in the t-SNE plot and 

obtained the accuracy of 99%. We showed the regression results for the test 



 

 

fold-1 of the 14 cell lines in Fig. 6C and the whole cross-validation results 

were presented in Fig. S4.  

 We demonstrated the advantages of the transfer learning method com-

pared with the way of training model from scratch in Fig. 6D-E. The transfer 

learning method requires less computational resource and considerably less 

training time compared with training the whole model from scratch. The 

transfer learning method only spent 4 training epochs to loss convergence and 

its average training time is 0.078 hours. The overall performance of the 

transfer learning technique for identifying the 44 cell lines was shown in 

Table. 2. 

Discussion 

In summary, in the classification task of identifying 30 cell lines, our pro-

posed computer-aided system CLCNet achieved the overall performance of 

99.7% precision and the recall of 99.7%. We compared the Xception back-

bone with three SOTA architectures, e.g. ResNet50, VGG19, MobileNet. 

The classification performance of the three deep networks has been vali-

dated in the previous studies on the analysis of cellular images [10-12]. In 

our experiments, the Xception model outperformed the other architectures, 

which can be attributed to the DSC blocks which decouple spatial correla-

tions from cross-channel correlations and allows more efficient training. It 

should be noted that MobileNet also includes several DSC layers in its 

structure [22], however MobileNet is lightweight and targets the deployment 

on a mobile platform ahead of outright performance. Hence, we picked up 

the Xception as the backbone of CLCNet for classification. We used the t-



 

 

SNE plots (Fig. 4) to visualize the high-dimensional features of CLCNet. It 

is clear that samples (dots) that belong to the same cell lines are clustered to-

gether and there are clear gaps between the 30 cell lines. These results 

proved that CLCNet is powerful for identifying the 30 cell lines.  

 The regression performance of CLRNet was satisfactory with an R2-

score =0.931. We also conducted an ablation experiment using the cell im-

ages to train Xception purely for regression. Here, the Xception architecture 

is almost the same as Fig. S1 except for the final FC layer. The FC only in-

cludes one neuron and the used loss function is MSE. The regression results 

of the ablation model are shown in Fig. S5 and the performance is really 

poor. Because in our dataset, some cell images from different cell lines have 

the same time labels which affects the training of the network. For example, 

we collected two cell images from A431 and A549 cell lines separately but 

these two images have the same incubation times (e.g. Fig. 1). There are 

many differences between the two cell images, e.g. the single cell morphol-

ogy, cell counts, and confluency. The two images have completely different 

appearances but take the same time labels, which influences the feature 

learning of the network. From Fig. 5, we observed that the convolutional 

features of CLCNet include information about the incubation times. Hence, 

we took the features of CLCNet as the input of CLRNet to predict the incu-

bation times for cell images. The above results validated our strategy is ef-

fective for the regression task. 

 Aiming to handle data from new cell lines, we integrated the transfer 

learning technique with our proposed framework. We established a small-

scale dataset that included 14 cell lines to evaluate the method’s perfor-

mance. From the pre-trained model side, the 14 new cell lines were unseen 

so the model cannot output the matching labels for these images. Consider-

ing the pre-trained CLCNet has learned good representations from the data 

of 30 cell lines, we fixed the parameters of all layers except for the final FC 



 

 

layer. The FC were re-trained by using the combined dataset (i.e. training 

set from 30 cell lines + training set from 14 cell lines). The classification ac-

curacy for the 14 cell lines reached 96.5% and the performance of identify-

ing the 30 cell lines was not influenced (99.8% accuracy) by re-training. 

Although the transfer learning technique needs to re-train the part of 

CLCNet, its training speed was 480 times faster than training the model 

from scratch. These results suggested that the transfer learning method is 

possible to solve the issue. 

 In this paper we have established a proof of concept for how an im-

age-based AI method can be used for cell line authentication, including the 

use of transfer learning to extend classification to cell lines for which we 

have only a small number of example images. In doing so we have identi-

fied a number of areas for future research. Firstly the ability to identify and 

quantify contamination of cell lines with small amounts of another cell line 

would be a useful functionality. Secondly, having to retrain the model when 

adding new cell lines might be a drawback as greater numbers of cell lines 

are built up. Some new techniques like conformal prediction [23] or open 

set recognition [24] can automatically decide data is seen or unseen without 

extra model training. These methods can potentially be integrated with the 

transfer learning method to solve this issue. There is also the question of 

how much training data is necessary: How many cell lines are required for 

the base training (is 30 cell lines enough)? How many cell lines can this be 

expanded to via transfer learning (200 cell lines or more) whilst maintaining 

a satisfactory level of performance? Finally, we have demonstrated a proof 

of concept for rapid cell line authentication. When this system is deployed 

into the laboratory, the development of guidelines for interpreting the confi-

dence value outputted by CLCNet, and the incubation time predicted by 

CLRNet, how to assess performance and how to integrate with current la-

boratory practice are required. 



 

 

In this study, we have attempted to automatically authenticate cell 

lines by using deep neural networks on brightfield images. We proposed a 

novel multi-task cell image recognition framework to authenticate cell lines 

and predict the duration of incubation. We established a large dataset con-

sisting of 47671 brightfield images of 30 cell lines. The classification and 

regression performance on the dataset were excellent. We also integrated 

transfer learning with our proposed system to identify new cell lines and ob-

tained 96.7% accuracy. These results demonstrated that our proposed frame-

work can effectively authenticate the identities of cell lines on brightfield 

images. 
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Fig. 1 Example images of three cell lines with different incubated durations (hours). 

In the three examples shown here, 3 discrete time points were taken for A549, 

A549, T47D at 24, 48 and 72 hours. With the increased amount of the incubation 

time, we observed increased cell counts and confluency and a formation of col-

onies. Notable single cell morphology can also be observed, e.g. A549 cells are 

more elongated in shape compared to A431 cells, whereas T47D cells are typi-

cally larger in size and round. 

 

 

 



 

 

 

Fig. 2 The framework of the proposed automated cell line authentication system. In 

the data preparation stage, cell images are collected using the high-throughput 

IncuCyte microscopy technique from 30 cell lines and each cell image has two 

separate labels, e.g. cell line name and incubation time. Then, the deep learning 

network CLCNet learns the image-level features from the input cell images with 

their cell line labels and outputs predicted classes for test cell images. Once 

CLCNet is trained, the convolutional features of the training data are extracted 

to train CLRNet. CLRNet predicts the times of how long cell lines have been 

incubated simultaneously. 

 



 

 

 

Fig. 3 Visualization of the classification and regression results on the 30 cell lines’ 

dataset. A. Confusion matrices of the 30-category classification. The corre-

sponding cell line names of the coordinates are shown in the right legend. Com-

pared with ResNet50, VGG19 and MobileNet, Xception model made fewer pre-

diction errors B. Scatter plots of the predicted incubated durations vs. the real 

incubated durations. Here we show the prediction results on the test fold-1 as an 

example; the complete results of cross-validation are shown in Fig. S2. Xception 

outperformed other three methods in predicting the amount of incubation time 

with R2-score=0.939. 



 

 

 

Fig. 4 t-SNE Embedding of our 30 cell lines. The t-SNE tool reduces the dimension 

of the CLCNet’s convolutional features and visualizes the processed features in 

2D space. Each dot represents one cell image and is colored by its matching cell 

line name. There were clear gaps between different cell lines, which validates 

that CLCNet model can distinguish the 30 cell lines well.  

 

 

 

Fig. 5 t-SNE plots of 3 example cell lines (e.g. HT1080, PC3, KELLY). These plots 

enlarge the three cell lines’ distribution of Fig.4. Each dot is colored by the range 

of the incubation duration (e.g. 0-24 hours, 24-48 hours). An interesting phe-

nomenon was found that samples with similar times locate in adjacent areas. For 

example, the samples of HT1080 were clustered well and samples within 0-24 

hours were close to the samples within 24-48 hours. 



 

 

 

Fig. 6 Performance of the transfer learning technique for identifying 14 new cell lines. 

A. Confusion matrix of the 14 cell line classification B. t-SNE plot of 44 cell 

lines. The pink dots are the data of 30 cell lines and dots of other colors are the 

data of 14 new cell lines. It can be seen that the samples of the 14 new cell lines 

were mapped to the margin space between the 30 cell lines C. Regression results 

for the test fold-1 of the cross-validation D. Comparison of the convergence 

speed between full model training from scratch and final layer fine-tuning using 

the transfer learning. “Training from scratch” means that all layers of Xception 

are re-trained using the dataset E. Comparison of the training times 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tables 

 Classification Regression 

Backbones Accuracy Precision Recall F1-score MSE R2-score 

ResNet50 0.987±0.002 0.984±0.002 0.987±0.003 0.985±0.002 452.533±54.547 0.880±0.015 

VGG19 0.975±0.004 0.968±0.004 0.972±0.003 0.972±0.003 677.637±43.709 0.821±.0013 

MobileNet 0.965±0.001 0.952±0.002 0.960±0.002 0.956±0.002 769.111±44.984 0.797±0.013 

Xception 0.998±0.001 0.997±0.001 0.997±0.001 0.997±0.001 262.283±32.085 0.931±0.008 

 

Table. 1 Classification and Regression Results on the 30 cell lines dataset: [Mean 

Value±Standard Deviation] by four deep networks. R2-score: coefficient of de-

termination regression score. The best results are shown in bold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Metrics 14 Cell Lines 30 Cell Lines Overall 

Accuracy 0.965±0.018 0.998±0.001 0.997±0.001 

Precision 0.977±0.012 0.997±0.001 0.991±0.004 

Recall 0.958±0.024 0.996±0.001 0.984±0.008 

F1-score 0.968±0.017 0.997±0.001 0.987±0.006 

MSE 526.230±62.090 232.690±0.000 263.360±3.287 

R2-score 0.853±0.017 0.939±0.000 0.932±0.001 

 

 

Table. 2 Classification and Regression Results of the transfer learning technique for 

identifying the 44 cell lines. The columns of the “14 cell lines” represented the 

data of 14 cell lines is split from the test dataset during evaluation. The columns 

of the “30 cell lines” represented the data of 30 cell lines is split from the test 

dataset during evaluation. The “overall” column showed the results for the 

whole test set (44 cell lines).  

 

 

 

 

 

 

 

  



 

 

Supplementary Figures 

 

Fig. S1 The Structure of the Xception Model. Conv is the convolution layer, 

BatchNorm is the batch normalization, ReLU is the activation function, Separa-

bleConv is the depthwise separable convolution layer, MaxPool is the Maxpool-

ing layer, and FC is the fully connected layer.  

 

Fig. S2 Regression Results of four backbones(e.g. ResNet50, VGG19, MobileNet, 

Xception) on 5-fold Cross-Validation. Scatter plots of the predicted incubated 

durations vs. the real incubated durations. 

 

Fig. S3 TSNE plots of 30 cell lines. Each dot is colored by the range of the incubation 

duration (e.g. 0-24 hours, 24-48 hours). 

 

Fig. S4 Regression Results of transfer learning method for 14 new cell lines on 5-fold 

Cross-Validation. Scatter plots of the predicted incubated durations vs. the 

ground truth incubated durations. 

 

Fig. S5 Failure cases of training Xception purely with raw cell images for regression.  

 

 

Supplementary Tables 

Table. S1 List of 30 cell lines. All base medium was purchased from Sigma Aldrich, 

and supplemented with 10% FBS (Sigma Aldrich) and 1x GlutaMAX (Gibco) 

unless otherwise stated. 

 

Table. S2 List of 14 cell lines.  
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